1b7f87799a7ec31ee967487710cebf0d2da864e9
[kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop the TX queues.
142          */
143         ieee80211_stop_queues(rt2x00dev->hw);
144
145         /*
146          * Disable RX.
147          */
148         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150         /*
151          * Disable radio.
152          */
153         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155         rt2x00led_led_activity(rt2x00dev, false);
156         rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161         /*
162          * When we are disabling the RX, we should also stop the link tuner.
163          */
164         if (state == STATE_RADIO_RX_OFF)
165                 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169         /*
170          * When we are enabling the RX, we should also start the link tuner.
171          */
172         if (state == STATE_RADIO_RX_ON &&
173             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174                 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179         enum antenna rx = rt2x00dev->link.ant.active.rx;
180         enum antenna tx = rt2x00dev->link.ant.active.tx;
181         int sample_a =
182             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183         int sample_b =
184             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185
186         /*
187          * We are done sampling. Now we should evaluate the results.
188          */
189         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191         /*
192          * During the last period we have sampled the RSSI
193          * from both antenna's. It now is time to determine
194          * which antenna demonstrated the best performance.
195          * When we are already on the antenna with the best
196          * performance, then there really is nothing for us
197          * left to do.
198          */
199         if (sample_a == sample_b)
200                 return;
201
202         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213         enum antenna rx = rt2x00dev->link.ant.active.rx;
214         enum antenna tx = rt2x00dev->link.ant.active.tx;
215         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218         /*
219          * Legacy driver indicates that we should swap antenna's
220          * when the difference in RSSI is greater that 5. This
221          * also should be done when the RSSI was actually better
222          * then the previous sample.
223          * When the difference exceeds the threshold we should
224          * sample the rssi from the other antenna to make a valid
225          * comparison between the 2 antennas.
226          */
227         if (abs(rssi_curr - rssi_old) < 5)
228                 return;
229
230         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
231
232         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
233                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
234
235         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
236                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237
238         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 }
240
241 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 {
243         /*
244          * Determine if software diversity is enabled for
245          * either the TX or RX antenna (or both).
246          * Always perform this check since within the link
247          * tuner interval the configuration might have changed.
248          */
249         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
250         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
251
252         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
253             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
256             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258
259         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261                 rt2x00dev->link.ant.flags = 0;
262                 return;
263         }
264
265         /*
266          * If we have only sampled the data over the last period
267          * we should now harvest the data. Otherwise just evaluate
268          * the data. The latter should only be performed once
269          * every 2 seconds.
270          */
271         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273         else if (rt2x00dev->link.count & 1)
274                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 }
276
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 {
279         int avg_rssi = rssi;
280
281         /*
282          * Update global RSSI
283          */
284         if (link->qual.avg_rssi)
285                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286         link->qual.avg_rssi = avg_rssi;
287
288         /*
289          * Update antenna RSSI
290          */
291         if (link->ant.rssi_ant)
292                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293         link->ant.rssi_ant = rssi;
294 }
295
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 {
298         if (qual->rx_failed || qual->rx_success)
299                 qual->rx_percentage =
300                     (qual->rx_success * 100) /
301                     (qual->rx_failed + qual->rx_success);
302         else
303                 qual->rx_percentage = 50;
304
305         if (qual->tx_failed || qual->tx_success)
306                 qual->tx_percentage =
307                     (qual->tx_success * 100) /
308                     (qual->tx_failed + qual->tx_success);
309         else
310                 qual->tx_percentage = 50;
311
312         qual->rx_success = 0;
313         qual->rx_failed = 0;
314         qual->tx_success = 0;
315         qual->tx_failed = 0;
316 }
317
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
319                                            int rssi)
320 {
321         int rssi_percentage = 0;
322         int signal;
323
324         /*
325          * We need a positive value for the RSSI.
326          */
327         if (rssi < 0)
328                 rssi += rt2x00dev->rssi_offset;
329
330         /*
331          * Calculate the different percentages,
332          * which will be used for the signal.
