/* * cell-utils.c * * Unit Cell utility functions * * Copyright © 2012 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * Copyright © 2012 Lorenzo Galli * * Authors: * 2009-2012 Thomas White * 2012 Lorenzo Galli * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include "cell.h" #include "cell-utils.h" #include "utils.h" #include "image.h" /** * SECTION:cell-utils * @short_description: Unit cell utilities * @title: Unit cell utilities * @section_id: * @see_also: * @include: "cell-utils.h" * @Image: * * There are some utility functions associated with the core %UnitCell. **/ /* Weighting factor of lengths relative to angles */ #define LWEIGHT (10.0e-9) /** * cell_rotate: * @in: A %UnitCell to rotate * @quat: A %quaternion * * Rotate a %UnitCell using a %quaternion. * * Returns: a newly allocated rotated copy of @in. * */ UnitCell *cell_rotate(UnitCell *in, struct quaternion quat) { struct rvec a, b, c; struct rvec an, bn, cn; UnitCell *out = cell_new_from_cell(in); cell_get_cartesian(in, &a.u, &a.v, &a.w, &b.u, &b.v, &b.w, &c.u, &c.v, &c.w); an = quat_rot(a, quat); bn = quat_rot(b, quat); cn = quat_rot(c, quat); cell_set_cartesian(out, an.u, an.v, an.w, bn.u, bn.v, bn.w, cn.u, cn.v, cn.w); return out; } const char *str_lattice(LatticeType l) { switch ( l ) { case L_TRICLINIC : return "triclinic"; case L_MONOCLINIC : return "monoclinic"; case L_ORTHORHOMBIC : return "orthorhombic"; case L_TETRAGONAL : return "tetragonal"; case L_RHOMBOHEDRAL : return "rhombohedral"; case L_HEXAGONAL : return "hexagonal"; case L_CUBIC : return "cubic"; } return "unknown lattice"; } int right_handed(UnitCell *cell) { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; struct rvec aCb; double aCb_dot_c; int rh_reciprocal; int rh_direct; if ( cell_get_reciprocal(cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz) ) { ERROR("Couldn't get reciprocal cell.\n"); return 0; } /* "a" cross "b" */ aCb.u = asy*bsz - asz*bsy; aCb.v = - (asx*bsz - asz*bsx); aCb.w = asx*bsy - asy*bsx; /* "a cross b" dot "c" */ aCb_dot_c = aCb.u*csx + aCb.v*csy + aCb.w*csz; rh_reciprocal = aCb_dot_c > 0.0; if ( cell_get_cartesian(cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz) ) { ERROR("Couldn't get direct cell.\n"); return 0; } /* "a" cross "b" */ aCb.u = asy*bsz - asz*bsy; aCb.v = - (asx*bsz - asz*bsx); aCb.w = asx*bsy - asy*bsx; /* "a cross b" dot "c" */ aCb_dot_c = aCb.u*csx + aCb.v*csy + aCb.w*csz; rh_direct = aCb_dot_c > 0.0; assert(rh_reciprocal == rh_direct); return rh_direct; } void cell_print(UnitCell *cell) { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; double a, b, c, alpha, beta, gamma; double ax, ay, az, bx, by, bz, cx, cy, cz; LatticeType lt; char cen; lt = cell_get_lattice_type(cell); cen = cell_get_centering(cell); STATUS("%s %c", str_lattice(lt), cen); if ( (lt==L_MONOCLINIC) || (lt==L_TETRAGONAL) || ( lt==L_HEXAGONAL) || ( (lt==L_ORTHORHOMBIC) && (cen=='A') ) || ( (lt==L_ORTHORHOMBIC) && (cen=='B') ) || ( (lt==L_ORTHORHOMBIC) && (cen=='C') ) ) { STATUS(", unique axis %c", cell_get_unique_axis(cell)); } if ( right_handed(cell) ) { STATUS(", right handed"); } else { STATUS(", left handed"); } STATUS(", point group '%s'.