From 469efb904b59f137ac9e85e5ff23edd0c113de5c Mon Sep 17 00:00:00 2001 From: Thomas White Date: Tue, 15 Nov 2011 12:17:59 +0100 Subject: Move a load more stuff into libcrystfel --- src/diffraction.c | 463 ------------------------------------------------------ 1 file changed, 463 deletions(-) delete mode 100644 src/diffraction.c (limited to 'src/diffraction.c') diff --git a/src/diffraction.c b/src/diffraction.c deleted file mode 100644 index 9532a6ce..00000000 --- a/src/diffraction.c +++ /dev/null @@ -1,463 +0,0 @@ -/* - * diffraction.c - * - * Calculate diffraction patterns by Fourier methods - * - * (c) 2006-2011 Thomas White - * - * Part of CrystFEL - crystallography with a FEL - * - */ - - -#include -#include -#include -#include -#include -#include -#include - -#include "image.h" -#include "utils.h" -#include "cell.h" -#include "diffraction.h" -#include "beam-parameters.h" -#include "symmetry.h" - - -#define SAMPLING (4) -#define BWSAMPLING (10) -#define DIVSAMPLING (1) -#define SINC_LUT_ELEMENTS (4096) - - -static double *get_sinc_lut(int n) -{ - int i; - double *lut; - - lut = malloc(SINC_LUT_ELEMENTS*sizeof(double)); - lut[0] = n; - if ( n == 1 ) { - for ( i=1; i= 0.0); - - val1 = sym_lookup_intensity(ref, flags, sym, h, k, l); - val2 = sym_lookup_intensity(ref, flags, sym, h+1, k, l); - - val1 = val1; - val2 = val2; - - return (1.0-f)*val1 + f*val2; -} - - -static double interpolate_bilinear(const double *ref, - const unsigned char *flags, - const SymOpList *sym, - float hd, float kd, signed int l) -{ - signed int k; - double val1, val2; - float f; - - k = (signed int)kd; - if ( kd < 0.0 ) k -= 1; - f = kd - (float)k; - assert(f >= 0.0); - - val1 = interpolate_linear(ref, flags, sym, hd, k, l); - val2 = interpolate_linear(ref, flags, sym, hd, k+1, l); - - return (1.0-f)*val1 + f*val2; -} - - -static double interpolate_intensity(const double *ref, - const unsigned char *flags, - const SymOpList *sym, - float hd, float kd, float ld) -{ - signed int l; - double val1, val2; - float f; - - l = (signed int)ld; - if ( ld < 0.0 ) l -= 1; - f = ld - (float)l; - assert(f >= 0.0); - - val1 = interpolate_bilinear(ref, flags, sym, hd, kd, l); - val2 = interpolate_bilinear(ref, flags, sym, hd, kd, l+1); - - return (1.0-f)*val1 + f*val2; -} - - -static double complex interpolate_phased_linear(const double *ref, - const double *phases, - const unsigned char *flags, - const SymOpList *sym, - float hd, - signed int k, signed int l) -{ - signed int h; - double val1, val2; - float f; - double ph1, ph2; - double re1, re2, im1, im2; - double re, im; - - h = (signed int)hd; - if ( hd < 0.0 ) h -= 1; - f = hd - (float)h; - assert(f >= 0.0); - - val1 = sym_lookup_intensity(ref, flags, sym, h, k, l); - val2 = sym_lookup_intensity(ref, flags, sym, h+1, k, l); - ph1 = sym_lookup_phase(phases, flags, sym, h, k, l); - ph2 = sym_lookup_phase(phases, flags, sym, h+1, k, l); - - val1 = val1; - val2 = val2; - - /* Calculate real and imaginary parts */ - re1 = val1 * cos(ph1); - im1 = val1 * sin(ph1); - re2 = val2 * cos(ph2); - im2 = val2 * sin(ph2); - - re = (1.0-f)*re1 + f*re2; - im = (1.0-f)*im1 + f*im2; - - return re + im*I; -} - - -static double complex interpolate_phased_bilinear(const double *ref, - const double *phases, - const unsigned char *flags, - const SymOpList *sym, - float hd, float kd, - signed int l) -{ - signed int k; - double complex val1, val2; - float f; - - k = (signed int)kd; - if ( kd < 0.0 ) k -= 1; - f = kd - (float)k; - assert(f >= 0.0); - - val1 = interpolate_phased_linear(ref, phases, flags, sym, hd, k, l); - val2 = interpolate_phased_linear(ref, phases, flags, sym, hd, k+1, l); - - return (1.0-f)*val1 + f*val2; -} - - -static double interpolate_phased_intensity(const double *ref, - const double *phases, - const unsigned char *flags, - const SymOpList *sym, - float hd, float kd, float ld) -{ - signed int l; - double complex val1, val2; - float f; - - l = (signed int)ld; - if ( ld < 0.0 ) l -= 1; - f = ld - (float)l; - assert(f >= 0.0); - - val1 = interpolate_phased_bilinear(ref, phases, flags, sym, - hd, kd, l); - val2 = interpolate_phased_bilinear(ref, phases, flags, sym, - hd, kd, l+1); - - return cabs((1.0-f)*val1 + f*val2); -} - - -/* Look up the structure factor for the nearest Bragg condition */ -static double molecule_factor(const double *intensities, const double *phases, - const unsigned char *flags, struct rvec q, - double ax, double ay, double az, - double bx, double by, double bz, - double cx, double cy, double cz, - GradientMethod m, const SymOpList *sym) -{ - float hd, kd, ld; - signed int h, k, l; - double r; - - hd = q.u * ax + q.v * ay + q.w * az; - kd = q.u * bx + q.v * by + q.w * bz; - ld = q.u * cx + q.v * cy + q.w * cz; - - /* No flags -> flat intensity distribution */ - if ( flags == NULL ) return 1.0e5; - - switch ( m ) { - case GRADIENT_MOSAIC : - fesetround(1); /* Round to nearest */ - h = (signed int)rint(hd); - k = (signed int)rint(kd); - l = (signed int)rint(ld); - if ( abs(h) > INDMAX ) r = 0.0; - else if ( abs(k) > INDMAX ) r = 0.0; - else if ( abs(l) > INDMAX ) r = 0.0; - else r = sym_lookup_intensity(intensities, flags, sym, h, k, l); - break; - case GRADIENT_INTERPOLATE : - r = interpolate_intensity(intensities, flags, sym, hd, kd, ld); - break; - case GRADIENT_PHASED : - r = interpolate_phased_intensity(intensities, phases, flags, - sym, hd, kd, ld); - break; - default: - ERROR("This gradient method not implemented yet.\n"); - exit(1); - } - - return r; -} - - -void get_diffraction(struct image *image, int na, int nb, int nc, - const double *intensities, const double *phases, - const unsigned char *flags, UnitCell *cell, - GradientMethod m, const SymOpList *sym) -{ - unsigned int fs, ss; - double ax, ay, az; - double bx, by, bz; - double cx, cy, cz; - float klow, khigh, bwstep; - double *lut_a; - double *lut_b; - double *lut_c; - double divxlow, divylow, divxstep, divystep; - - cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); - - /* Allocate (and zero) the "diffraction array" */ - image->data = calloc(image->width * image->height, sizeof(float)); - - /* Needed later for Lorentz calculation */ - image->twotheta = malloc(image->width * image->height * sizeof(double)); - - klow = 1.0/(image->lambda*(1.0 + image->beam->bandwidth/2.0)); - khigh = 1.0/(image->lambda*(1.0 - image->beam->bandwidth/2.0)); - bwstep = (khigh-klow) / BWSAMPLING; - - divxlow = -image->beam->divergence/2.0; - divylow = -image->beam->divergence/2.0; - divxstep = image->beam->divergence / DIVSAMPLING; - divystep = image->beam->divergence / DIVSAMPLING; - - lut_a = get_sinc_lut(na); - lut_b = get_sinc_lut(nb); - lut_c = get_sinc_lut(nc); - - for ( fs=0; fswidth; fs++ ) { - for ( ss=0; ssheight; ss++ ) { - - int fs_step, ss_step, kstep; - int divxval, divyval; - int idx = fs + image->width*ss; - - for ( fs_step=0; fs_stepdata[idx] += intensity; - - if ( fs_step + ss_step + kstep == 0 ) { - image->twotheta[idx] = twotheta; - } - - } - } - } - } - } - - image->data[idx] /= (SAMPLING*SAMPLING*BWSAMPLING - *DIVSAMPLING*DIVSAMPLING); - - - } - progress_bar(fs, image->width-1, "Calculating diffraction"); - } - - free(lut_a); - free(lut_b); - free(lut_c); -} -- cgit v1.2.3