333          */
334         if (rt2x00dev->rssi_offset)
335                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336
337         /*
338          * Add the individual percentages and use the WEIGHT
339          * defines to calculate the current link signal.
340          */
341         signal = ((WEIGHT_RSSI * rssi_percentage) +
342                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344
345         return (signal > 100) ? 100 : signal;
346 }
347
348 static void rt2x00lib_link_tuner(struct work_struct *work)
349 {
350         struct rt2x00_dev *rt2x00dev =
351             container_of(work, struct rt2x00_dev, link.work.work);
352
353         /*
354          * When the radio is shutting down we should
355          * immediately cease all link tuning.
356          */
357         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
358                 return;
359
360         /*
361          * Update statistics.
362          */
363         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365             rt2x00dev->link.qual.rx_failed;
366
367         /*
368          * Only perform the link tuning when Link tuning
369          * has been enabled (This could have been disabled from the EEPROM).
370          */
371         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373
374         /*
375          * Precalculate a portion of the link signal which is
376          * in based on the tx/rx success/failure counters.
377          */
378         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379
380         /*
381          * Send a signal to the led to update the led signal strength.
382          */
383         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384
385         /*
386          * Evaluate antenna setup, make this the last step since this could
387          * possibly reset some statistics.
388          */
389         rt2x00lib_evaluate_antenna(rt2x00dev);
390
391         /*
392          * Increase tuner counter, and reschedule the next link tuner run.
393          */
394         rt2x00dev->link.count++;
395         queue_delayed_work(rt2x00dev->hw->workqueue,
396                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 }
398
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 {
401         struct rt2x00_dev *rt2x00dev =
402             container_of(work, struct rt2x00_dev, filter_work);
403
404         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 }
406
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408                                           struct ieee80211_vif *vif)
409 {
410         struct rt2x00_dev *rt2x00dev = data;
411         struct rt2x00_intf *intf = vif_to_intf(vif);
412         struct ieee80211_bss_conf conf;
413         int delayed_flags;
414
415         /*
416          * Copy all data we need during this action under the protection
417          * of a spinlock. Otherwise race conditions might occur which results
418          * into an invalid configuration.
419          */
420         spin_lock(&intf->lock);
421
422         memcpy(&conf, &intf->conf, sizeof(conf));
423         delayed_flags = intf->delayed_flags;
424         intf->delayed_flags = 0;
425
426         spin_unlock(&intf->lock);
427
428         /*
429          * It is possible the radio was disabled while the work had been
430          * scheduled. If that happens we should return here immediately,
431          * note that in the spinlock protected area above the delayed_flags
432          * have been cleared correctly.
433          */
434         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
435                 return;
436
437         if (delayed_flags & DELAYED_UPDATE_BEACON) {
438                 struct ieee80211_if_conf conf;
439                 conf.bssid = conf.ssid = NULL;
440                 conf.ssid_len = 0;
441                 conf.changed = IEEE80211_IFCC_BEACON;
442                 rt2x00dev->ops->hw->config_interface(rt2x00dev->hw, vif, &conf);
443         }
444
445         if (delayed_flags & DELAYED_CONFIG_ERP)
446                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
447
448         if (delayed_flags & DELAYED_LED_ASSOC)
449                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
450 }
451
452 static void rt2x00lib_intf_scheduled(struct work_struct *work)
453 {
454         struct rt2x00_dev *rt2x00dev =
455             container_of(work, struct rt2x00_dev, intf_work);
456
457         /*
458          * Iterate over each interface and perform the
459          * requested configurations.
460          */
461         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
462                                             rt2x00lib_intf_scheduled_iter,
463                                             rt2x00dev);
464 }
465
466 /*
467  * Interrupt context handlers.
468  */
469 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
470                                       struct ieee80211_vif *vif)
471 {
472         struct rt2x00_dev *rt2x00dev = data;
473         struct rt2x00_intf *intf = vif_to_intf(vif);
474
475         if (vif->type != IEEE80211_IF_TYPE_AP &&
476             vif->type != IEEE80211_IF_TYPE_IBSS)
477                 return;
478
479         /*
480          * Clean up the beacon skb.
