rt2x00: Reorganize beacon handling
[kernel.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 queue specific routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34                                         struct queue_entry *entry)
35 {
36         unsigned int frame_size;
37         unsigned int reserved_size;
38         struct sk_buff *skb;
39         struct skb_frame_desc *skbdesc;
40
41         /*
42          * The frame size includes descriptor size, because the
43          * hardware directly receive the frame into the skbuffer.
44          */
45         frame_size = entry->queue->data_size + entry->queue->desc_size;
46
47         /*
48          * The payload should be aligned to a 4-byte boundary,
49          * this means we need at least 3 bytes for moving the frame
50          * into the correct offset.
51          */
52         reserved_size = 4;
53
54         /*
55          * Allocate skbuffer.
56          */
57         skb = dev_alloc_skb(frame_size + reserved_size);
58         if (!skb)
59                 return NULL;
60
61         skb_reserve(skb, reserved_size);
62         skb_put(skb, frame_size);
63
64         /*
65          * Populate skbdesc.
66          */
67         skbdesc = get_skb_frame_desc(skb);
68         memset(skbdesc, 0, sizeof(*skbdesc));
69         skbdesc->entry = entry;
70
71         if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
72                 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
73                                                   skb->data,
74                                                   skb->len,
75                                                   DMA_FROM_DEVICE);
76                 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
77         }
78
79         return skb;
80 }
81
82 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
83 {
84         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
85
86         skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
87                                           DMA_TO_DEVICE);
88         skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
89 }
90 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
91
92 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
93 {
94         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
95
96         if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
97                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
98                                  DMA_FROM_DEVICE);
99                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
100         }
101
102         if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
103                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
104                                  DMA_TO_DEVICE);
105                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
106         }
107 }
108
109 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
110 {
111         if (!skb)
112                 return;
113
114         rt2x00queue_unmap_skb(rt2x00dev, skb);
115         dev_kfree_skb_any(skb);
116 }
117
118 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
119                                              struct txentry_desc *txdesc)
120 {
121         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
122         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
123         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
124         struct ieee80211_rate *rate =
125             ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
126         const struct rt2x00_rate *hwrate;
127         unsigned int data_length;
128         unsigned int duration;
129         unsigned int residual;
130
131         memset(txdesc, 0, sizeof(*txdesc));
132
133         /*
134          * Initialize information from queue
135          */
136         txdesc->queue = entry->queue->qid;
137         txdesc->cw_min = entry->queue->cw_min;
138         txdesc->cw_max = entry->queue->cw_max;
139         txdesc->aifs = entry->queue->aifs;
140
141         /* Data length should be extended with 4 bytes for CRC */
142         data_length = entry->skb->len + 4;
143
144         /*
145          * Check whether this frame is to be acked.
146          */
147         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
148                 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
149
150         /*
151          * Check if this is a RTS/CTS frame
152          */
153         if (ieee80211_is_rts(hdr->frame_control) ||
154             ieee80211_is_cts(hdr->frame_control)) {
155                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
156                 if (ieee80211_is_rts(hdr->frame_control))
157                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
158                 else
159                         __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
160                 if (tx_info->control.rts_cts_rate_idx >= 0)
161                         rate =
162                             ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
163         }
164
165         /*
166          * Determine retry information.
167          */
168         txdesc->retry_limit = tx_info->control.retry_limit;
169         if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
170                 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
171
172         /*
173          * Check if more fragments are pending
174          */
175         if (ieee80211_has_morefrags(hdr->frame_control)) {
176                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
177                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
178         }
179
180         /*
181          * Beacons and probe responses require the tsf timestamp
182          * to be inserted into the frame.
183          */
184         if (ieee80211_is_beacon(hdr->frame_control) ||
185             ieee80211_is_probe_resp(hdr->frame_control))
186                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
187
188         /*
189          * Determine with what IFS priority this frame should be send.
190          * Set ifs to IFS_SIFS when the this is not the first fragment,
191          * or this fragment came after RTS/CTS.
192          */
193         if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
194                 txdesc->ifs = IFS_SIFS;
195         } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
196                 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
197                 txdesc->ifs = IFS_BACKOFF;
198         } else {
199                 txdesc->ifs = IFS_SIFS;
200         }
201
202         /*
203          * PLCP setup
204          * Length calculation depends on OFDM/CCK rate.