\n", cell_get_pointgroup(cell)); cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma); STATUS(" a b c alpha beta gamma\n"); STATUS("%5.2f %5.2f %5.2f nm %6.2f %6.2f %6.2f deg\n", a*1e9, b*1e9, c*1e9, rad2deg(alpha), rad2deg(beta), rad2deg(gamma)); cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); STATUS("a = %10.3e %10.3e %10.3e m\n", ax, ay, az); STATUS("b = %10.3e %10.3e %10.3e m\n", bx, by, bz); STATUS("c = %10.3e %10.3e %10.3e m\n", cx, cy, cz); cell_get_reciprocal(cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); STATUS("astar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", asx, asy, asz, modulus(asx, asy, asz)); STATUS("bstar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", bsx, bsy, bsz, modulus(bsx, bsy, bsz)); STATUS("cstar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", csx, csy, csz, modulus(csx, csy, csz)); STATUS("Cell representation is %s.\n", cell_rep(cell)); } int bravais_lattice(UnitCell *cell) { LatticeType lattice = cell_get_lattice_type(cell); char centering = cell_get_centering(cell); char ua = cell_get_unique_axis(cell); switch ( centering ) { case 'P' : return 1; case 'A' : case 'B' : case 'C' : if ( lattice == L_MONOCLINIC ) { if ( (ua=='a') && (centering=='A') ) return 1; if ( (ua=='b') && (centering=='B') ) return 1; if ( (ua=='c') && (centering=='C') ) return 1; } else if ( lattice == L_ORTHORHOMBIC) { return 1; } return 0; case 'I' : if ( (lattice == L_ORTHORHOMBIC) || (lattice == L_TETRAGONAL) || (lattice == L_CUBIC) ) { return 1; } return 0; case 'F' : if ( (lattice == L_ORTHORHOMBIC) || (lattice == L_CUBIC) ) { return 1; } return 0; case 'H' : /* "Hexagonal H" is not a Bravais lattice, but rather something * invented by the PDB to make life difficult for programmers. * Accepting it as Bravais seems to be the least painful way to * handle it correctly. Yuk. */ if ( ua != 'c' ) return 0; if ( lattice == L_HEXAGONAL ) return 1; return 0; case 'R' : if ( lattice == L_RHOMBOHEDRAL ) return 1; return 0; default : return 0; } } static UnitCellTransformation *uncentering_transformation(UnitCell *in, char *new_centering, LatticeType *new_latt) { UnitCellTransformation *t; const double OT = 1.0/3.0; const double TT = 2.0/3.0; const double H = 0.5; LatticeType lt; char ua, cen; lt = cell_get_lattice_type(in); ua = cell_get_unique_axis(in); cen = cell_get_centering(in); t = tfn_identity(); if ( t == NULL ) return NULL; if ( ua == 'a' ) { tfn_combine(t, tfn_vector(0,0,1), tfn_vector(0,1,0), tfn_vector(-1,0,0)); } if ( ua == 'b' ) { tfn_combine(t, tfn_vector(1,0,0), tfn_vector(0,0,1), tfn_vector(0,-1,0)); } switch ( cen ) { case 'P' : *new_latt = lt; *new_centering = 'P'; break; case 'R' : *new_latt = L_RHOMBOHEDRAL; *new_centering = 'R'; break; case 'I' : tfn_combine(t, tfn_vector(-H,H,H), tfn_vector(H,-H,H), tfn_vector(H,H,-H)); if ( lt == L_CUBIC ) { *new_latt = L_RHOMBOHEDRAL; *new_centering = 'R'; } else { /* Tetragonal or orthorhombic */ *new_latt = L_TRICLINIC; *new_centering = 'P'; } break; case 'F' : tfn_combine(t, tfn_vector(0,H,H), tfn_vector(H,0,H), tfn_vector(H,H,0)); if ( lt == L_CUBIC ) { *new_latt = L_RHOMBOHEDRAL; *new_centering = 'R'; } else { assert(lt == L_ORTHORHOMBIC); *new_latt = L_TRICLINIC; *new_centering = 'P'; } break; case 'A' : case 'B' : case 'C' : tfn_combine(t, tfn_vector(H,H,0), tfn_vector(-H,H,0), tfn_vector(0,0,1)); *new_latt = L_MONOCLINIC; *new_centering = 'P'; break; case 'H' : /* Obverse setting */ tfn_combine(t, tfn_vector(TT,OT,OT), tfn_vector(-OT,OT,OT), tfn_vector(-OT,-TT,OT)); assert(lt == L_HEXAGONAL); *new_latt = L_RHOMBOHEDRAL; *new_centering = 'R'; break; default : ERROR("Invalid centering '%c'\n", cell_get_centering(in)); return NULL; } /* Reverse the axis permutation, but only if this was not an H->R * transformation */ if ( !((cen=='H') && (*new_latt == L_RHOMBOHEDRAL)) ) { if ( ua == 'a' ) { tfn_combine(t, tfn_vector(0,0,-1), tfn_vector(0,1,0), tfn_vector(1,0,0)); } if ( ua == 'b' ) { tfn_combine(t, tfn_vector(1,0,0), tfn_vector(0,0,-1), tfn_vector(0,1,0)); } } return t; } /** * uncenter_cell: * @in: A %UnitCell * @t: Location at which to store the transformation which was used. * * Turns any cell into a primitive one, e.g. for comparison purposes. The * transformation which was used is stored at @t, which can be NULL if the * transformation is not required. * * Returns: a primitive version of @in in a conventional (unique axis c) * setting. * */ UnitCell *uncenter_cell(UnitCell *in, UnitCellTransformation **t) { UnitCellTransformation *tt; char new_centering; LatticeType new_latt; UnitCell *out; if ( !bravais_lattice(in) ) { ERROR("Cannot uncenter: not a Bravais lattice.\n"); cell_print(in); return NULL; } tt = uncentering_transformation(in, &new_centering, &new_latt); if ( tt == NULL ) return NULL; out = cell_transform(in, tt); if ( out == NULL ) return NULL; cell_set_lattice_type(out, new_latt); cell_set_centering(out, new_centering); if ( t != NULL ) { *t = tt; } else { tfn_free(tt); } return out; } #define MAX_CAND (1024) static int right_handed_vec(struct rvec a, struct rvec b, struct rvec c) { struct rvec aCb; double aCb_dot_c; /* "a" cross "b" */ aCb.u = a.v*b.w - a.w*b.v; aCb.v = - (a.u*b.w - a.w*b.u); aCb.w = a.u*b.v - a.v*b.u; /* "a cross b" dot "c" */ aCb_dot_c = aCb.u*c.u + aCb.v*c.v + aCb.w*c.w; if ( aCb_dot_c > 0.0 ) return 1; return 0; } struct cvec { struct rvec vec; float na; float nb; float nc; float fom; }; static int same_vector(struct cvec a, struct cvec b) { if ( a.na != b.na ) return 0; if ( a.nb != b.nb ) return 0; if ( a.nc != b.nc ) return 0; return 1; } /* Attempt to make 'cell' fit into 'template' somehow */ UnitCell *match_cell(UnitCell *cell_in, UnitCell *template_in, int verbose, const float *tols, int reduce) { signed int n1l, n2l, n3l; double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; int i, j; double lengths[3]; double angles[3]; struct cvec *cand[3]; UnitCell *new_cell = NULL; float best_fom = +999999999.9; /* Large number.. */ int ncand[3] = {0,0,0}; signed int ilow, ihigh; float angtol = deg2rad(tols[3]); UnitCell *cell; UnitCell *template; UnitCellTransformation *uncentering; UnitCell *new_cell_trans; /* "Un-center" the template unit cell to make the comparison easier */ template = uncenter_cell(template_in, &uncentering); /* The candidate cell is also uncentered, because it might be centered * if it came from (e.g.) MOSFLM */ cell = uncenter_cell(cell_in, NULL); if ( cell_get_reciprocal(template, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz) ) { ERROR("Couldn't get reciprocal cell for template.