481          */
482         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
483         intf->beacon->skb = NULL;
484
485         spin_lock(&intf->lock);
486         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
487         spin_unlock(&intf->lock);
488 }
489
490 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
491 {
492         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
493                 return;
494
495         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
496                                                    rt2x00lib_beacondone_iter,
497                                                    rt2x00dev);
498
499         schedule_work(&rt2x00dev->intf_work);
500 }
501 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
502
503 void rt2x00lib_txdone(struct queue_entry *entry,
504                       struct txdone_entry_desc *txdesc)
505 {
506         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
507         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
508         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
509
510         /*
511          * Unmap the skb.
512          */
513         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
514
515         /*
516          * Send frame to debugfs immediately, after this call is completed
517          * we are going to overwrite the skb->cb array.
518          */
519         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
520
521         /*
522          * Update TX statistics.
523          */
524         rt2x00dev->link.qual.tx_success +=
525             test_bit(TXDONE_SUCCESS, &txdesc->flags);
526         rt2x00dev->link.qual.tx_failed +=
527             test_bit(TXDONE_FAILURE, &txdesc->flags);
528
529         /*
530          * Initialize TX status
531          */
532         memset(&tx_info->status, 0, sizeof(tx_info->status));
533         tx_info->status.ack_signal = 0;
534         tx_info->status.excessive_retries =
535             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
536         tx_info->status.retry_count = txdesc->retry;
537
538         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
539                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
540                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
541                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
542                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
543         }
544
545         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
546                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
547                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
548                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
549                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
550         }
551
552         /*
553          * Only send the status report to mac80211 when TX status was
554          * requested by it. If this was a extra frame coming through
555          * a mac80211 library call (RTS/CTS) then we should not send the
556          * status report back.
557          */
558         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
559                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
560         else
561                 dev_kfree_skb_irq(entry->skb);
562
563         /*
564          * Make this entry available for reuse.
565          */
566         entry->skb = NULL;
567         entry->flags = 0;
568
569         rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
570
571         __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
572         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
573
574         /*
575          * If the data queue was below the threshold before the txdone
576          * handler we must make sure the packet queue in the mac80211 stack
577          * is reenabled when the txdone handler has finished.
578          */
579         if (!rt2x00queue_threshold(entry->queue))
580                 ieee80211_wake_queue(rt2x00dev->hw, qid);
581 }
582 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
583
584 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
585                       struct queue_entry *entry)
586 {
587         struct rxdone_entry_desc rxdesc;
588         struct sk_buff *skb;
589         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
590         struct ieee80211_supported_band *sband;
591         struct ieee80211_hdr *hdr;
592         const struct rt2x00_rate *rate;
593         unsigned int header_size;
594         unsigned int align;
595         unsigned int i;
596         int idx = -1;
597
598         /*
599          * Allocate a new sk_buffer. If no new buffer available, drop the
600          * received frame and reuse the existing buffer.
601          */
602         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
603         if (!skb)
604                 return;
605
606         /*
607          * Unmap the skb.
608          */
609         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
610
611         /*
612          * Extract the RXD details.
613          */
614         memset(&rxdesc, 0, sizeof(rxdesc));
615         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
616
617         /*
618          * The data behind the ieee80211 header must be
619          * aligned on a 4 byte boundary.
620          */
621         header_size = ieee80211_get_hdrlen_from_skb(entry->skb);
622         align = ((unsigned long)(entry->skb->data + header_size)) & 3;
623
624         if (align) {
625                 skb_push(entry->skb, align);
626                 /* Move entire frame in 1 command */
627                 memmove(entry->skb->data, entry->skb->data + align,
628                         rxdesc.size);
629         }
630
631         /* Update data pointers, trim buffer to correct size */
632         skb_trim(entry->skb, rxdesc.size);
633
634         /*
635          * Update RX statistics.