205          */
206         hwrate = rt2x00_get_rate(rate->hw_value);
207         txdesc->signal = hwrate->plcp;
208         txdesc->service = 0x04;
209
210         if (hwrate->flags & DEV_RATE_OFDM) {
211                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
212
213                 txdesc->length_high = (data_length >> 6) & 0x3f;
214                 txdesc->length_low = data_length & 0x3f;
215         } else {
216                 /*
217                  * Convert length to microseconds.
218                  */
219                 residual = get_duration_res(data_length, hwrate->bitrate);
220                 duration = get_duration(data_length, hwrate->bitrate);
221
222                 if (residual != 0) {
223                         duration++;
224
225                         /*
226                          * Check if we need to set the Length Extension
227                          */
228                         if (hwrate->bitrate == 110 && residual <= 30)
229                                 txdesc->service |= 0x80;
230                 }
231
232                 txdesc->length_high = (duration >> 8) & 0xff;
233                 txdesc->length_low = duration & 0xff;
234
235                 /*
236                  * When preamble is enabled we should set the
237                  * preamble bit for the signal.
238                  */
239                 if (rt2x00_get_rate_preamble(rate->hw_value))
240                         txdesc->signal |= 0x08;
241         }
242 }
243
244 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
245                                             struct txentry_desc *txdesc)
246 {
247         struct data_queue *queue = entry->queue;
248         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
249
250         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
251
252         /*
253          * All processing on the frame has been completed, this means
254          * it is now ready to be dumped to userspace through debugfs.
255          */
256         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
257
258         /*
259          * Check if we need to kick the queue, there are however a few rules
260          *      1) Don't kick beacon queue
261          *      2) Don't kick unless this is the last in frame in a burst.
262          *         When the burst flag is set, this frame is always followed
263          *         by another frame which in some way are related to eachother.
264          *         This is true for fragments, RTS or CTS-to-self frames.
265          *      3) Rule 2 can be broken when the available entries
266          *         in the queue are less then a certain threshold.
267          */
268         if (entry->queue->qid == QID_BEACON)
269                 return;
270
271         if (rt2x00queue_threshold(queue) ||
272             !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
273                 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
274 }
275
276 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
277 {
278         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
279         struct txentry_desc txdesc;
280         struct skb_frame_desc *skbdesc;
281
282         if (unlikely(rt2x00queue_full(queue)))
283                 return -EINVAL;
284
285         if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
286                 ERROR(queue->rt2x00dev,
287                       "Arrived at non-free entry in the non-full queue %d.\n"
288                       "Please file bug report to %s.\n",
289                       queue->qid, DRV_PROJECT);
290                 return -EINVAL;
291         }
292
293         /*
294          * Copy all TX descriptor information into txdesc,
295          * after that we are free to use the skb->cb array
296          * for our information.
297          */
298         entry->skb = skb;
299         rt2x00queue_create_tx_descriptor(entry, &txdesc);
300
301         /*
302          * skb->cb array is now ours and we are free to use it.
303          */
304         skbdesc = get_skb_frame_desc(entry->skb);
305         memset(skbdesc, 0, sizeof(*skbdesc));
306         skbdesc->entry = entry;
307
308         if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
309                 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
310                 return -EIO;
311         }
312
313         if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
314                 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
315
316         __set_bit(ENTRY_DATA_PENDING, &entry->flags);
317
318         rt2x00queue_index_inc(queue, Q_INDEX);
319         rt2x00queue_write_tx_descriptor(entry, &txdesc);
320
321         return 0;
322 }
323
324 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
325                               struct ieee80211_vif *vif)
326 {
327         struct rt2x00_intf *intf = vif_to_intf(vif);
328         struct skb_frame_desc *skbdesc;
329         struct txentry_desc txdesc;
330         __le32 desc[16];
331
332         if (unlikely(!intf->beacon))
333                 return -ENOBUFS;
334
335         intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
336         if (!intf->beacon->skb)
337                 return -ENOMEM;
338
339         /*
340          * Copy all TX descriptor information into txdesc,
341          * after that we are free to use the skb->cb array
342          * for our information.
343          */
344         rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
345
346         /*
347          * For the descriptor we use a local array from where the
348          * driver can move it to the correct location required for
349          * the hardware.
