/* * cell.c * * A class representing a unit cell * * Copyright © 2012-2017 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * Copyright © 2012 Richard Kirian * Copyright © 2012 Lorenzo Galli * * Authors: * 2009-2012,2014,2017 Thomas White * 2010 Richard Kirian * 2012 Lorenzo Galli * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include "cell.h" #include "utils.h" #include "image.h" #include "integer_matrix.h" #include "rational.h" /** * SECTION:unitcell * @short_description: Unit cell * @title: UnitCell * @section_id: * @see_also: * @include: "cell.h" * @Image: * * This structure represents a unit cell. */ typedef enum { CELL_REP_CRYST, CELL_REP_CART, CELL_REP_RECIP } CellRepresentation; struct _unitcell { CellRepresentation rep; int have_parameters; /* Crystallographic representation */ double a; /* m */ double b; /* m */ double c; /* m */ double alpha; /* Radians */ double beta; /* Radians */ double gamma; /* Radians */ /* Cartesian representation */ double ax; double bx; double cx; double ay; double by; double cy; double az; double bz; double cz; /* Cartesian representation of reciprocal axes */ double axs; double bxs; double cxs; double ays; double bys; double cys; double azs; double bzs; double czs; LatticeType lattice_type; char centering; char unique_axis; }; typedef enum { CMASK_P = 1<<0, CMASK_A = 1<<1, CMASK_B = 1<<2, CMASK_C = 1<<3, CMASK_I = 1<<4, CMASK_F = 1<<5, CMASK_H = 1<<6, CMASK_R = 1<<7 } CenteringMask; #define CMASK_ALL (CMASK_P | CMASK_A | CMASK_B | CMASK_C | CMASK_I \ | CMASK_F | CMASK_H | CMASK_R) /************************** Setters and Constructors **************************/ /** * cell_new: * * Create a new %UnitCell. * * Returns: the new unit cell, or NULL on failure. * */ UnitCell *cell_new() { UnitCell *cell; cell = malloc(sizeof(UnitCell)); if ( cell == NULL ) return NULL; cell->a = 1.0; cell->b = 1.0; cell->c = 1.0; cell->alpha = 0.0; cell->beta = 0.0; cell->gamma = 0.0; cell->rep = CELL_REP_CRYST; cell->lattice_type = L_TRICLINIC; cell->centering = 'P'; cell->unique_axis = '?'; cell->have_parameters = 0; return cell; } /** * cell_free: * @cell: A %UnitCell to free. * * Frees a %UnitCell, and all internal resources concerning that cell. * */ void cell_free(UnitCell *cell) { if ( cell == NULL ) return; free(cell); } /** * cell_has_parameters: * @cell: A %UnitCell * * Returns: True if @cell has its parameters specified. * */ int cell_has_parameters(UnitCell *cell) { if ( cell == NULL ) return 0; return cell->have_parameters; } void cell_set_parameters(UnitCell *cell, double a, double b, double c, double alpha, double beta, double gamma) { if ( cell == NULL ) return; cell->a = a; cell->b = b; cell->c = c; cell->alpha = alpha; cell->beta = beta; cell->gamma = gamma; cell->rep = CELL_REP_CRYST; cell->have_parameters = 1; } void cell_set_cartesian(UnitCell *cell, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz) { if ( cell == NULL ) return; cell->ax = ax; cell->ay = ay; cell->az = az; cell->bx = bx; cell->by = by; cell->bz = bz; cell->cx = cx; cell->cy = cy; cell->cz = cz; cell->rep = CELL_REP_CART; cell->have_parameters = 1; } UnitCell *cell_new_from_parameters(double a, double b, double c, double alpha, double beta, double gamma) { UnitCell *cell; cell = cell_new(); if ( cell == NULL ) return NULL; cell_set_parameters(cell, a, b, c, alpha, beta, gamma); return cell; } UnitCell *cell_new_from_reciprocal_axes(struct rvec as, struct rvec bs, struct rvec cs) { UnitCell *cell; cell = cell_new(); if ( cell == NULL ) return NULL; cell->axs = as.u; cell->ays = as.v; cell->azs = as.w; cell->bxs = bs.u; cell->bys = bs.v; cell->bzs = bs.w; cell->cxs = cs.u; cell->cys = cs.v; cell->czs = cs.w; cell->rep = CELL_REP_RECIP; cell->have_parameters = 1; return cell; } UnitCell *cell_new_from_direct_axes(struct rvec a, struct rvec b, struct rvec c) { UnitCell *cell; cell = cell_new(); if ( cell == NULL ) return NULL; cell->ax = a.u; cell->ay = a.v; cell->az = a.w; cell->bx = b.u; cell->by = b.v; cell->bz = b.w; cell->cx = c.u; cell->cy = c.v; cell->cz = c.w; cell->rep = CELL_REP_CART; cell->have_parameters = 1; return cell; } UnitCell *cell_new_from_cell(const UnitCell *orig) { UnitCell *new; new = cell_new(); *new = *orig; return new; } void cell_set_reciprocal(UnitCell *cell, double asx, double asy, double asz, double bsx, double bsy, double bsz, double csx, double csy, double csz) { if ( cell == NULL ) return; cell->axs = asx; cell->ays = asy; cell->azs = asz; cell->bxs = bsx; cell->bys = bsy; cell->bzs = bsz; cell->cxs = csx; cell->cys = csy; cell->czs = csz; cell->rep = CELL_REP_RECIP; cell->have_parameters = 1; } void cell_set_centering(UnitCell *cell, char centering) { cell->centering = centering; } void cell_set_lattice_type(UnitCell *cell, LatticeType lattice_type) { cell->lattice_type = lattice_type; } void cell_set_unique_axis(UnitCell *cell, char unique_axis) { cell->unique_axis = unique_axis; } /************************* Getter helper functions ****************************/ static int cell_crystallographic_to_cartesian(UnitCell *cell, double *ax, double *ay, double *az, double *bx, double *by, double *bz, double *cx, double *cy, double *cz) { double tmp, V, cosalphastar, cstar; if ( !cell->have_parameters ) { ERROR("Unit cell has unspecified parameters.\n"); return 1; } /* Firstly: Get a in terms of x, y and z * +a (cryst) is defined to lie along +x (cart) */ *ax = cell->a; *ay = 0.0; *az = 0.0; /* b in terms of x, y and z * b (cryst) is defined to lie in the xy (cart) plane */ *bx = cell->b*cos(cell->gamma); *by = cell->b*sin(cell->gamma); *bz = 0.0; tmp = cos(cell->alpha)*cos(cell->alpha) + cos(cell->beta)*cos(cell->beta) + cos(cell->gamma)*cos(cell->gamma) - 2.0*cos(cell->alpha)*cos(cell->beta)*cos(cell->gamma); V = cell->a * cell->b * cell->c * sqrt(1.0 - tmp); cosalphastar = cos(cell->beta)*cos(cell->gamma) - cos(cell->alpha); cosalphastar /= sin(cell->beta)*sin(cell->gamma); cstar = (cell->a * cell->b * sin(cell->gamma))/V; /* c in terms of x, y and z */ *cx = cell->c*cos(cell->beta); *cy = -cell->c*sin(cell->beta)*cosalphastar; *cz = 1.0/cstar; return 0; } /* Why yes, I do enjoy long argument lists...! */ static int