636          */
637         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
638         for (i = 0; i < sband->n_bitrates; i++) {
639                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
640
641                 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
642                      (rate->plcp == rxdesc.signal)) ||
643                     (!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
644                       (rate->bitrate == rxdesc.signal))) {
645                         idx = i;
646                         break;
647                 }
648         }
649
650         if (idx < 0) {
651                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
652                         "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
653                         !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
654                 idx = 0;
655         }
656
657         /*
658          * Only update link status if this is a beacon frame carrying our bssid.
659          */
660         hdr = (struct ieee80211_hdr *)entry->skb->data;
661         if (ieee80211_is_beacon(hdr->frame_control) &&
662             (rxdesc.dev_flags & RXDONE_MY_BSS))
663                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
664
665         rt2x00dev->link.qual.rx_success++;
666
667         rx_status->mactime = rxdesc.timestamp;
668         rx_status->rate_idx = idx;
669         rx_status->qual =
670             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
671         rx_status->signal = rxdesc.rssi;
672         rx_status->flag = rxdesc.flags;
673         rx_status->antenna = rt2x00dev->link.ant.active.rx;
674
675         /*
676          * Send frame to mac80211 & debugfs.
677          * mac80211 will clean up the skb structure.
678          */
679         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
680         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
681
682         /*
683          * Replace the skb with the freshly allocated one.
684          */
685         entry->skb = skb;
686         entry->flags = 0;
687
688         rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
689
690         rt2x00queue_index_inc(entry->queue, Q_INDEX);
691 }
692 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
693
694 /*
695  * Driver initialization handlers.
696  */
697 const struct rt2x00_rate rt2x00_supported_rates[12] = {
698         {
699                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
700                 .bitrate = 10,
701                 .ratemask = BIT(0),
702                 .plcp = 0x00,
703         },
704         {
705                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
706                 .bitrate = 20,
707                 .ratemask = BIT(1),
708                 .plcp = 0x01,
709         },
710         {
711                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
712                 .bitrate = 55,
713                 .ratemask = BIT(2),
714                 .plcp = 0x02,
715         },
716         {
717                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
718                 .bitrate = 110,
719                 .ratemask = BIT(3),
720                 .plcp = 0x03,
721         },
722         {
723                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
724                 .bitrate = 60,
725                 .ratemask = BIT(4),
726                 .plcp = 0x0b,
727         },
728         {
729                 .flags = DEV_RATE_OFDM,
730                 .bitrate = 90,
731                 .ratemask = BIT(5),
732                 .plcp = 0x0f,
733         },
734         {
735                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
736                 .bitrate = 120,
737                 .ratemask = BIT(6),
738                 .plcp = 0x0a,
739         },
740         {
741                 .flags = DEV_RATE_OFDM,
742                 .bitrate = 180,
743                 .ratemask = BIT(7),
744                 .plcp = 0x0e,
745         },
746         {
747                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
748                 .bitrate = 240,
749                 .ratemask = BIT(8),
750                 .plcp = 0x09,
751         },
752         {
753                 .flags = DEV_RATE_OFDM,
754                 .bitrate = 360,
755                 .ratemask = BIT(9),
756                 .plcp = 0x0d,
757         },
758         {
759                 .flags = DEV_RATE_OFDM,
760                 .bitrate = 480,
761                 .ratemask = BIT(10),
762                 .plcp = 0x08,
763         },
764         {
765                 .flags = DEV_RATE_OFDM,
766                 .bitrate = 540,
767                 .ratemask = BIT(11),
768                 .plcp = 0x0c,
769         },
770 };
771
772 static void rt2x00lib_channel(struct ieee80211_channel *entry,
773                               const int channel, const int tx_power,
774                               const int value)
775 {
776         entry->center_freq = ieee80211_channel_to_frequency(channel);
777         entry->hw_value = value;
778         entry->max_power = tx_power;
779         entry->max_antenna_gain = 0xff;
780 }
781
782 static void rt2x00lib_rate(struct ieee80211_rate *entry,
783                            const u16 index, const struct rt2x00_rate *rate)
784 {
785         entry->flags = 0;
786         entry->bitrate = rate->bitrate;
787         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
788         entry->hw_value_short = entry->hw_value;
789
790         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
791                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
792                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
793         }
794 }
795
796 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
797                                     struct hw_mode_spec *spec)
798 {
799         struct ieee80211_hw *hw = rt2x00dev->hw;
800         struct ieee80211_channel *channels;
801         struct ieee80211_rate *rates;
802         unsigned int num_rates;
803         unsigned int i;
804         unsigned char tx_power;
805
806         num_rates = 0;
807         if (spec->supported_rates & SUPPORT_RATE_CCK)
808                 num_rates += 4;
809         if (spec->supported_rates & SUPPORT_RATE_OFDM)
810                 num_rates += 8;
811
812         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
813         if (!channels)
814                 return -ENOMEM;
815
816         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
817         if (!rates)
818                 goto exit_free_channels;
819
820         /*
821          * Initialize Rate list.
