/* * image.c * * Handle images and image features * * Copyright © 2012-2020 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2014 Kenneth Beyerlein * 2011-2017 Thomas White * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #include #include #include #include #include #include #include #include "image.h" #include "utils.h" #include "events.h" #include "hdf5-file.h" #include "detector.h" #include "detgeom.h" #include "datatemplate.h" #include "datatemplate_priv.h" /** \file image.h */ struct _imagefeaturelist { struct imagefeature *features; int max_features; int n_features; }; void image_add_feature(ImageFeatureList *flist, double fs, double ss, int pn, struct image *parent, double intensity, const char *name) { if ( flist->n_features == flist->max_features ) { struct imagefeature *nf; int nmf = flist->max_features + 128; nf = realloc(flist->features, nmf*sizeof(struct imagefeature)); if ( nf == NULL ) return; flist->features = nf; flist->max_features = nmf; } flist->features[flist->n_features].fs = fs; flist->features[flist->n_features].ss = ss; flist->features[flist->n_features].pn = pn; flist->features[flist->n_features].intensity = intensity; flist->features[flist->n_features].name = name; flist->n_features++; } ImageFeatureList *image_feature_list_new() { ImageFeatureList *flist; flist = malloc(sizeof(ImageFeatureList)); flist->n_features = 0; flist->max_features = 0; flist->features = NULL; return flist; } static int comp(const void *a, const void *b) { const struct imagefeature *ap = a; const struct imagefeature *bp = b; return ap->intensity < bp->intensity; } ImageFeatureList *image_feature_list_copy(const ImageFeatureList *flist) { ImageFeatureList *n; int nf, i; if ( flist == NULL ) return NULL; n = image_feature_list_new(); if ( n == NULL ) return NULL; n->features = malloc(flist->n_features*sizeof(struct imagefeature)); if ( n->features == NULL ) { free(n); return NULL; } nf = 0; for ( i=0; in_features; i++ ) { const struct imagefeature *f; f = image_get_feature_const(flist, i); if ( f == NULL ) continue; n->features[nf++] = flist->features[i]; } n->n_features = nf; return n; } /** * Strongest first. */ ImageFeatureList *sort_peaks(ImageFeatureList *flist) { ImageFeatureList *n = image_feature_list_copy(flist); qsort(n->features, image_feature_count(n), sizeof(struct imagefeature), comp); return n; } void image_feature_list_free(ImageFeatureList *flist) { if ( flist == NULL ) return; free(flist->features); free(flist); } struct imagefeature *image_feature_closest(ImageFeatureList *flist, double fs, double ss, int pn, double *d, int *idx) { int i; double dmin = +HUGE_VAL; int closest = 0; for ( i=0; in_features; i++ ) { double ds; if ( pn != flist->features[i].pn ) continue; ds = distance(flist->features[i].fs, flist->features[i].ss, fs, ss); if ( ds < dmin ) { dmin = ds; closest = i; } } if ( dmin < +HUGE_VAL ) { *d = dmin; *idx = closest; return &flist->features[closest]; } *d = +INFINITY; return NULL; } Reflection *image_reflection_closest(RefList *rlist, double fs, double ss, struct panel *p, struct detector *det, double *d) { double dmin = HUGE_VAL; Reflection *closest = NULL; Reflection *refl; RefListIterator *iter; for ( refl = first_refl(rlist, &iter); refl != NULL; refl = next_refl(refl, iter) ) { double ds; struct panel *p2; double rfs, rss; get_detector_pos(refl, &rfs, &rss); p2 = get_panel(refl); if ( p != p2 ) continue; ds = distance(rfs, rss, fs, ss); if ( ds < dmin ) { dmin = ds; closest = refl; } } if ( dmin < +HUGE_VAL ) { *d = dmin; return closest; } *d = +INFINITY; return NULL; } int image_feature_count(ImageFeatureList *flist) { if ( flist == NULL ) return 0; return flist->n_features; } const struct imagefeature *image_get_feature_const(const ImageFeatureList *flist, int idx) { /* Sanity check */ if ( flist == NULL ) return NULL; if ( idx >= flist->n_features ) return NULL; return &flist->features[idx]; } struct imagefeature *image_get_feature(ImageFeatureList *flist, int idx) { /* Sanity check */ if ( flist == NULL ) return NULL; if ( idx >= flist->n_features ) return NULL; return &flist->features[idx]; } void image_remove_feature(ImageFeatureList *flist, int idx) { memmove(&flist->features[idx], &flist->features[idx+1], (flist->n_features-idx-1)*sizeof(struct imagefeature)); flist->n_features--; } void image_add_crystal(struct image *image, Crystal *cryst) { Crystal **crs; int n; n = image->n_crystals; crs = realloc(image->crystals, (n+1)*sizeof(Crystal *)); if ( crs == NULL ) { ERROR("Failed to allocate memory for crystals.