cell_invert(double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, double *asx, double *asy, double *asz, double *bsx, double *bsy, double *bsz, double *csx, double *csy, double *csz) { int s; gsl_matrix *m; gsl_matrix *inv; gsl_permutation *perm; m = gsl_matrix_alloc(3, 3); if ( m == NULL ) { ERROR("Couldn't allocate memory for matrix\n"); return 1; } gsl_matrix_set(m, 0, 0, ax); gsl_matrix_set(m, 1, 0, ay); gsl_matrix_set(m, 2, 0, az); gsl_matrix_set(m, 0, 1, bx); gsl_matrix_set(m, 1, 1, by); gsl_matrix_set(m, 2, 1, bz); gsl_matrix_set(m, 0, 2, cx); gsl_matrix_set(m, 1, 2, cy); gsl_matrix_set(m, 2, 2, cz); /* Invert */ perm = gsl_permutation_alloc(m->size1); if ( perm == NULL ) { ERROR("Couldn't allocate permutation\n"); gsl_matrix_free(m); return 1; } inv = gsl_matrix_alloc(m->size1, m->size2); if ( inv == NULL ) { ERROR("Couldn't allocate inverse\n"); gsl_matrix_free(m); gsl_permutation_free(perm); return 1; } if ( gsl_linalg_LU_decomp(m, perm, &s) ) { ERROR("Couldn't decompose matrix\n"); gsl_matrix_free(m); gsl_permutation_free(perm); return 1; } if ( gsl_linalg_LU_invert(m, perm, inv) ) { ERROR("Couldn't invert cell matrix:\n"); gsl_matrix_free(m); gsl_permutation_free(perm); return 1; } gsl_permutation_free(perm); gsl_matrix_free(m); /* Transpose */ gsl_matrix_transpose(inv); *asx = gsl_matrix_get(inv, 0, 0); *asy = gsl_matrix_get(inv, 1, 0); *asz = gsl_matrix_get(inv, 2, 0); *bsx = gsl_matrix_get(inv, 0, 1); *bsy = gsl_matrix_get(inv, 1, 1); *bsz = gsl_matrix_get(inv, 2, 1); *csx = gsl_matrix_get(inv, 0, 2); *csy = gsl_matrix_get(inv, 1, 2); *csz = gsl_matrix_get(inv, 2, 2); gsl_matrix_free(inv); return 0; } /********************************** Getters ***********************************/ int cell_get_parameters(UnitCell *cell, double *a, double *b, double *c, double *alpha, double *beta, double *gamma) { double ax, ay, az, bx, by, bz, cx, cy, cz; if ( cell == NULL ) return 1; if ( !cell->have_parameters ) { ERROR("Unit cell has unspecified parameters.\n"); return 1; } switch ( cell->rep ) { case CELL_REP_CRYST: /* Direct response */ *a = cell->a; *b = cell->b; *c = cell->c; *alpha = cell->alpha; *beta = cell->beta; *gamma = cell->gamma; return 0; case CELL_REP_CART: /* Convert cartesian -> crystallographic */ *a = modulus(cell->ax, cell->ay, cell->az); *b = modulus(cell->bx, cell->by, cell->bz); *c = modulus(cell->cx, cell->cy, cell->cz); *alpha = angle_between(cell->bx, cell->by, cell->bz, cell->cx, cell->cy, cell->cz); *beta = angle_between(cell->ax, cell->ay, cell->az, cell->cx, cell->cy, cell->cz); *gamma = angle_between(cell->ax, cell->ay, cell->az, cell->bx, cell->by, cell->bz); return 0; case CELL_REP_RECIP: /* Convert reciprocal -> crystallographic. * Start by converting reciprocal -> cartesian */ if ( cell_invert(cell->axs, cell->ays, cell->azs, cell->bxs, cell->bys, cell->bzs, cell->cxs, cell->cys, cell->czs, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz) ) return 1; /* Now convert cartesian -> crystallographic */ *a = modulus(ax, ay, az); *b = modulus(bx, by, bz); *c = modulus(cx, cy, cz); *alpha = angle_between(bx, by, bz, cx, cy, cz); *beta = angle_between(ax, ay, az, cx, cy, cz); *gamma = angle_between(ax, ay, az, bx, by, bz); return 0; } return 1; } int cell_get_cartesian(UnitCell *cell, double *ax, double *ay, double *az, double *bx, double *by, double *bz, double *cx, double *cy, double *cz) { if ( cell == NULL ) return 1; if ( !cell->have_parameters ) { ERROR("Unit cell has unspecified parameters.