822          */
823         for (i = 0; i < num_rates; i++)
824                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
825
826         /*
827          * Initialize Channel list.
828          */
829         for (i = 0; i < spec->num_channels; i++) {
830                 if (spec->channels[i].channel <= 14) {
831                         if (spec->tx_power_bg)
832                                 tx_power = spec->tx_power_bg[i];
833                         else
834                                 tx_power = spec->tx_power_default;
835                 } else {
836                         if (spec->tx_power_a)
837                                 tx_power = spec->tx_power_a[i];
838                         else
839                                 tx_power = spec->tx_power_default;
840                 }
841
842                 rt2x00lib_channel(&channels[i],
843                                   spec->channels[i].channel, tx_power, i);
844         }
845
846         /*
847          * Intitialize 802.11b, 802.11g
848          * Rates: CCK, OFDM.
849          * Channels: 2.4 GHz
850          */
851         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
852                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
853                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
854                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
855                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
856                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
857                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
858         }
859
860         /*
861          * Intitialize 802.11a
862          * Rates: OFDM.
863          * Channels: OFDM, UNII, HiperLAN2.
864          */
865         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
866                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
867                     spec->num_channels - 14;
868                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
869                     num_rates - 4;
870                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
871                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
872                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
873                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
874         }
875
876         return 0;
877
878  exit_free_channels:
879         kfree(channels);
880         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
881         return -ENOMEM;
882 }
883
884 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
885 {
886         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
887                 ieee80211_unregister_hw(rt2x00dev->hw);
888
889         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
890                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
891                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
892                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
893                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
894         }
895 }
896
897 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
898 {
899         struct hw_mode_spec *spec = &rt2x00dev->spec;
900         int status;
901
902         /*
903          * Initialize HW modes.
904          */
905         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
906         if (status)
907                 return status;
908
909         /*
910          * Initialize HW fields.
911          */
912         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
913
914         /*
915          * Register HW.
916          */
917         status = ieee80211_register_hw(rt2x00dev->hw);
918         if (status) {
919                 rt2x00lib_remove_hw(rt2x00dev);
920                 return status;
921         }
922
923         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
924
925         return 0;
926 }
927
928 /*
929  * Initialization/uninitialization handlers.
930  */
931 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
932 {
933         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
934                 return;
935
936         /*
937          * Unregister extra components.
938          */
939         rt2x00rfkill_unregister(rt2x00dev);
940
941         /*
942          * Allow the HW to uninitialize.
943          */
944         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
945
946         /*
947          * Free allocated queue entries.
948          */
949         rt2x00queue_uninitialize(rt2x00dev);
950 }
951
952 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
953 {
954         int status;
955
956         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
957                 return 0;
958
959         /*
960          * Allocate all queue entries.
961          */
962         status = rt2x00queue_initialize(rt2x00dev);
963         if (status)
964                 return status;
965
966         /*
967          * Initialize the device.
968          */
969         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
970         if (status) {
971                 rt2x00queue_uninitialize(rt2x00dev);
972                 return status;
973         }
974
975         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
976
977         /*
978          * Register the extra components.