350          */
351         memset(desc, 0, sizeof(desc));
352
353         /*
354          * Fill in skb descriptor
355          */
356         skbdesc = get_skb_frame_desc(intf->beacon->skb);
357         memset(skbdesc, 0, sizeof(*skbdesc));
358         skbdesc->desc = desc;
359         skbdesc->desc_len = intf->beacon->queue->desc_size;
360         skbdesc->entry = intf->beacon;
361
362         /*
363          * Write TX descriptor into reserved room in front of the beacon.
364          */
365         rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
366
367         /*
368          * Send beacon to hardware.
369          * Also enable beacon generation, which might have been disabled
370          * by the driver during the config_beacon() callback function.
371          */
372         rt2x00dev->ops->lib->write_beacon(intf->beacon);
373         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
374
375         return 0;
376 }
377
378 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
379                                          const enum data_queue_qid queue)
380 {
381         int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
382
383         if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
384                 return &rt2x00dev->tx[queue];
385
386         if (!rt2x00dev->bcn)
387                 return NULL;
388
389         if (queue == QID_BEACON)
390                 return &rt2x00dev->bcn[0];
391         else if (queue == QID_ATIM && atim)
392                 return &rt2x00dev->bcn[1];
393
394         return NULL;
395 }
396 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
397
398 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
399                                           enum queue_index index)
400 {
401         struct queue_entry *entry;
402         unsigned long irqflags;
403
404         if (unlikely(index >= Q_INDEX_MAX)) {
405                 ERROR(queue->rt2x00dev,
406                       "Entry requested from invalid index type (%d)\n", index);
407                 return NULL;
408         }
409
410         spin_lock_irqsave(&queue->lock, irqflags);
411
412         entry = &queue->entries[queue->index[index]];
413
414         spin_unlock_irqrestore(&queue->lock, irqflags);
415
416         return entry;
417 }
418 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
419
420 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
421 {
422         unsigned long irqflags;
423
424         if (unlikely(index >= Q_INDEX_MAX)) {
425                 ERROR(queue->rt2x00dev,
426                       "Index change on invalid index type (%d)\n", index);
427                 return;
428         }
429
430         spin_lock_irqsave(&queue->lock, irqflags);
431
432         queue->index[index]++;
433         if (queue->index[index] >= queue->limit)
434                 queue->index[index] = 0;
435
436         if (index == Q_INDEX) {
437                 queue->length++;
438         } else if (index == Q_INDEX_DONE) {
439                 queue->length--;
440                 queue->count ++;
441         }
442
443         spin_unlock_irqrestore(&queue->lock, irqflags);
444 }
445
446 static void rt2x00queue_reset(struct data_queue *queue)
447 {
448         unsigned long irqflags;
449
450         spin_lock_irqsave(&queue->lock, irqflags);
451
452         queue->count = 0;
453         queue->length = 0;
454         memset(queue->index, 0, sizeof(queue->index));
455
456         spin_unlock_irqrestore(&queue->lock, irqflags);
457 }
458
459 void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
460 {
461         struct data_queue *queue = rt2x00dev->rx;
462         unsigned int i;
463
464         rt2x00queue_reset(queue);
465
466         if (!rt2x00dev->ops->lib->init_rxentry)
467                 return;
468
469         for (i = 0; i < queue->limit; i++)
470                 rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
471                                                   &queue->entries[i]);
472 }
473
474 void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
475 {
476         struct data_queue *queue;
477         unsigned int i;
478
479         txall_queue_for_each(rt2x00dev, queue) {
480                 rt2x00queue_reset(queue);
481
482                 if (!rt2x00dev->ops->lib->init_txentry)
483                         continue;
484
485                 for (i = 0; i < queue->limit; i++)
486                         rt2x00dev->ops->lib->init_txentry(rt2x00dev,
487                                                           &queue->entries[i]);
488         }
489 }
490
491 static int rt2x00queue_alloc_entries(struct data_queue *queue,
492                                      const struct data_queue_desc *qdesc)
493 {
494         struct queue_entry *entries;
495         unsigned int entry_size;
496         unsigned int i;
497
498         rt2x00queue_reset(queue);
499
500         queue->limit = qdesc->entry_num;
501         queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
502         queue->data_size = qdesc->data_size;
503         queue->desc_size = qdesc->desc_size;
504
505         /*
506          * Allocate all queue entries.