\n"); return 1; } switch ( cell->rep ) { case CELL_REP_CRYST: /* Convert crystallographic -> cartesian. */ return cell_crystallographic_to_cartesian(cell, ax, ay, az, bx, by, bz, cx, cy, cz); case CELL_REP_CART: /* Direct response */ *ax = cell->ax; *ay = cell->ay; *az = cell->az; *bx = cell->bx; *by = cell->by; *bz = cell->bz; *cx = cell->cx; *cy = cell->cy; *cz = cell->cz; return 0; case CELL_REP_RECIP: /* Convert reciprocal -> cartesian */ return cell_invert(cell->axs, cell->ays, cell->azs, cell->bxs, cell->bys, cell->bzs, cell->cxs, cell->cys, cell->czs, ax, ay, az, bx, by, bz, cx, cy, cz); } return 1; } int cell_get_reciprocal(UnitCell *cell, double *asx, double *asy, double *asz, double *bsx, double *bsy, double *bsz, double *csx, double *csy, double *csz) { int r; double ax, ay, az, bx, by, bz, cx, cy, cz; if ( cell == NULL ) return 1; if ( !cell->have_parameters ) { ERROR("Unit cell has unspecified parameters.\n"); return 1; } switch ( cell->rep ) { case CELL_REP_CRYST: /* Convert crystallographic -> reciprocal */ r = cell_crystallographic_to_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); if ( r ) return r; return cell_invert(ax, ay, az,bx, by, bz, cx, cy, cz, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); case CELL_REP_CART: /* Convert cartesian -> reciprocal */ cell_invert(cell->ax, cell->ay, cell->az, cell->bx, cell->by, cell->bz, cell->cx, cell->cy, cell->cz, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); return 0; case CELL_REP_RECIP: /* Direct response */ *asx = cell->axs; *asy = cell->ays; *asz = cell->azs; *bsx = cell->bxs; *bsy = cell->bys; *bsz = cell->bzs; *csx = cell->cxs; *csy = cell->cys; *csz = cell->czs; return 0; } return 1; } char cell_get_centering(UnitCell *cell) { return cell->centering; } LatticeType cell_get_lattice_type(UnitCell *cell) { return cell->lattice_type; } char cell_get_unique_axis(UnitCell *cell) { return cell->unique_axis; } const char *cell_rep(UnitCell *cell) { switch ( cell->rep ) { case CELL_REP_CRYST: return "crystallographic, direct space"; case CELL_REP_CART: return "cartesian, direct space"; case CELL_REP_RECIP: return "cartesian, reciprocal space"; } return "unknown"; } UnitCell *cell_transform_gsl_direct(UnitCell *in, gsl_matrix *m) { gsl_matrix *c; double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; gsl_matrix *res; UnitCell *out; cell_get_cartesian(in, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); c = gsl_matrix_alloc(3, 3); gsl_matrix_set(c, 0, 0, asx); gsl_matrix_set(c, 1, 0, asy); gsl_matrix_set(c, 2, 0, asz); gsl_matrix_set(c, 0, 1, bsx); gsl_matrix_set(c, 1, 1, bsy); gsl_matrix_set(c, 2, 1, bsz); gsl_matrix_set(c, 0, 