979          */
980         rt2x00rfkill_register(rt2x00dev);
981
982         return 0;
983 }
984
985 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
986 {
987         int retval;
988
989         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
990                 return 0;
991
992         /*
993          * If this is the first interface which is added,
994          * we should load the firmware now.
995          */
996         retval = rt2x00lib_load_firmware(rt2x00dev);
997         if (retval)
998                 return retval;
999
1000         /*
1001          * Initialize the device.
1002          */
1003         retval = rt2x00lib_initialize(rt2x00dev);
1004         if (retval)
1005                 return retval;
1006
1007         /*
1008          * Enable radio.
1009          */
1010         retval = rt2x00lib_enable_radio(rt2x00dev);
1011         if (retval) {
1012                 rt2x00lib_uninitialize(rt2x00dev);
1013                 return retval;
1014         }
1015
1016         rt2x00dev->intf_ap_count = 0;
1017         rt2x00dev->intf_sta_count = 0;
1018         rt2x00dev->intf_associated = 0;
1019
1020         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1021
1022         return 0;
1023 }
1024
1025 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1026 {
1027         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1028                 return;
1029
1030         /*
1031          * Perhaps we can add something smarter here,
1032          * but for now just disabling the radio should do.
1033          */
1034         rt2x00lib_disable_radio(rt2x00dev);
1035
1036         rt2x00dev->intf_ap_count = 0;
1037         rt2x00dev->intf_sta_count = 0;
1038         rt2x00dev->intf_associated = 0;
1039
1040         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1041 }
1042
1043 /*
1044  * driver allocation handlers.
1045  */
1046 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1047 {
1048         int retval = -ENOMEM;
1049
1050         /*
1051          * Make room for rt2x00_intf inside the per-interface
1052          * structure ieee80211_vif.
1053          */
1054         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1055
1056         /*
1057          * Let the driver probe the device to detect the capabilities.
1058          */
1059         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1060         if (retval) {
1061                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1062                 goto exit;
1063         }
1064
1065         /*
1066          * Initialize configuration work.
1067          */
1068         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1069         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1070         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1071
1072         /*
1073          * Allocate queue array.
1074          */
1075         retval = rt2x00queue_allocate(rt2x00dev);
1076         if (retval)
1077                 goto exit;
1078
1079         /*
1080          * Initialize ieee80211 structure.
1081          */
1082         retval = rt2x00lib_probe_hw(rt2x00dev);
1083         if (retval) {
1084                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1085                 goto exit;
1086         }
1087
1088         /*
1089          * Register extra components.
1090          */
1091         rt2x00leds_register(rt2x00dev);
1092         rt2x00rfkill_allocate(rt2x00dev);
1093         rt2x00debug_register(rt2x00dev);
1094
1095         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1096
1097         return 0;
1098
1099 exit:
1100         rt2x00lib_remove_dev(rt2x00dev);
1101
1102         return retval;
1103 }
1104 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1105
1106 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1107 {
1108         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1109
1110         /*
1111          * Disable radio.
1112          */
1113         rt2x00lib_disable_radio(rt2x00dev);
1114
1115         /*
1116          * Uninitialize device.
1117          */
1118         rt2x00lib_uninitialize(rt2x00dev);
1119
1120         /*
1121          * Free extra components
1122          */
1123         rt2x00debug_deregister(rt2x00dev);
1124         rt2x00rfkill_free(rt2x00dev);
1125         rt2x00leds_unregister(rt2x00dev);
1126
1127         /*
1128          * Free ieee80211_hw memory.
1129          */
1130         rt2x00lib_remove_hw(rt2x00dev);
1131
1132         /*
1133          * Free firmware image.
1134          */
1135         rt2x00lib_free_firmware(rt2x00dev);
1136
1137         /*
1138          * Free queue structures.
1139          */
1140         rt2x00queue_free(rt2x00dev);
1141 }
1142 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1143
1144 /*
1145  * Device state handlers
1146  */
1147 #ifdef CONFIG_PM
1148 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1149 {
1150         int retval;
1151
1152         NOTICE(rt2x00dev, "Going to sleep.\n");
1153         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1154
1155         /*
1156          * Only continue if mac80211 has open interfaces.