\n"); return; } crs[n] = cryst; image->crystals = crs; image->n_crystals = n+1; } int remove_flagged_crystals(struct image *image) { int i; int n_bad = 0; for ( i=0; in_crystals; i++ ) { if ( crystal_get_user_flag(image->crystals[i]) ) { int j; Crystal *deleteme = image->crystals[i]; cell_free(crystal_get_cell(deleteme)); crystal_free(deleteme); for ( j=i; jn_crystals-1; j++ ) { image->crystals[j] = image->crystals[j+1]; } image->n_crystals--; n_bad++; i--; } } return n_bad; } /* Free all crystals, including their RefLists and UnitCells */ void free_all_crystals(struct image *image) { int i; if ( image->crystals == NULL ) return; for ( i=0; in_crystals; i++ ) { Crystal *cr = image->crystals[i]; reflist_free(crystal_get_reflections(cr)); cell_free(crystal_get_cell(cr)); crystal_free(image->crystals[i]); } free(image->crystals); image->n_crystals = 0; } static void add_out(float val, float *data_out, int nmemb_out, int *outpos, int *nrej) { if ( *outpos < nmemb_out ) { data_out[(*outpos)++] = val; } else { (*nrej)++; } } /* Reverses byte offset compression and converts to single precision float. * Note that this compression scheme specifies the data format of the input * data, therefore the X-Binary-Element-Type is completely ignored. */ static void decode_cbf_byte_offset(float *data_out, int nmemb_out, const int8_t *data_in, const size_t n) { int inpos = 0; int outpos = 0; int nrej = 0; float val = 0.0; while ( inpos < n ) { int64_t delta = data_in[inpos++]; if ( (delta >= -127) && (delta <= 127) ) { val += delta; add_out(val, data_out, nmemb_out, &outpos, &nrej); continue; } delta = *(int16_t *)(data_in+inpos); inpos += 2; if ( (delta >= -32767) && (delta <= 32767) ) { val += delta; add_out(val, data_out, nmemb_out, &outpos, &nrej); continue; } delta = *(int32_t *)(data_in+inpos); inpos += 4; if ( (delta >= -2147483647) && (delta <= 2147483647) ) { val += delta; add_out(val, data_out, nmemb_out, &outpos, &nrej); continue; } delta = *(int64_t *)(data_in+inpos); inpos += 8; val += delta; add_out(val, data_out, nmemb_out, &outpos, &nrej); } if ( nrej > 0 ) { STATUS("%i elements rejected\n", nrej); } } static int binary_start(char *data) { char *datac = data; if ( (datac[0] == (char)0x0c) && (datac[1] == (char)0x1a) && (datac[2] == (char)0x04) && (datac[3] == (char)0xd5) ) return 1; return 0; } enum cbf_data_conversion { CBF_NO_CONVERSION, CBF_BYTE_OFFSET, CBF_PACKED, CBF_CANONICAL }; enum cbf_data_type { CBF_NO_TYPE, CBF_ELEMENT_U8, CBF_ELEMENT_S8, CBF_ELEMENT_U16, CBF_ELEMENT_S16, CBF_ELEMENT_U32, CBF_ELEMENT_S32, CBF_ELEMENT_F32, CBF_ELEMENT_F64, }; static enum cbf_data_type parse_element_type(const char *t) { if ( strstr(t, "signed 8-bit integer") != NULL ) { return CBF_ELEMENT_S8; } if ( strstr(t, "unsigned 8-bit integer") != NULL ) { return CBF_ELEMENT_U8; } if ( strstr(t, "signed 16-bit integer") != NULL ) { return CBF_ELEMENT_S16; } if ( strstr(t, "unsigned 16-bit integer") != NULL ) { return CBF_ELEMENT_U16; } if ( strstr(t, "signed 32-bit integer") != NULL ) { return CBF_ELEMENT_S32; } if ( strstr(t, "unsigned 32-bit integer") != NULL ) { return CBF_ELEMENT_U32; } if ( strstr(t, "signed 32-bit real IEEE") != NULL ) { return CBF_ELEMENT_F32; } if ( strstr(t, "signed 64-bit real IEEE") != NULL ) { return CBF_ELEMENT_F64; } /* complex type is unsupported */ return CBF_NO_TYPE; } static size_t element_size(enum cbf_data_type t) { switch ( t ) { case CBF_ELEMENT_S8 : return 1; case CBF_ELEMENT_U8 : return 1; case CBF_ELEMENT_S16 : return 2; case CBF_ELEMENT_U16 : return 2; case CBF_ELEMENT_S32 : return 4; case CBF_ELEMENT_U32 : return 4; case CBF_ELEMENT_F32 : return 4; case CBF_ELEMENT_F64 : return 8; default : return 0; } } static int convert_type(float *data_out, long nmemb_exp, enum cbf_data_type eltype, void *data_in, size_t data_in_len) { long int i; long int o = 0; size_t elsize = element_size(eltype); if ( elsize == 0 ) return 1; if ( nmemb_exp * elsize > data_in_len ) { ERROR("Not enough CBF data for image size/type!\n"); return 1; } for ( i=0; i 100*1024*1024 ) { ERROR("Stated CBF data size too big\n"); free(buf); fclose(fh); return NULL; } data_compressed = malloc(data_compressed_len); if ( data_compressed == NULL ) { ERROR("Failed to allocate memory for CBF data\n"); free(buf); fclose(fh); return NULL; } fseek(fh, line_start+4, SEEK_SET); len_read = fread(data_compressed, 1, data_compressed_len, fh); if ( len_read < data_compressed_len ) { ERROR("Couldn't read entire CBF data\n"); free(buf); free(data_compressed); fclose(fh); return NULL; } nmemb_exp = (*w) * (*h); data_out = malloc(nmemb_exp*sizeof(float)); if ( data_out == NULL ) { ERROR("Failed to allocate memory for CBF data\n"); free(buf); free(data_compressed); fclose(fh); return NULL; } switch ( data_conversion ) { case CBF_NO_CONVERSION: r = convert_type(data_out, nmemb_exp, data_type, data_compressed, data_compressed_len); break; case CBF_BYTE_OFFSET: decode_cbf_byte_offset(data_out, nmemb_exp, data_compressed, data_compressed_len); break; case CBF_PACKED: case CBF_CANONICAL: ERROR("Don't yet know how to decompress " "CBF_PACKED or CBF_CANONICAL\n"); free(buf); free(data_compressed); fclose(fh); return NULL; } free(data_compressed); if ( r ) { free(buf); free(data_out); fclose(fh); return NULL; } free(buf); fclose(fh); return data_out; } } while ( rval != NULL ); ERROR("Reached end of CBF file before finding data.