\n"); return NULL; } lengths[0] = modulus(asx, asy, asz); lengths[1] = modulus(bsx, bsy, bsz); lengths[2] = modulus(csx, csy, csz); angles[0] = angle_between(bsx, bsy, bsz, csx, csy, csz); angles[1] = angle_between(asx, asy, asz, csx, csy, csz); angles[2] = angle_between(asx, asy, asz, bsx, bsy, bsz); cand[0] = malloc(MAX_CAND*sizeof(struct cvec)); cand[1] = malloc(MAX_CAND*sizeof(struct cvec)); cand[2] = malloc(MAX_CAND*sizeof(struct cvec)); if ( cell_get_reciprocal(cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz) ) { ERROR("Couldn't get reciprocal cell.\n"); return NULL; } if ( reduce ) { ilow = -2; ihigh = 4; } else { ilow = 0; ihigh = 1; } /* Negative values mean 1/n, positive means n, zero means zero */ for ( n1l=ilow; n1l<=ihigh; n1l++ ) { for ( n2l=ilow; n2l<=ihigh; n2l++ ) { for ( n3l=ilow; n3l<=ihigh; n3l++ ) { float n1, n2, n3; signed int b1, b2, b3; n1 = (n1l>=0) ? (n1l) : (1.0/n1l); n2 = (n2l>=0) ? (n2l) : (1.0/n2l); n3 = (n3l>=0) ? (n3l) : (1.0/n3l); if ( !reduce ) { if ( n1l + n2l + n3l > 1 ) continue; } /* 'bit' values can be +1 or -1 */ for ( b1=-1; b1<=1; b1+=2 ) { for ( b2=-1; b2<=1; b2+=2 ) { for ( b3=-1; b3<=1; b3+=2 ) { double tx, ty, tz; double tlen; int i; n1 *= b1; n2 *= b2; n3 *= b3; tx = n1*asx + n2*bsx + n3*csx; ty = n1*asy + n2*bsy + n3*csy; tz = n1*asz + n2*bsz + n3*csz; tlen = modulus(tx, ty, tz); /* Test modulus for agreement with moduli of template */ for ( i=0; i<3; i++ ) { if ( !within_tolerance(lengths[i], tlen, tols[i]) ) { continue; } if ( ncand[i] == MAX_CAND ) { ERROR("Too many cell candidates - "); ERROR("consider tightening the unit "); ERROR("cell tolerances.\n"); } else { double fom; fom = fabs(lengths[i] - tlen); cand[i][ncand[i]].vec.u = tx; cand[i][ncand[i]].vec.v = ty; cand[i][ncand[i]].vec.w = tz; cand[i][ncand[i]].na = n1; cand[i][ncand[i]].nb = n2; cand[i][ncand[i]].nc = n3; cand[i][ncand[i]].fom = fom; ncand[i]++; } } } } } } } } if ( verbose ) { STATUS("Candidates: %i %i %i\n", ncand[0], ncand[1], ncand[2]); } for ( i=0; i angtol ) continue; fom1 = fabs(ang - angles[2]); for ( k=0; k angtol ) continue; fom2 = fom1 + fabs(ang - angles[1]); /* Finally, the angle between the current candidate for * axis 1 and the kth candidate for axis 2 */ ang = angle_between(cand[1][j].vec.u, cand[1][j].vec.v, cand[1][j].vec.w, cand[2][k].vec.u, cand[2][k].vec.v, cand[2][k].vec.w); /* ... it should be angle 0 ... */ if ( fabs(ang - angles[0]) > angtol ) continue; /* Unit cell must be right-handed */ if ( !right_handed_vec(cand[0][i].vec, cand[1][j].vec, cand[2][k].vec) ) continue; fom3 = fom2 + fabs(ang - angles[0]); fom3 += LWEIGHT * (cand[0][i].fom + cand[1][j].fom + cand[2][k].fom); if ( fom3 < best_fom ) { if ( new_cell != NULL ) free(new_cell); new_cell = cell_new_from_reciprocal_axes( cand[0][i].vec, cand[1][j].vec, cand[2][k].vec); best_fom = fom3; } } } } free(cand[0]); free(cand[1]); free(cand[2]); cell_free(cell); /* Reverse the de-centering transformation */ if ( new_cell != NULL ) { new_cell_trans = cell_transform_inverse(new_cell, uncentering); cell_free(new_cell); cell_set_lattice_type(new_cell_trans, cell_get_lattice_type(template_in)); cell_set_centering(new_cell_trans, cell_get_centering(template_in)); cell_set_unique_axis(new_cell_trans, cell_get_unique_axis(template_in)); return new_cell_trans; } else { return NULL; } } UnitCell *match_cell_ab(UnitCell *cell_in, UnitCell *template_in) { double ax, ay, az; double bx, by, bz; double cx, cy, cz; int i; double lengths[3]; int used[3]; struct rvec real_a, real_b, real_c; struct rvec params[3]; double alen, blen; float ltl = 5.0; /* percent */ int have_real_a; int have_real_b; int have_real_c; UnitCell *cell; UnitCell *template; UnitCellTransformation *to_given_cell; UnitCell *new_cell; UnitCell *new_cell_trans; /* "Un-center" the template unit cell to make the comparison easier */ template = uncenter_cell(template_in, &to_given_cell); /* The candidate cell is also uncentered, because it might be centered * if it came from (e.g.) MOSFLM */ cell = uncenter_cell(cell_in, NULL); /* Get the lengths to match */ if ( cell_get_cartesian(template, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz) ) { ERROR("Couldn't get cell for template.\n"); return NULL; } alen = modulus(ax, ay, az); blen = modulus(bx, by, bz); /* Get the lengths from the cell and turn them into anonymous vectors */ if ( cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz) ) { ERROR("Couldn't get cell.\n"); return NULL; } lengths[0] = modulus(ax, ay, az); lengths[1] = modulus(bx, by, bz); lengths[2] = modulus(cx, cy, cz); used[0] = 0; used[1] = 0; used[2] = 0; params[0].u = ax; params[0].v = ay; params[0].w = az; params[1].u = bx; params[1].v = by; params[1].w = bz; params[2].u = cx; params[2].v = cy; params[2].w = cz; real_a.u = 0.0; real_a.v = 0.0; real_a.w = 0.0; real_b.u = 0.0; real_b.v = 0.0; real_b.w = 0.0; real_c.u = 0.0; real_c.v = 0.0; real_c.w = 0.0; /* Check each vector against a and b */ have_real_a = 0; have_real_b = 0; for ( i=0; i<3; i++ ) { if ( within_tolerance(lengths[i], alen, ltl) && !used[i] && !have_real_a ) { used[i] = 1; memcpy(&real_a, ¶ms[i], sizeof(struct rvec)); have_real_a = 1; } if ( within_tolerance(lengths[i], blen, ltl) && !used[i] && !have_real_b ) { used[i] = 1; memcpy(&real_b, ¶ms[i], sizeof(struct rvec)); have_real_b = 1; } } /* Have we matched both a and b? */ if ( !(have_real_a && have_real_b) ) return NULL; /* "c" is "the other one" */ have_real_c = 0; for ( i=0; i<3; i++ ) { if ( !used[i] ) { memcpy(&real_c, ¶ms[i], sizeof(struct rvec)); have_real_c = 1; } } if ( !have_real_c ) { ERROR("Huh? Couldn't find the third vector.