
CrystFEL matrix notation conventions
CrystFEL’s UnitCell structure doesn’t expose its contents as a matrix, only as named components (a∗x, cy an so on). However,
the arrangement of the transformation matrices given to functions such as cell_transform_rational() are important. This
document aims to make the conventions explicit. The notation used in CrystFEL follows that used in the International
Tables for Crystallography, volume A, chapter 5.1 (“Transformations of the coordinate system (unit-cell transformations)”)
and 11.1 (“Point coordinates, symmetry operations and their symbols”).

• cell_transform_gsl_direct, cell_transform_rational and cell_transform_intmat all do what is written in equation 1.
These functions all take a P̂ matrix. The “intmat” and “rational” versions will additionally determine the centering of
the resulting unit cell (and hopefully eventually the lattice type and unique axis).

• transform_indices does what is written in equation 2. It takes a vector of (reciprocal space) Miller indices and a P̂
matrix.

• A SymOpList is essentially a list of Ŵ
−1

matrices, which, as shown below, behave like P̂ matrices.

• transform_fractional_coords_rtnl takes a P̂ matrix and a column vector of fractional coordinates, calculates the
Q̂ matrix and evaluates equation 3 (NB not equation 5). Implementation detail: it actually solves a matrix-vector
equation rather than going all the way to the inverted matrix.

• transform_fractional_coords_rtnl_inverse takes a P̂ matrix and a column vector of fractional coordinates v, and does
the reverse of transform_fractional_coords_rtnl. That means it just has to evaluate P̂ v. This looks like equation 5.

Matrices of unit cell components

When matrix calculations are performed in CrystFEL, which is usually only inside certain libcrystfel functions, basis vectors
(a, b, c) are written as the columns of the matrix.

M̂ =

 ax bx cx
ay by cy
az bz cz


Reciprocal basis vectors are written as the rows of the matrix.

R̂ =

 a∗x a∗y a∗z
b∗x b∗y b∗z
c∗x c∗y c∗z


Real and reciprocal spaces are sometimes said to be “inverse transposes of each other”. The components of the two matrices
are already transposed with respect to one another (one has vectors in columns, the other in rows). Therefore M̂ = R̂

−1

and R̂ = M̂
−1

.

Transformation of unit cell basis

Given a transformation matrix P̂ which means a′ = a− b, b′ = b, c′ = c:

M̂
′

= M̂P̂ =

 ax bx cx
ay by cy
az bz cz

 1 0 0
1̄ 1 0
0 0 1

 (1)

Note that the “amount of old a,b,c to make new a” is found in the first column of the P̂ matrix, and so on.

Transformation of reciprocal basis

With the same transformation as before (a′ = a− b, b′ = b, c′ = c), the reciprocal basis transforms as follows:

R̂
′

=

 a∗x a∗y a∗z
b∗x b∗y b∗z
c∗x c∗y c∗z

′ = P̂
−1

R̂ = Q̂R̂ =

 1 0 0
1̄ 1 0
0 0 1

−1  a∗x a∗y a∗z
b∗x b∗y b∗z
c∗x c∗y c∗z

 =

 1 0 0
1 1 0
0 0 1

 a∗x a∗y a∗z
b∗x b∗y b∗z
c∗x c∗y c∗z


Miller indices (reciprocal space) under transformation of unit cell basis (real-space)

From ITA chapter 5.1, this is how the reflections would be re-labelled if the axes were changed. See later for how to apply
symmetry operations.

(h′, k′, l′) = (h′, k′, l′) P̂ = (h, k, l)

 1 0 0
1̄ 1 0
0 0 1

 = (h− k, k, l) (2)



Fractional coordinates under transformation of unit cell basis

Where u, v and w are fractional coordinates, i.e. the cartesian coordinates are:

M̂

 u
v
w

 =

 ax bx cx
ay by cy
az bz cz

 u
v
w


From ITA chapter 5.1, the new coordinates are: u′

v′

w′

 = P̂
−1

 u
v
w

 = Q̂

 u
v
w

 (3)

Symmetry operations acting on fractional coordinates

Following ITA chapter 11.1, the following matrix represents the symmetry operation written as −y, x, z, where for this time
only, x,y and z are fractional coordinates:

Ŵ =

 0 1̄ 0
1 0 0
0 0 1

 (4)

It transforms the fractional coordinates as follows: u′

v′

w′

 = Ŵ

 u
v
w

 =

 0 1̄ 0
1 0 0
0 0 1

 u
v
w

 (5)

Note also that we’re ignoring the translational part of the symmetry operation (there isn’t one in this case).

Note that Ŵ behaves like P̂
−1

above. CrystFEL’s “SymOpList” structure contains IntegerMatrix objects representing Ŵ
−1

matrices, also known as P̂ matrices.

Symmetry operations acting on Miller indices (reciprocal space)

Since Ŵ
−1

matrices are just P̂ matrices, simply change the P̂ into Ŵ
−1

in equation 2:

(h′, k′, l′) = (h, k, l) Ŵ
−1

= (h′, k′, l′)

 0 1 0
1̄ 0 0
0 0 1

 = (k̄, h, l) (6)

In this case, the symmetry operation is a rotation, so the matrix inverse is just the same as a matrix transpose. However,
don’t get confused: the matrix appearing here is the inverse of the one appearing in equation 4.

Note that the “amount of old h, k and l to make new h” is found in the first column of the Ŵ
−1

matrix, and so on.

Transforming symmetry operations

Given a P̂ matrix which transforms the unit cell as written in equation 1, and a Ŵ
−1

matrix representing a symmetry
operation, we seek to apply the symmetry operation to the cell as it would appear after applying the transformation. For
example, let P̂ permute the cell axes, turning a “unique axis b” cell into a “unique axis c” one, and let Ŵ

−1
represent a

twofold rotation around the c axis:
To transform a set of Miller indices (h, k, l), first use P̂ to get the indices referred to the “unique axis c” setting using equation
2, then apply the symmetry operation using equation 6, and finally transform back to the original cell using equation 2 and
the inverse matrix:

(h′, k′, l′) = (h, k, l)P̂ Ŵ
−1

P̂
−1

The combined matrix P̂ Ŵ
−1

P̂
−1

represents a twofold rotation symmetry operation along the b axis instead of c.