2, csx); gsl_matrix_set(c, 1, 2, csy); gsl_matrix_set(c, 2, 2, csz); res = gsl_matrix_calloc(3, 3); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, c, m, 0.0, res); out = cell_new_from_cell(in); cell_set_cartesian(out, gsl_matrix_get(res, 0, 0), gsl_matrix_get(res, 1, 0), gsl_matrix_get(res, 2, 0), gsl_matrix_get(res, 0, 1), gsl_matrix_get(res, 1, 1), gsl_matrix_get(res, 2, 1), gsl_matrix_get(res, 0, 2), gsl_matrix_get(res, 1, 2), gsl_matrix_get(res, 2, 2)); gsl_matrix_free(res); gsl_matrix_free(c); return out; } static int centering_has_point(char cen, Rational *p) { /* First, put the point into the range 0..1 */ while ( rtnl_cmp(p[0], rtnl_zero()) < 0 ) p[0] = rtnl_add(p[0], rtnl(1, 1)); while ( rtnl_cmp(p[1], rtnl_zero()) < 0 ) p[1] = rtnl_add(p[1], rtnl(1, 1)); while ( rtnl_cmp(p[2], rtnl_zero()) < 0 ) p[2] = rtnl_add(p[2], rtnl(1, 1)); while ( rtnl_cmp(p[0], rtnl(1, 1)) >= 0 ) p[0] = rtnl_sub(p[0], rtnl(1, 1)); while ( rtnl_cmp(p[1], rtnl(1, 1)) >= 0 ) p[1] = rtnl_sub(p[1], rtnl(1, 1)); while ( rtnl_cmp(p[2], rtnl(1, 1)) >= 0 ) p[2] = rtnl_sub(p[2], rtnl(1, 1)); /* 0,0,0 is present in all centerings */ if ( (rtnl_cmp(p[0], rtnl_zero()) == 0) && (rtnl_cmp(p[1], rtnl_zero()) == 0) && (rtnl_cmp(p[2], rtnl_zero()) == 0) ) return 1; /* Only I has 1/2 , 1/2, 1/2 */ if ( (rtnl_cmp(p[0], rtnl(1,2)) == 0) && (rtnl_cmp(p[1], rtnl(1,2)) == 0) && (rtnl_cmp(p[2], rtnl(1,2)) == 0) && (cen == 'I') ) return 1; /* A or F has 0 , 1/2, 1/2 */ if ( (rtnl_cmp(p[0], rtnl_zero()) == 0) && (rtnl_cmp(p[1], rtnl(1,2)) == 0) && (rtnl_cmp(p[2], rtnl(1,2)) == 0) && ((cen == 'A') || (cen == 'F')) ) return 1; /* B or F has 1/2 , 0 , 1/2 */ if ( (rtnl_cmp(p[0], rtnl(1,2)) == 0) && (rtnl_cmp(p[1], rtnl_zero()) == 0) && (rtnl_cmp(p[2], rtnl(1,2)) == 0) && ((cen == 'B') || (cen == 'F')) ) return 1; /* C or F has 1/2 , 1/2 , 0 */ if ( (rtnl_cmp(p[0], rtnl(1,2)) == 0) && (rtnl_cmp(p[1], rtnl(1,2)) == 0) && (rtnl_cmp(p[2], rtnl_zero()) == 0) && ((cen == 'C') || (cen == 'F')) ) return 1; /* H has 2/3 , 1/3 , 1/3 */ if ( (rtnl_cmp(p[0], rtnl(2,3)) == 0) && (rtnl_cmp(p[1], rtnl(1,3)) == 0) && (rtnl_cmp(p[2], rtnl(1,3)) == 0) && (cen == 'H') ) return 1; /* H has 1/3 , 2/3 , 2/3 */ if ( (rtnl_cmp(p[0], rtnl(1,3)) == 0) && (rtnl_cmp(p[1], rtnl(2,3)) == 0) && (rtnl_cmp(p[2], rtnl(2,3)) == 0) && (cen == 'H') ) return 1; return 0; } static void maybe_eliminate(CenteringMask c, CenteringMask *cmask, Rational *nc, char cen) { /* Skip test if this centering isn't even a candidate */ if ( !(*cmask & c) ) return; if ( !centering_has_point(cen, nc) ) { *cmask |= c; *cmask ^= c; } } /* Check if the point x,y,z in the original cell matches any lattice point * in the transformed cell */ static void check_point_fwd(RationalMatrix *m, CenteringMask *cmask, Rational x, Rational y, Rational z) { Rational c[3] = {x, y, z}; Rational nc[3]; /* Transform the lattice point */ transform_fractional_coords_rtnl(m, c, nc); /* Eliminate any centerings which don't include the transformed point */ maybe_eliminate(CMASK_P, cmask, nc, 'P'); maybe_eliminate(CMASK_R, cmask, nc, 'R'); maybe_eliminate(CMASK_A, cmask, nc, 