\n"); free(buf); /* might be NULL */ return NULL; } signed int is_cbf_file(const char *filename) { FILE *fh; char line[1024]; fh = fopen(filename, "r"); if ( fh == NULL ) return -1; if ( fgets(line, 1024, fh) == NULL ) return -1; fclose(fh); if ( strstr(line, "CBF") == NULL ) { return 0; } return 1; } signed int is_cbfgz_file(const char *filename) { gzFile gzfh; char line[1024]; gzfh = gzopen(filename, "rb"); if ( gzfh == NULL ) return -1; if ( gzgets(gzfh, line, 1024) == NULL ) return -1; gzclose(gzfh); if ( strstr(line, "CBF") == NULL ) { return 0; } return 1; } /************************** New API (DataTemplate) ****************************/ struct image *image_new() { struct image *image; image = malloc(sizeof(struct image)); if ( image == NULL ) return NULL; image->dp = NULL; image->bad = NULL; image->sat = NULL; image->hit = 0; image->crystals = NULL; image->n_crystals = 0; image->indexed_by = INDEXING_NONE; image->detgeom = NULL; image->filename = NULL; image->ev = NULL; image->copied_headers = NULL; image->avg_clen = -1.0; image->id = 0; image->serial = 0; image->spectrum = NULL; image->lambda = -1.0; image->div = -1.0; image->bw = -1.0; image->peak_resolution = -1.0; image->features = NULL; /* Deprecated stuff */ image->beam = NULL; image->det = NULL; return image; } static int unpack_panels_dtempl(struct image *image, DataTemplate *dtempl, float *data, int data_width, int data_height) { int pi; image->dp = malloc(dtempl->n_panels * sizeof(float *)); if ( image->dp == NULL ) { ERROR("Failed to allocate panels.\n"); return 1; } for ( pi=0; pin_panels; pi++ ) { struct panel_template *p; int fs, ss; int p_w, p_h; p = &dtempl->panels[pi]; p_w = p->orig_max_fs - p->orig_min_fs + 1; p_h = p->orig_max_ss - p->orig_min_ss + 1; image->dp[pi] = malloc(p_w*p_h*sizeof(float)); if ( image->dp[pi] == NULL ) { ERROR("Failed to allocate panel\n"); return 1; } if ( (p->orig_min_fs + p_w > data_width) || (p->orig_min_ss + p_h > data_height) ) { ERROR("Panel %s is outside range of data in CBF file\n", p->name); return 1; } for ( ss=0; ssorig_min_fs; css = ss+p->orig_min_ss; idx = cfs + css*data_width; image->dp[pi][fs+p_w*ss] = data[idx]; } } } return 0; } static int load_hdf5_hyperslab(struct panel_template *p, const char *filename, const char *event, void **pdata, hid_t el_type, size_t el_size, int skip_placeholders_ok, const char *path_spec) { struct event *ev; hid_t fh; herr_t r; hsize_t *f_offset, *f_count; hid_t dh; int hsi; herr_t check; hid_t dataspace, memspace; hsize_t dims[2]; char *panel_full_path; void *data; int ndims; int skip_placeholders = 0; if ( access(filename, R_OK) == -1 ) { ERROR("File does not exist or cannot be read: %s\n", filename); return 1; } fh = H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT); if ( fh < 0 ) { ERROR("Couldn't open file: %s\n", filename); return 1; } ev = get_event_from_event_string(event); if ( (ev == NULL) && (event != NULL) ) { ERROR("Invalid event identifier '%s'\n", event); H5Fclose(fh); return 1; } panel_full_path = retrieve_full_path(ev, path_spec); if ( !check_path_existence(fh, panel_full_path) ) { ERROR("Cannot find data for panel %s (%s)\n", p->name, panel_full_path); free_event(ev); H5Fclose(fh); return 1; } dh = H5Dopen2(fh, panel_full_path, H5P_DEFAULT); if ( dh < 0 ) { ERROR("Cannot open data for panel %s (%s)\n", p->name, panel_full_path); free(panel_full_path); free_event(ev); H5Fclose(fh); return 1; } free(panel_full_path); /* Set up dataspace for file * (determine where to read the data from) */ dataspace = H5Dget_space(dh); ndims = H5Sget_simple_extent_ndims(dataspace); if ( ndims < 0 ) { ERROR("Failed to get number of dimensions for panel %s\n", p->name); free_event(ev); H5Fclose(fh); return 1; } if ( ndims != p->dim_structure->num_dims ) { /* Dimensionality doesn't match */ int n_nonplaceholder = 0; for ( hsi=0; hsidim_structure->num_dims; hsi++ ) { if ( p->dim_structure->dims[hsi] != HYSL_PLACEHOLDER ) { n_nonplaceholder++; } } /* If the dimensions match after excluding * placeholders, it's OK - probably a static mask * in a multi-event file. */ if ( ndims == n_nonplaceholder ) { skip_placeholders = 1; } } f_offset = malloc(p->dim_structure->num_dims*sizeof(hsize_t)); f_count = malloc(p->dim_structure->num_dims*sizeof(hsize_t)); if ( (f_offset == NULL) || (f_count == NULL ) ) { ERROR("Failed to allocate offset or count.