1157          */
1158         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1159                 goto exit;
1160         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1161
1162         /*
1163          * Disable radio.
1164          */
1165         rt2x00lib_stop(rt2x00dev);
1166         rt2x00lib_uninitialize(rt2x00dev);
1167
1168         /*
1169          * Suspend/disable extra components.
1170          */
1171         rt2x00leds_suspend(rt2x00dev);
1172         rt2x00debug_deregister(rt2x00dev);
1173
1174 exit:
1175         /*
1176          * Set device mode to sleep for power management,
1177          * on some hardware this call seems to consistently fail.
1178          * From the specifications it is hard to tell why it fails,
1179          * and if this is a "bad thing".
1180          * Overall it is safe to just ignore the failure and
1181          * continue suspending. The only downside is that the
1182          * device will not be in optimal power save mode, but with
1183          * the radio and the other components already disabled the
1184          * device is as good as disabled.
1185          */
1186         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1187         if (retval)
1188                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1189                         "continue suspending.\n");
1190
1191         return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1194
1195 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1196                                   struct ieee80211_vif *vif)
1197 {
1198         struct rt2x00_dev *rt2x00dev = data;
1199         struct rt2x00_intf *intf = vif_to_intf(vif);
1200
1201         spin_lock(&intf->lock);
1202
1203         rt2x00lib_config_intf(rt2x00dev, intf,
1204                               vif->type, intf->mac, intf->bssid);
1205
1206
1207         /*
1208          * Master or Ad-hoc mode require a new beacon update.
1209          */
1210         if (vif->type == IEEE80211_IF_TYPE_AP ||
1211             vif->type == IEEE80211_IF_TYPE_IBSS)
1212                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1213
1214         spin_unlock(&intf->lock);
1215 }
1216
1217 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1218 {
1219         int retval;
1220
1221         NOTICE(rt2x00dev, "Waking up.\n");
1222
1223         /*
1224          * Restore/enable extra components.
1225          */
1226         rt2x00debug_register(rt2x00dev);
1227         rt2x00leds_resume(rt2x00dev);
1228
1229         /*
1230          * Only continue if mac80211 had open interfaces.
1231          */
1232         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1233                 return 0;
1234
1235         /*
1236          * Reinitialize device and all active interfaces.
1237          */
1238         retval = rt2x00lib_start(rt2x00dev);
1239         if (retval)
1240                 goto exit;
1241
1242         /*
1243          * Reconfigure device.
1244          */
1245         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1246         if (!rt2x00dev->hw->conf.radio_enabled)
1247                 rt2x00lib_disable_radio(rt2x00dev);
1248
1249         /*
1250          * Iterator over each active interface to
1251          * reconfigure the hardware.
1252          */
1253         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1254                                             rt2x00lib_resume_intf, rt2x00dev);
1255
1256         /*
1257          * We are ready again to receive requests from mac80211.
1258          */
1259         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1260
1261         /*
1262          * It is possible that during that mac80211 has attempted
1263          * to send frames while we were suspending or resuming.
1264          * In that case we have disabled the TX queue and should
1265          * now enable it again
1266          */
1267         ieee80211_wake_queues(rt2x00dev->hw);
1268
1269         /*
1270          * During interface iteration we might have changed the
1271          * delayed_flags, time to handles the event by calling
1272          * the work handler directly.
1273          */
1274         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1275
1276         return 0;
1277
1278 exit:
1279         rt2x00lib_disable_radio(rt2x00dev);
1280         rt2x00lib_uninitialize(rt2x00dev);
1281         rt2x00debug_deregister(rt2x00dev);
1282
1283         return retval;
1284 }
1285 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1286 #endif /* CONFIG_PM */
1287
1288 /*
1289  * rt2x00lib module information.
1290  */
1291 MODULE_AUTHOR(DRV_PROJECT);
1292 MODULE_VERSION(DRV_VERSION);
1293 MODULE_DESCRIPTION("rt2x00 library");
1294 MODULE_LICENSE("GPL");