'A'); maybe_eliminate(CMASK_B, cmask, nc, 'B'); maybe_eliminate(CMASK_C, cmask, nc, 'C'); maybe_eliminate(CMASK_I, cmask, nc, 'I'); maybe_eliminate(CMASK_F, cmask, nc, 'F'); maybe_eliminate(CMASK_H, cmask, nc, 'H'); } /* Check if the point x,y,z in the transformed cell matches any lattice point * in the original cell. If not, eliminate "exclude" from "*mask". */ static void check_point_bwd(RationalMatrix *m, CenteringMask *mask, char cen, CenteringMask exclude, Rational x, Rational y, Rational z) { Rational nc[3]; Rational c[3] = {x, y, z}; transform_fractional_coords_rtnl_inverse(m, c, nc); if ( !centering_has_point(cen, nc) ) { *mask |= exclude; *mask ^= exclude; /* Unset bits */ } } static char cmask_decode(CenteringMask mask) { char res[32]; res[0] = '\0'; if ( mask & CMASK_H ) strcat(res, "H"); if ( mask & CMASK_F ) strcat(res, "F"); if ( mask & CMASK_I ) strcat(res, "I"); if ( mask & CMASK_A ) strcat(res, "A"); if ( mask & CMASK_B ) strcat(res, "B"); if ( mask & CMASK_C ) strcat(res, "C"); if ( mask & CMASK_P ) strcat(res, "P"); if ( mask & CMASK_R ) strcat(res, "R"); if ( strlen(res) == 0 ) return '?'; return res[0]; } static char determine_centering(RationalMatrix *m, char cen) { CenteringMask cmask = CMASK_ALL; /* Check whether the current centering can provide all the lattice * points for the transformed cell. Eliminate any centerings for which * it can't. */ check_point_bwd(m, &cmask, cen, CMASK_A | CMASK_F, rtnl_zero(), rtnl(1,2), rtnl(1,2)); check_point_bwd(m, &cmask, cen, CMASK_B | CMASK_F, rtnl(1,2), rtnl_zero(), rtnl(1,2)); check_point_bwd(m, &cmask, cen, CMASK_C | CMASK_F, rtnl(1,2), rtnl(1,2), rtnl_zero()); check_point_bwd(m, &cmask, cen, CMASK_I, rtnl(1,2), rtnl(1,2), rtnl(1,2)); check_point_bwd(m, &cmask, cen, CMASK_H, rtnl(2,3), rtnl(1,3), rtnl(1,3)); check_point_bwd(m, &cmask, cen, CMASK_H, rtnl(1,3), rtnl(2,3), rtnl(2,3)); /* Check whether the current centering's lattice points will all * coincide with lattice points in the new centering. Eliminate any * centerings for which they don't (they give "excess lattice points"). */ switch ( cen ) { case 'P' : case 'R' : break; case 'A' : check_point_fwd(m, &cmask, rtnl_zero(), rtnl(1,2), rtnl(1,2)); break; case 'B' : check_point_fwd(m, &cmask, rtnl(1,2), rtnl_zero(), rtnl(1,2)); break; case 'C' : check_point_fwd(m, &cmask, rtnl(1,2), rtnl(1,2), rtnl_zero()); break; case 'I' : check_point_fwd(m, &cmask, rtnl(1,2), rtnl(1,2), rtnl(1,2)); break; case 'F' : check_point_fwd(m, &cmask, rtnl_zero(), rtnl(1,2), rtnl(1,2)); check_point_fwd(m, &cmask, rtnl(1,2), rtnl_zero(), rtnl(1,2)); check_point_fwd(m, &cmask, rtnl(1,2), rtnl(1,2), rtnl_zero()); break; case 'H' : check_point_fwd(m, &cmask, rtnl(2,3), rtnl(1,3), rtnl(1,3)); check_point_fwd(m, &cmask, rtnl(1,3), rtnl(2,3), rtnl(2,3)); break; } return cmask_decode(cmask); } /** * cell_transform_rational: * @cell: A %UnitCell. * @t: A %RationalMatrix. * * Applies @t to @cell. * * This function will determine the centering of the resulting unit cell, * producing '?' if any lattice points cannot be accounted for. Note that if * there are 'excess' lattice points in the transformed cell, the centering * will still be '?' even if the lattice points for another centering are * all present. * * The lattice type will be set to triclinic, and the unique axis to '?'