\n"); free_event(ev); H5Fclose(fh); return 1; } for ( hsi=0; hsidim_structure->num_dims; hsi++ ) { if ( p->dim_structure->dims[hsi] == HYSL_FS ) { f_offset[hsi] = p->orig_min_fs; f_count[hsi] = p->orig_max_fs - p->orig_min_fs+1; } else if ( p->dim_structure->dims[hsi] == HYSL_SS ) { f_offset[hsi] = p->orig_min_ss; f_count[hsi] = p->orig_max_ss - p->orig_min_ss+1; } else if (p->dim_structure->dims[hsi] == HYSL_PLACEHOLDER ) { if ( !skip_placeholders ) { f_offset[hsi] = ev->dim_entries[0]; f_count[hsi] = 1; } } else { f_offset[hsi] = p->dim_structure->dims[hsi]; f_count[hsi] = 1; } } check = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, f_offset, NULL, f_count, NULL); if ( check < 0 ) { ERROR("Error selecting file dataspace for panel %s\n", p->name); free(f_offset); free(f_count); free_event(ev); H5Fclose(fh); return 1; } dims[0] = p->orig_max_ss - p->orig_min_ss + 1; dims[1] = p->orig_max_fs - p->orig_min_fs + 1; memspace = H5Screate_simple(2, dims, NULL); data = malloc(dims[0]*dims[1]*el_size); if ( data == NULL ) { ERROR("Failed to allocate panel %s\n", p->name); free(f_offset); free(f_count); free_event(ev); H5Fclose(fh); return 1; } r = H5Dread(dh, el_type, memspace, dataspace, H5P_DEFAULT, data); if ( r < 0 ) { ERROR("Couldn't read data for panel %s\n", p->name); free(f_offset); free(f_count); free(data); free_event(ev); H5Fclose(fh); return 1; } H5Dclose(dh); H5Sclose(dataspace); free(f_offset); free(f_count); free_event(ev); H5Fclose(fh); *pdata = data; return 0; } static struct image *image_read_hdf5(DataTemplate *dtempl, const char *filename, const char *event) { struct image *image; int i; image = image_new(); if ( image == NULL ) { ERROR("Couldn't allocate image structure.\n"); return NULL; } image->dp = malloc(dtempl->n_panels*sizeof(float *)); if ( image->dp == NULL ) { ERROR("Failed to allocate data array.\n"); image_free(image); return NULL; } /* Set all pointers to NULL for easier clean-up */ for ( i=0; in_panels; i++ ) image->dp[i] = NULL; for ( i=0; in_panels; i++ ) { if ( load_hdf5_hyperslab(&dtempl->panels[i], filename, event, (void *)&image->dp[i], H5T_NATIVE_FLOAT, sizeof(float), 0, dtempl->panels[i].data) ) { ERROR("Failed to load panel data\n"); image_free(image); return NULL; } } image->filename = strdup(filename); image->ev = safe_strdup(event); return image; } static int load_mask_cbf(struct panel_template *p, const char *filename, const char *event, int gz, int *bad, int mask_good, int mask_bad) { ERROR("Mask loading from CBF not yet supported\n"); return 1; } /* Load bad pixels for this panel from given filename/event, and merge * with (already allocated/initialised) mask "bad" */ static int load_mask_hdf5(struct panel_template *p, const char *filename, const char *event, int *bad, int mask_good, int mask_bad) { int p_w, p_h; int *mask; long unsigned int j; p_w = p->orig_max_fs - p->orig_min_fs + 1; p_h = p->orig_max_ss - p->orig_min_ss + 1; if ( load_hdf5_hyperslab(p, filename, event, (void *)&mask, H5T_NATIVE_INT, sizeof(int), 1, p->mask) ) { ERROR("Failed to load mask data\n"); free(mask); return 1; } for ( j=0; jbeam, f, image); //cbf_fill_in_clen(image->det, f); //fill_in_adu(image); return image; } static double get_value_hdf5(const char *name, const char *filename, const char *event) { hid_t dh; hid_t type; hid_t class; hid_t sh; hid_t ms; hsize_t *f_offset = NULL; hsize_t *f_count = NULL; hsize_t m_offset[1]; hsize_t m_count[1]; hsize_t msdims[1]; hsize_t size[64]; herr_t r; herr_t check; int check_pe; int dim_flag; int ndims; int i; char *subst_name = NULL; struct event *ev; hid_t fh; double val; if ( access(filename, R_OK) == -1 ) { ERROR("File does not exist or cannot be read: %s\n", filename); return NAN; } fh = H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT); if ( fh < 0 ) { ERROR("Couldn't open file: %s\n", filename); return NAN; } ev = get_event_from_event_string(event); if ( (ev == NULL) && (event != NULL) ) { ERROR("Invalid event identifier '%s'\n", event); H5Fclose(fh); return NAN; } subst_name = retrieve_full_path(ev, name); check_pe = check_path_existence(fh, subst_name); if ( check_pe == 0 ) { ERROR("No such event-based numeric field '%s'\n", subst_name); return NAN; } dh = H5Dopen2(fh, subst_name, H5P_DEFAULT); type = H5Dget_type(dh); class = H5Tget_class(type); if ( (class != H5T_FLOAT) && (class != H5T_INTEGER) ) { ERROR("Not a floating point or integer value.