507          */
508         entry_size = sizeof(*entries) + qdesc->priv_size;
509         entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
510         if (!entries)
511                 return -ENOMEM;
512
513 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
514         ( ((char *)(__base)) + ((__limit) * (__esize)) + \
515             ((__index) * (__psize)) )
516
517         for (i = 0; i < queue->limit; i++) {
518                 entries[i].flags = 0;
519                 entries[i].queue = queue;
520                 entries[i].skb = NULL;
521                 entries[i].entry_idx = i;
522                 entries[i].priv_data =
523                     QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
524                                             sizeof(*entries), qdesc->priv_size);
525         }
526
527 #undef QUEUE_ENTRY_PRIV_OFFSET
528
529         queue->entries = entries;
530
531         return 0;
532 }
533
534 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
535                                   struct data_queue *queue)
536 {
537         unsigned int i;
538
539         if (!queue->entries)
540                 return;
541
542         for (i = 0; i < queue->limit; i++) {
543                 if (queue->entries[i].skb)
544                         rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
545         }
546 }
547
548 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
549                                     struct data_queue *queue)
550 {
551         unsigned int i;
552         struct sk_buff *skb;
553
554         for (i = 0; i < queue->limit; i++) {
555                 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
556                 if (!skb)
557                         return -ENOMEM;
558                 queue->entries[i].skb = skb;
559         }
560
561         return 0;
562 }
563
564 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
565 {
566         struct data_queue *queue;
567         int status;
568
569         status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
570         if (status)
571                 goto exit;
572
573         tx_queue_for_each(rt2x00dev, queue) {
574                 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
575                 if (status)
576                         goto exit;
577         }
578
579         status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
580         if (status)
581                 goto exit;
582
583         if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
584                 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
585                                                    rt2x00dev->ops->atim);
586                 if (status)
587                         goto exit;
588         }
589
590         status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
591         if (status)
592                 goto exit;
593
594         return 0;
595
596 exit:
597         ERROR(rt2x00dev, "Queue entries allocation failed.\n");
598
599         rt2x00queue_uninitialize(rt2x00dev);
600
601         return status;
602 }
603
604 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
605 {
606         struct data_queue *queue;
607
608         rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
609
610         queue_for_each(rt2x00dev, queue) {
611                 kfree(queue->entries);
612                 queue->entries = NULL;
613         }
614 }
615
616 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
617                              struct data_queue *queue, enum data_queue_qid qid)
618 {
619         spin_lock_init(&queue->lock);
620
621         queue->rt2x00dev = rt2x00dev;
622         queue->qid = qid;
623         queue->aifs = 2;
624         queue->cw_min = 5;
625         queue->cw_max = 10;
626 }
627
628 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
629 {
630         struct data_queue *queue;
631         enum data_queue_qid qid;
632         unsigned int req_atim =
633             !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
634
635         /*
636          * We need the following queues:
637          * RX: 1
638          * TX: ops->tx_queues
639          * Beacon: 1
640          * Atim: 1 (if required)
641          */
642         rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
643
644         queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
645         if (!queue) {
646                 ERROR(rt2x00dev, "Queue allocation failed.\n");
647                 return -ENOMEM;
648         }
649
650         /*
651          * Initialize pointers
652          */
653         rt2x00dev->rx = queue;
654         rt2x00dev->tx = &queue[1];
655         rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
656
657         /*
658          * Initialize queue parameters.
659          * RX: qid = QID_RX
660          * TX: qid = QID_AC_BE + index
661          * TX: cw_min: 2^5 = 32.
662          * TX: cw_max: 2^10 = 1024.
663          * BCN: qid = QID_BEACON
664          * ATIM: qid = QID_ATIM
665          */
666         rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
667
668         qid = QID_AC_BE;
669         tx_queue_for_each(rt2x00dev, queue)
670                 rt2x00queue_init(rt2x00dev, queue, qid++);
671
672         rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
673         if (req_atim)
674                 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
675
676         return 0;
677 }
678
679 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
680 {
681         kfree(rt2x00dev->rx);
682         rt2x00dev->rx = NULL;
683         rt2x00dev->tx = NULL;
684         rt2x00dev->bcn = NULL;
685 }