. * * Returns: Transformed copy of @cell. * */ UnitCell *cell_transform_rational(UnitCell *cell, RationalMatrix *m) { UnitCell *out; gsl_matrix *tm; char ncen; int i, j; if ( m == NULL ) return NULL; tm = gsl_matrix_alloc(3,3); if ( tm == NULL ) { return NULL; } for ( i=0; i<3; i++ ) { for ( j=0; j<3; j++ ) { gsl_matrix_set(tm, i, j, rtnl_as_double(rtnl_mtx_get(m, i, j))); } } out = cell_transform_gsl_direct(cell, tm); gsl_matrix_free(tm); ncen = determine_centering(m, cell_get_centering(cell)); cell_set_centering(out, ncen); /* FIXME: Update unique axis, lattice type */ cell_set_lattice_type(out, L_TRICLINIC); cell_set_unique_axis(out, '?'); return out; } /** * cell_transform_intmat: * @cell: A %UnitCell. * @t: An %IntegerMatrix. * * Applies @t to @cell. * * This is just a convenience function which turns @m into a %RationalMatrix * and then calls cell_transform_rational(). See the documentation for that * function for some important information. * * Returns: Transformed copy of @cell. * */ UnitCell *cell_transform_intmat(UnitCell *cell, IntegerMatrix *m) { UnitCell *ans; RationalMatrix *mtx = rtnl_mtx_from_intmat(m); ans = cell_transform_rational(cell, mtx); rtnl_mtx_free(mtx); return ans; } /** * cell_transform_rational_inverse: * @cell: A %UnitCell. * @m: A %RationalMatrix * * Applies the inverse of @m to @cell. * * Returns: Transformed copy of @cell. * */ UnitCell *cell_transform_rational_inverse(UnitCell *cell, RationalMatrix *m) { UnitCell *out; gsl_matrix *tm; gsl_matrix *inv; gsl_permutation *perm; int s; int i, j; if ( m == NULL ) return NULL; tm = gsl_matrix_alloc(3,3); if ( tm == NULL ) { return NULL; } for ( i=0; i<3; i++ ) { for ( j=0; j<3; j++ ) { gsl_matrix_set(tm, i, j, rtnl_as_double(rtnl_mtx_get(m, i, j))); } } perm = gsl_permutation_alloc(3); if ( perm == NULL ) { ERROR("Couldn't allocate permutation\n"); return NULL; } inv = gsl_matrix_alloc(3, 3); if ( inv == NULL ) { ERROR("Couldn't allocate inverse\n"); gsl_permutation_free(perm); return NULL; } if ( gsl_linalg_LU_decomp(tm, perm, &s) ) { ERROR("Couldn't decompose matrix\n"); gsl_permutation_free(perm); return NULL; } if ( gsl_linalg_LU_invert(tm, perm, inv) ) { ERROR("Couldn't invert transformation matrix\n"); gsl_permutation_free(perm); return NULL; } gsl_permutation_free(perm); out = cell_transform_gsl_direct(cell, inv); /* FIXME: Update centering, unique axis, lattice type */ gsl_matrix_free(tm); gsl_matrix_free(inv); return out; } /** * cell_transform_intmat_inverse: * @cell: A %UnitCell. * @m: An %IntegerMatrix * * Applies the inverse of @m to @cell. * * Returns: Transformed copy of @cell. * */ UnitCell *cell_transform_intmat_inverse(UnitCell *cell, IntegerMatrix *m) { UnitCell *ans; RationalMatrix *mtx = rtnl_mtx_from_intmat(m); ans = cell_transform_rational_inverse(cell, mtx); rtnl_mtx_free(mtx); return ans; }