\n"); H5Tclose(type); H5Dclose(dh); return NAN; } /* Get the dimensionality. We have to cope with scalars expressed as * arrays with all dimensions 1, as well as zero-d arrays. */ sh = H5Dget_space(dh); ndims = H5Sget_simple_extent_ndims(sh); if ( ndims > 64 ) { ERROR("Too many dimensions for numeric value\n"); H5Tclose(type); H5Dclose(dh); return NAN; } H5Sget_simple_extent_dims(sh, size, NULL); m_offset[0] = 0; m_count[0] = 1; msdims[0] = 1; ms = H5Screate_simple(1,msdims,NULL); /* Check that the size in all dimensions is 1 * or that one of the dimensions has the same * size as the hyperplane events */ dim_flag = 0; for ( i=0; i ev->dim_entries[0]) ) { dim_flag = 1; } else { H5Tclose(type); H5Dclose(dh); return NAN; } } if ( dim_flag == 0 ) { if ( H5Dread(dh, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, &val) < 0 ) { ERROR("Couldn't read value.\n"); H5Tclose(type); H5Dclose(dh); return NAN; } } else { f_offset = malloc(ndims*sizeof(hsize_t)); f_count = malloc(ndims*sizeof(hsize_t)); for ( i=0; idim_entries[0]; f_count[i] = 1; } else { f_offset[i] = 0; f_count[i] = 0; } } check = H5Sselect_hyperslab(sh, H5S_SELECT_SET, f_offset, NULL, f_count, NULL); if ( check <0 ) { ERROR("Error selecting dataspace for float value"); free(f_offset); free(f_count); return NAN; } ms = H5Screate_simple(1,msdims,NULL); check = H5Sselect_hyperslab(ms, H5S_SELECT_SET, m_offset, NULL, m_count, NULL); if ( check < 0 ) { ERROR("Error selecting memory dataspace for float value"); free(f_offset); free(f_count); return NAN; } r = H5Dread(dh, H5T_NATIVE_DOUBLE, ms, sh, H5P_DEFAULT, &val); if ( r < 0 ) { ERROR("Couldn't read value.\n"); H5Tclose(type); H5Dclose(dh); return NAN; } } free_event(ev); free(subst_name); H5Fclose(fh); return val; } static double get_value(struct image *image, const char *from) { double val; char *rval; if ( from == NULL ) return NAN; val = strtod(from, &rval); if ( *rval == '\0' ) return val; if ( H5Fis_hdf5(image->filename) > 0 ) { return get_value_hdf5(from, image->filename, image->ev); } else if ( is_cbf_file(image->filename) > 0 ) { /* FIXME: From headers */ return NAN; } else if ( is_cbfgz_file(image->filename) ) { /* FIXME: From headers */ return NAN; } else { ERROR("Unrecognised file type: %s\n", image->filename); return NAN; } } static void create_detgeom(struct image *image, DataTemplate *dtempl) { struct detgeom *detgeom; int i; if ( dtempl == NULL ) { ERROR("NULL data template!\n"); return; } detgeom = malloc(sizeof(struct detgeom)); if ( detgeom == NULL ) return; detgeom->panels = malloc(dtempl->n_panels*sizeof(struct detgeom_panel)); if ( detgeom->panels == NULL ) return; detgeom->n_panels = dtempl->n_panels; for ( i=0; in_panels; i++ ) { detgeom->panels[i].name = safe_strdup(dtempl->panels[i].name); detgeom->panels[i].cnx = dtempl->panels[i].cnx; detgeom->panels[i].cny = dtempl->panels[i].cny; detgeom->panels[i].cnz = get_value(image, dtempl->panels[i].cnz_from) + dtempl->panels[i].cnz_offset; detgeom->panels[i].pixel_pitch = dtempl->panels[i].pixel_pitch; detgeom->panels[i].max_adu = dtempl->panels[i].max_adu; detgeom->panels[i].adu_per_photon = 1.0; /* FIXME ! */ detgeom->panels[i].w = dtempl->panels[i].orig_max_fs - dtempl->panels[i].orig_min_fs + 1; detgeom->panels[i].h = dtempl->panels[i].orig_max_ss - dtempl->panels[i].orig_min_ss + 1; detgeom->panels[i].fsx = dtempl->panels[i].fsx; detgeom->panels[i].fsy = dtempl->panels[i].fsy; detgeom->panels[i].fsz = dtempl->panels[i].fsz; detgeom->panels[i].ssx = dtempl->panels[i].ssx; detgeom->panels[i].ssy = dtempl->panels[i].ssy; detgeom->panels[i].ssz = dtempl->panels[i].ssz; } image->lambda = get_value(image, dtempl->wavelength_from); image->detgeom = detgeom; /* FIXME: spectrum */ } /* Return non-zero if pixel fs,ss on panel p is in a bad region * as specified in the geometry file (regions only, not including * masks, NaN/inf, no_index etc */ static int in_bad_region_dtempl(DataTemplate *dtempl, struct panel_template *p, double fs, double ss) { double rx, ry; double xs, ys; int i; /* Convert xs and ys, which are in fast scan/slow scan coordinates, * to x and y */ xs = fs*p->fsx + ss*p->ssx; ys = fs*p->fsy + ss*p->ssy; rx = xs + p->cnx; ry = ys + p->cny; for ( i=0; in_bad; i++ ) { struct dt_badregion *b = &dtempl->bad[i]; if ( (b->panel != NULL) && (strcmp(b->panel, p->name) != 0) ) continue; if ( b->is_fsss ) { int nfs, nss; /* fs/ss bad regions are specified according * to the original coordinates */ nfs = fs + p->orig_min_fs; nss = ss + p->orig_min_ss; if ( nfs < b->min_fs ) continue; if ( nfs > b->max_fs ) continue; if ( nss < b->min_ss ) continue; if ( nss > b->max_ss ) continue; } else { if ( rx < b->min_x ) continue; if ( rx > b->max_x ) continue; if ( ry < b->min_y ) continue; if ( ry > b->max_y ) continue; } return 1; } return 0; } struct image *image_read(DataTemplate *dtempl, const char *filename, const char *event) { struct image *image; int i; if ( dtempl == NULL ) { ERROR("NULL data template!