\n"); ERROR("Matches: %i %i %i\n", used[0], used[1], used[2]); return NULL; } /* Flip c if not right-handed */ if ( !right_handed_vec(real_a, real_b, real_c) ) { real_c.u = -real_c.u; real_c.v = -real_c.v; real_c.w = -real_c.w; } new_cell = cell_new_from_direct_axes(real_a, real_b, real_c); /* Reverse the de-centering transformation */ new_cell_trans = cell_transform_inverse(new_cell, to_given_cell); cell_free(new_cell); cell_set_lattice_type(new_cell, cell_get_lattice_type(template_in)); cell_set_centering(new_cell, cell_get_centering(template_in)); cell_set_unique_axis(new_cell, cell_get_unique_axis(template_in)); return new_cell_trans; } /* Return sin(theta)/lambda = 1/2d. Multiply by two if you want 1/d */ double resolution(UnitCell *cell, signed int h, signed int k, signed int l) { double a, b, c, alpha, beta, gamma; cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma); const double Vsq = a*a*b*b*c*c*(1 - cos(alpha)*cos(alpha) - cos(beta)*cos(beta) - cos(gamma)*cos(gamma) + 2*cos(alpha)*cos(beta)*cos(gamma) ); const double S11 = b*b*c*c*sin(alpha)*sin(alpha); const double S22 = a*a*c*c*sin(beta)*sin(beta); const double S33 = a*a*b*b*sin(gamma)*sin(gamma); const double S12 = a*b*c*c*(cos(alpha)*cos(beta) - cos(gamma)); const double S23 = a*a*b*c*(cos(beta)*cos(gamma) - cos(alpha)); const double S13 = a*b*b*c*(cos(gamma)*cos(alpha) - cos(beta)); const double brackets = S11*h*h + S22*k*k + S33*l*l + 2*S12*h*k + 2*S23*k*l + 2*S13*h*l; const double oneoverdsq = brackets / Vsq; const double oneoverd = sqrt(oneoverdsq); return oneoverd / 2; } static void determine_lattice(UnitCell *cell, const char *as, const char *bs, const char *cs, const char *als, const char *bes, const char *gas) { int n_right; /* Rhombohedral or cubic? */ if ( (strcmp(as, bs) == 0) && (strcmp(as, cs) == 0) ) { if ( (strcmp(als, " 90.00") == 0) && (strcmp(bes, " 90.00") == 0) && (strcmp(gas, " 90.00") == 0) ) { /* Cubic. Unique axis irrelevant. */ cell_set_lattice_type(cell, L_CUBIC); return; } if ( (strcmp(als, bes) == 0) && (strcmp(als, gas) == 0) ) { /* Rhombohedral. Unique axis irrelevant. */ cell_set_lattice_type(cell, L_RHOMBOHEDRAL); return; } } if ( (strcmp(als, " 90.00") == 0) && (strcmp(bes, " 90.00") == 0) && (strcmp(gas, " 90.00") == 0) ) { if ( strcmp(bs, cs) == 0 ) { /* Tetragonal, unique axis a */ cell_set_lattice_type(cell, L_TETRAGONAL); cell_set_unique_axis(cell, 'a'); return; } if ( strcmp(as, cs) == 0 ) { /* Tetragonal, unique axis b */ cell_set_lattice_type(cell, L_TETRAGONAL); cell_set_unique_axis(cell, 'b'); return; } if ( strcmp(as, bs) == 0 ) { /* Tetragonal, unique axis c */ cell_set_lattice_type(cell, L_TETRAGONAL); cell_set_unique_axis(cell, 'c'); return; } /* Orthorhombic. Unique axis irrelevant, but point group * can have different orientations. */ cell_set_lattice_type(cell, L_ORTHORHOMBIC); return; } n_right = 0; if ( strcmp(als, " 90.00") == 0 ) n_right++; if ( strcmp(bes, " 90.00") == 0 ) n_right++; if ( strcmp(gas, " 90.00") == 0 ) n_right++; /* Hexgonal or monoclinic? */ if ( n_right == 2 ) { if ( (strcmp(als, " 120.00") == 0) && (strcmp(bs, cs) == 0) ) { /* Hexagonal, unique axis a */ cell_set_lattice_type(cell, L_HEXAGONAL); cell_set_unique_axis(cell, 'a'); return; } if ( (strcmp(bes, " 120.00") == 0) && (strcmp(as, cs) == 0) ) { /* Hexagonal, unique axis b */ cell_set_lattice_type(cell, L_HEXAGONAL); cell_set_unique_axis(cell, 'b'); return; } if ( (strcmp(gas, " 120.00") == 0) && (strcmp(as, bs) == 0) ) { /* Hexagonal, unique axis c */ cell_set_lattice_type(cell, L_HEXAGONAL); cell_set_unique_axis(cell, 'c'); return; } if ( strcmp(als, " 90.00") != 0 ) { /* Monoclinic, unique axis a */ cell_set_lattice_type(cell, L_MONOCLINIC); cell_set_unique_axis(cell, 'a'); return; } if ( strcmp(bes, " 90.00") != 0 ) { /* Monoclinic, unique axis b */ cell_set_lattice_type(cell, L_MONOCLINIC); cell_set_unique_axis(cell, 'b'); return; } if ( strcmp(gas, " 90.00") != 0 ) { /* Monoclinic, unique axis c */ cell_set_lattice_type(cell, L_MONOCLINIC); cell_set_unique_axis(cell, 'c'); return; } } /* Triclinic, unique axis irrelevant. */ cell_set_lattice_type(cell, L_TRICLINIC); } UnitCell *load_cell_from_pdb(const char *filename) { FILE *fh; char *rval; UnitCell *cell = NULL; fh = fopen(filename, "r"); if ( fh == NULL ) { ERROR("Couldn't open '%s'\n", filename); return NULL; } do { char line[1024]; rval = fgets(line, 1023, fh); if ( strncmp(line, "CRYST1", 6) == 0 ) { float a, b, c, al, be, ga; char as[10], bs[10], cs[10]; char als[8], bes[8], gas[8]; int r; memcpy(as, line+6, 9); as[9] = '\0'; memcpy(bs, line+15, 9); bs[9] = '\0'; memcpy(cs, line+24, 9); cs[9] = '\0'; memcpy(als, line+33, 7); als[7] = '\0'; memcpy(bes, line+40, 7); bes[7] = '\0'; memcpy(gas, line+47, 7); gas[7] = '\0'; r = sscanf(as, "%f", &a); r += sscanf(bs, "%f", &b); r += sscanf(cs, "%f", &c); r += sscanf(als, "%f", &al); r += sscanf(bes, "%f", &be); r += sscanf(gas, "%f", &ga); if ( r != 6 ) { STATUS("Couldn't understand CRYST1 line.\n"); continue; } cell = cell_new_from_parameters(a*1e-10, b*1e-10, c*1e-10, deg2rad(al), deg2rad(be), deg2rad(ga)); determine_lattice(cell, as, bs, cs, als, bes, gas); if ( strlen(line) > 65 ) { cell_set_centering(cell, line[55]); } else { cell_set_pointgroup(cell, "1"); ERROR("CRYST1 line without centering.\n"); } break; /* Done */ } } while ( rval != NULL ); fclose(fh); validate_cell(cell); return cell; } /* Force the linker to bring in CBLAS to make GSL happy */ void cell_fudge_gslcblas() { STATUS("%p\n", cblas_sgemm); } /** * rotate_cell: * @in: A %UnitCell to rotate * @omega: Euler angle about +z * @phi: Euler angle about +x * @rot: Euler angle about new +z * * Rotate a %UnitCell using Euler angles * * Returns: a newly allocated rotated copy of @in. * */ UnitCell *rotate_cell(UnitCell *in, double omega, double phi, double rot) { UnitCell *out; double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; double xnew, ynew, znew; cell_get_reciprocal(in, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); /* Rotate by "omega" about +z (parallel to c* and c unless triclinic) */ xnew = asx*cos(omega) + asy*sin(omega); ynew = -asx*sin(omega) + asy*cos(omega); znew = asz; asx = xnew; asy = ynew; asz = znew; xnew = bsx*cos(omega) + bsy*sin(omega); ynew = -bsx*sin(omega) + bsy*cos(omega); znew = bsz; bsx = xnew; bsy = ynew; bsz = znew; xnew = csx*cos(omega) + csy*sin(omega); ynew = -csx*sin(omega) + csy*cos(omega); znew = csz; csx = xnew; csy = ynew; csz = znew; /* Rotate by "phi" about +x (not parallel to anything specific) */ xnew = asx; ynew = asy*cos(phi) + asz*sin(phi); znew = -asy*sin(phi) + asz*cos(phi); asx = xnew; asy = ynew; asz = znew; xnew = bsx; ynew = bsy*cos(phi) + bsz*sin(phi); znew = -bsy*sin(phi) + bsz*cos(phi); bsx = xnew; bsy = ynew; bsz = znew; xnew = csx; ynew = csy*cos(phi) + csz*sin(phi); znew = -csy*sin(phi) + csz*cos(phi); csx = xnew; csy = ynew; csz = znew; /* Rotate by "rot" about the new +z (in-plane rotation) */ xnew = asx*cos(rot) + asy*sin(rot); ynew = -asx*sin(rot) + asy*cos(rot); znew = asz; asx = xnew; asy = ynew; asz = znew; xnew = bsx*cos(rot) + bsy*sin(rot); ynew = -bsx*sin(rot) + bsy*cos(rot); znew = bsz; bsx = xnew; bsy = ynew; bsz = znew; xnew = csx*cos(rot) + csy*sin(rot); ynew = -csx*sin(rot) + csy*cos(rot); znew = csz; csx = xnew; csy = ynew; csz = znew; out = cell_new_from_cell(in); cell_set_reciprocal(out, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); return out; } int cell_is_sensible(UnitCell *cell) { double a, b, c, al, be, ga; cell_get_parameters(cell, &a, &b, &c, &al, &be, &ga); if ( al + be + ga >= 2.0*M_PI ) return 0; if ( al + be - ga >= 2.0*M_PI ) return 0; if ( al - be + ga >= 2.0*M_PI ) return 0; if ( - al + be + ga >= 2.0*M_PI ) return 0; if ( al + be + ga <= 0.0 ) return 0; if ( al + be - ga <= 0.0 ) return 0; if ( al - be + ga <= 0.0 ) return 0; if ( - al + be + ga <= 0.0 ) return 0; if ( isnan(al) ) return 0; if ( isnan(be) ) return 0; if ( isnan(ga) ) return 0; return 1; } /** * validate_cell: * @cell: A %UnitCell to validate * * Perform some checks for crystallographic validity @cell, such as that the * lattice is a conventional Bravais lattice. * Warnings are printied if any of the checks are failed. * * Returns: true if cell is invalid. * */ int validate_cell(UnitCell *cell) { int err = 0; char cen, ua; if ( !cell_is_sensible(cell) ) { ERROR("WARNING: Unit cell parameters are not sensible.\n"); err = 1; } if ( !bravais_lattice(cell) ) { ERROR("WARNING: Unit cell is not a conventional Bravais" " lattice.\n"); err = 1; } if ( !right_handed(cell) ) { ERROR("WARNING: Unit cell is not right handed.\n"); err = 1; } cen = cell_get_centering(cell); ua = cell_get_unique_axis(cell); if ( (cen == 'A') && (ua != 'a') ) { ERROR("WARNING: centering doesn't match unique axis.\n"); err = 1; } if ( (cen == 'B') && (ua != 'b') ) { ERROR("WARNING: centering doesn't match unique axis.\n"); err = 1; } if ( (cen == 'C') && (ua != 'c') ) { ERROR("WARNING: centering doesn't match unique axis.\n"); err = 1; } return err; } /** * forbidden_reflection: * @cell: A %UnitCell * @h: h index to check * @k: k index to check * @l: l index to check * * Returns: true if this reflection is forbidden. * */ int forbidden_reflection(UnitCell *cell, signed int h, signed int k, signed int l) { char cen; cen = cell_get_centering(cell); /* Reflection conditions here must match the transformation matrices * in uncentering_transformation(). tests/centering_check verifies * this (amongst other things). */ if ( cen == 'P' ) return 0; if ( cen == 'R' ) return 0; if ( cen == 'A' ) return (k+l) % 2; if ( cen == 'B' ) return (h+l) % 2; if ( cen == 'C' ) return (h+k) % 2; if ( cen == 'I' ) return (h+k+l) % 2; if ( cen == 'F' ) return ((h+k) % 2) || ((h+l) % 2) || ((k+l) % 2); /* Obverse setting */ if ( cen == 'H' ) return (-h+k+l) % 3; return 0; }