\n"); return NULL; } if ( H5Fis_hdf5(filename) > 0 ) { image = image_read_hdf5(dtempl, filename, event); } else if ( is_cbf_file(filename) > 0 ) { image = image_read_cbf(dtempl, filename, event, 0); } else if ( is_cbfgz_file(filename) ) { image = image_read_cbf(dtempl, filename, event, 1); } else { ERROR("Unrecognised file type: %s\n", filename); return NULL; } if ( image == NULL ) return NULL; create_detgeom(image, dtempl); image->bad = malloc(dtempl->n_panels * sizeof(int *)); if ( image->bad == NULL ) { ERROR("Failed to allocate bad pixel mask\n"); return NULL; } for ( i=0; in_panels; i++ ) { const char *mask_fn; int p_w, p_h; struct panel_template *p = &dtempl->panels[i]; p_w = p->orig_max_fs - p->orig_min_fs + 1; p_h = p->orig_max_ss - p->orig_min_ss + 1; image->bad[i] = calloc(p_w*p_h, sizeof(int)); if ( image->bad[i] == NULL ) { ERROR("Failed to allocate bad pixel mask\n"); return NULL; } /* Panel marked as bad? */ if ( p->bad ) { /* NB this sets every element to 0x1111, * but that's OK - value is still 'true'. */ memset(image->bad[i], 1, p_w*p_h); } /* Add bad regions (skip if panel is bad anyway) */ if ( !p->bad ) { int fs, ss; for ( fs=0; fsdp[i][fs+ss*p_w]) || isinf(image->dp[i][fs+ss*p_w]) ) { image->bad[i][fs+ss*p_w] = 1; } } } } /* Load mask (skip if panel is bad anyway) */ if ( (!p->bad) && (p->mask != NULL) ) { if ( p->mask_file == NULL ) { mask_fn = filename; } else { mask_fn = p->mask_file; } if ( H5Fis_hdf5(mask_fn) > 0 ) { load_mask_hdf5(p, mask_fn, event, image->bad[i], dtempl->mask_good, dtempl->mask_bad); } else if ( is_cbf_file(filename) > 0 ) { load_mask_cbf(p, mask_fn, event, 0, image->bad[i], dtempl->mask_good, dtempl->mask_bad); } else if ( is_cbfgz_file(filename) ) { load_mask_cbf(p, mask_fn, event, 1, image->bad[i], dtempl->mask_good, dtempl->mask_bad); } else { ERROR("Unrecognised mask file type" " (%s)\n", filename); return NULL; } } } /* FIXME: Load saturation map */ return image; } void image_free(struct image *image) { int i, np; if ( image == NULL ) return; image_feature_list_free(image->features); free_all_crystals(image); free(image->filename); free(image->ev); if ( image->detgeom != NULL ) { np = image->detgeom->n_panels; } else if ( image->det != NULL ) { np = image->det->n_panels; } else { np = 0; } for ( i=0; idp != NULL ) free(image->dp[i]); if ( image->sat != NULL ) free(image->sat[i]); if ( image->bad != NULL ) free(image->bad[i]); } free(image->dp); free(image->sat); free(image->bad); free(image); } static int read_peak_count(hid_t fh, char *path, int line, int *num_peaks) { hid_t dh, sh, mh; hsize_t size[1]; hsize_t max_size[1]; hsize_t offset[1], count[1]; hsize_t m_offset[1], m_count[1], dimmh[1]; int tw, r; dh = H5Dopen2(fh, path, H5P_DEFAULT); if ( dh < 0 ) { ERROR("Data block %s not found.\n", path); return 1; } sh = H5Dget_space(dh); if ( sh < 0 ) { H5Dclose(dh); ERROR("Couldn't get dataspace for data.\n"); return 1; } if ( H5Sget_simple_extent_ndims(sh) != 1 ) { ERROR("Data block %s has the wrong dimensionality (%i).\n", path, H5Sget_simple_extent_ndims(sh)); H5Sclose(sh); H5Dclose(dh); return 1; } H5Sget_simple_extent_dims(sh, size, max_size); tw = size[0]; if ( line > tw-1 ) { H5Sclose(sh); H5Dclose(dh); ERROR("Data block %s does not contain data for required event.\n", path); return 1; } offset[0] = line; count[0] = 1; r = H5Sselect_hyperslab(sh, H5S_SELECT_SET, offset, NULL, count, NULL); if ( r < 0 ) { ERROR("Error selecting file dataspace " "for data block %s\n", path); H5Dclose(dh); H5Sclose(sh); return 1; } m_offset[0] = 0; m_count[0] = 1; dimmh[0] = 1; mh = H5Screate_simple(1, dimmh, NULL); r = H5Sselect_hyperslab(mh, H5S_SELECT_SET, m_offset, NULL, m_count, NULL); if ( r < 0 ) { ERROR("Error selecting memory dataspace " "for data block %s\n", path); H5Dclose(dh); H5Sclose(sh); H5Sclose(mh); return 1; } r = H5Dread(dh, H5T_NATIVE_INT, mh, sh, H5P_DEFAULT, num_peaks); if ( r < 0 ) { ERROR("Couldn't read data for block %s, line %i\n", path, line); H5Dclose(dh); H5Sclose(sh); H5Sclose(mh); return 1; } H5Dclose(dh); H5Sclose(sh); H5Sclose(mh); return 0; } static float *read_hdf5_data(hid_t fh, char *path, int line) { hid_t dh, sh, mh; hsize_t size[2]; hsize_t max_size[2]; hsize_t offset[2], count[2]; hsize_t m_offset[2], m_count[2], dimmh[2]; float *buf; int tw, r; dh = H5Dopen2(fh, path, H5P_DEFAULT); if ( dh < 0 ) { ERROR("Data block (%s) not found.\n", path); return NULL; } sh = H5Dget_space(dh); if ( sh < 0 ) { H5Dclose(dh); ERROR("Couldn't get dataspace for data.\n"); return NULL; } if ( H5Sget_simple_extent_ndims(sh) != 2 ) { ERROR("Data block %s has the wrong dimensionality (%i).\n", path, H5Sget_simple_extent_ndims(sh)); H5Sclose(sh); H5Dclose(dh); return NULL; } H5Sget_simple_extent_dims(sh, size, max_size); tw = size[0]; if ( line> tw-1 ) { H5Sclose(sh); H5Dclose(dh); ERROR("Data block %s does not contain data for required event.\n", path); return NULL; } offset[0] = line; offset[1] = 0; count[0] = 1; count[1] = size[1]; r = H5Sselect_hyperslab(sh, H5S_SELECT_SET, offset, NULL, count, NULL); if ( r < 0 ) { ERROR("Error selecting file dataspace " "for data block %s\n", path); H5Dclose(dh); H5Sclose(sh); return NULL; } m_offset[0] = 0; m_offset[1] = 0; m_count[0] = 1; m_count[1] = size[1]; dimmh[0] = 1; dimmh[1] = size[1]; mh = H5Screate_simple(2, dimmh, NULL); r = H5Sselect_hyperslab(mh, H5S_SELECT_SET, m_offset, NULL, m_count, NULL); if ( r < 0 ) { ERROR("Error selecting memory dataspace " "for data block %s\n", path); H5Dclose(dh); H5Sclose(sh); H5Sclose(mh); return NULL; } buf = malloc(size[1]*sizeof(float)); if ( buf == NULL ) return NULL; r = H5Dread(dh, H5T_NATIVE_FLOAT, mh, sh, H5P_DEFAULT, buf); if ( r < 0 ) { ERROR("Couldn't read data for block %s, line %i\n", path, line); H5Dclose(dh); H5Sclose(sh); H5Sclose(mh); return NULL; } H5Dclose(dh); H5Sclose(sh); H5Sclose(mh); return buf; } ImageFeatureList *get_peaks_cxi_dtempl(const DataTemplate *dtempl, const char *filename, const char *event, int half_pixel_shift) { ImageFeatureList *features; hid_t fh; char path_n[1024]; char path_x[1024]; char path_y[1024]; char path_i[1024]; int r; int pk; struct event *ev; char *subst_name; int line = 0; int num_peaks; float *buf_x; float *buf_y; float *buf_i; double peak_offset = half_pixel_shift ? 0.5 : 0.0; if ( access(filename, R_OK) == -1 ) { ERROR("File does not exist or cannot be read: %s\n", filename); return NULL; } fh = H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT); if ( fh < 0 ) { ERROR("Couldn't open file: %s\n", filename); return NULL; } ev = get_event_from_event_string(event); if ( (ev == NULL) && (event != NULL) ) { ERROR("Invalid event identifier '%s'\n", event); H5Fclose(fh); return NULL; } if ( ev->dim_entries == NULL ) { ERROR("CXI format peak list format selected," "but file has no event structure"); return NULL; } line = ev->dim_entries[0]; subst_name = retrieve_full_path(ev, dtempl->peak_list); free_event(ev); if ( subst_name == NULL ) { ERROR("Invalid peak path %s\n", subst_name); H5Fclose(fh); return NULL; } if ( check_path_existence(fh, subst_name) == 0 ) { ERROR("Peak path not found: %s:%s", filename, subst_name); free(subst_name); H5Fclose(fh); return NULL; } snprintf(path_n, 1024, "%s/nPeaks", subst_name); snprintf(path_x, 1024, "%s/peakXPosRaw", subst_name); snprintf(path_y, 1024, "%s/peakYPosRaw", subst_name); snprintf(path_i, 1024, "%s/peakTotalIntensity", subst_name); r = read_peak_count(fh, path_n, line, &num_peaks); if ( r != 0 ) return NULL; buf_x = read_hdf5_data(fh, path_x, line); if ( r != 0 ) return NULL; buf_y = read_hdf5_data(fh, path_y, line); if ( r != 0 ) return NULL; buf_i = read_hdf5_data(fh, path_i, line); if ( r != 0 ) return NULL; features = image_feature_list_new(); for ( pk=0; pkpeak_list); free_event(ev); if ( subst_name == NULL ) { ERROR("Invalid peak path %s\n", subst_name); free_event(ev); H5Fclose(fh); return NULL; } if ( check_path_existence(fh, subst_name) == 0 ) { ERROR("Peak path not found: %s:%s", filename, subst_name); free(subst_name); H5Fclose(fh); return NULL; } dh = H5Dopen2(fh, subst_name, H5P_DEFAULT); free(subst_name); if ( dh < 0 ) { ERROR("Peak list (%s) not found.\n", subst_name); H5Fclose(fh); return NULL; } sh = H5Dget_space(dh); if ( sh < 0 ) { ERROR("Couldn't get dataspace for peak list.\n"); H5Dclose(dh); H5Fclose(fh); return NULL; } if ( H5Sget_simple_extent_ndims(sh) != 2 ) { ERROR("Peak list has the wrong dimensionality (%i).\n", H5Sget_simple_extent_ndims(sh)); H5Sclose(sh); H5Dclose(dh); H5Fclose(fh); return NULL; } H5Sget_simple_extent_dims(sh, size, max_size); H5Sclose(sh); tw = size[1]; if ( (tw != 3) && (tw != 4) ) { ERROR("Peak list has the wrong dimensions.\n"); H5Dclose(dh); H5Fclose(fh); return NULL; } buf = malloc(sizeof(float)*size[0]*size[1]); if ( buf == NULL ) { ERROR("Couldn't reserve memory for the peak list.\n"); H5Dclose(dh); H5Fclose(fh); return NULL; } r = H5Dread(dh, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf); if ( r < 0 ) { ERROR("Couldn't read peak list.\n"); H5Dclose(dh); H5Fclose(fh); return NULL; } features = image_feature_list_new(); if ( features == NULL ) { ERROR("Failed to allocate peak list\n"); H5Dclose(dh); H5Fclose(fh); return NULL; } for ( i=0; i 0 ) { const char *ext; ext = filename_extension(filename, NULL); if ( strcmp(ext, ".cxi") == 0 ) { return get_peaks_cxi_dtempl(dtempl, filename, event, half_pixel_shift); } else { return get_peaks_hdf5_dtempl(dtempl, filename, event, half_pixel_shift); } } else { ERROR("Peak lists can only be read from HDF5 files\n"); return NULL; } } struct parse_params { hid_t fh; int path_dim; const char *path; struct event *curr_event; struct event_list *ev_list; int top_level; }; static herr_t parse_file_event_structure(hid_t loc_id, char *name, const H5L_info_t *info, struct parse_params *pp) { char *substituted_path; char *ph_loc; char *truncated_path; htri_t check; herr_t herrt_iterate, herrt_info; struct H5O_info_t object_info; if ( !pp->top_level ) { int fail_push; fail_push = push_path_entry_to_event(pp->curr_event, name); if ( fail_push ) { return -1; } substituted_path = event_path_placeholder_subst(name, pp->path); } else { substituted_path = strdup(pp->path); } if ( pp->top_level == 1 ) { pp->top_level = 0; } truncated_path = strdup(substituted_path); ph_loc = strstr(substituted_path,"%"); if ( ph_loc != NULL) { truncated_path[ph_loc-substituted_path] = '\0'; } herrt_iterate = 0; herrt_info = 0; check = check_path_existence(pp->fh, truncated_path); if ( check == 0 ) { pop_path_entry_from_event(pp->curr_event); return 0; } else { herrt_info = H5Oget_info_by_name(pp->fh, truncated_path, &object_info, H5P_DEFAULT); if ( herrt_info < 0 ) { free(truncated_path); free(substituted_path); return -1; } if ( pp->curr_event->path_length == pp->path_dim && object_info.type == H5O_TYPE_DATASET ) { int fail_append; fail_append = append_event_to_event_list(pp->ev_list, pp->curr_event); if ( fail_append ) { free(truncated_path); free(substituted_path); return -1; } pop_path_entry_from_event(pp->curr_event); return 0; } else { pp->path = substituted_path; if ( object_info.type == H5O_TYPE_GROUP ) { herrt_iterate = H5Literate_by_name(pp->fh, truncated_path, H5_INDEX_NAME, H5_ITER_NATIVE, NULL, (H5L_iterate_t)parse_file_event_structure, (void *)pp, H5P_DEFAULT); } } } pop_path_entry_from_event(pp->curr_event); free(truncated_path); free(substituted_path); return herrt_iterate; } static int fill_paths(hid_t fh, const DataTemplate *dtempl, int pi, struct event_list *master_el) { struct parse_params pparams; struct event *empty_event; struct event_list *panel_ev_list; int ei; int check; empty_event = initialize_event(); panel_ev_list = initialize_event_list(); if ( (empty_event == NULL) || (panel_ev_list == NULL) ) { ERROR("Failed to allocate memory for event list.\n"); return 1; } pparams.path = dtempl->panels[pi].data; pparams.fh = fh; pparams.path_dim = dtempl->path_dim; pparams.curr_event = empty_event; pparams.top_level = 1; pparams.ev_list = panel_ev_list; check = parse_file_event_structure(fh, NULL, NULL, &pparams); if ( check < 0 ) { free_event(empty_event); free_event_list(panel_ev_list); return 1; } for ( ei=0; einum_events; ei++ ) { int fail_add; fail_add = add_non_existing_event_to_event_list(master_el, panel_ev_list->events[ei]); if ( fail_add ) { free_event(empty_event); free_event_list(panel_ev_list); return 1; } } free_event(empty_event); free_event_list(panel_ev_list); return 0; } static int check_dims(hid_t fh, struct panel_template *p, struct event *ev, struct event_list *events, int *global_path_dim) { char *full_panel_path; hid_t dh; hid_t sh; int dims; hsize_t *size; hsize_t *max_size; int hsdi; int panel_path_dim = 0; struct dim_structure *panel_dim_structure; /* Get the full path for this panel in this event */ full_panel_path = retrieve_full_path(ev, p->data); dh = H5Dopen2(fh, full_panel_path, H5P_DEFAULT); if ( dh < 0 ) { ERROR("Error opening '%s'\n", full_panel_path); ERROR("Failed to enumerate events. " "Check your geometry file.\n"); return 1; } sh = H5Dget_space(dh); dims = H5Sget_simple_extent_ndims(sh); size = malloc(dims*sizeof(hsize_t)); max_size = malloc(dims*sizeof(hsize_t)); if ( (size==NULL) || (max_size==NULL) ) { ERROR("Failed to allocate memory for dimensions\n"); return 1; } dims = H5Sget_simple_extent_dims(sh, size, max_size); panel_dim_structure = p->dim_structure; for ( hsdi=0; hsdinum_dims; hsdi++ ) { if ( panel_dim_structure->dims[hsdi] == HYSL_PLACEHOLDER ) { panel_path_dim = size[hsdi]; break; } } if ( *global_path_dim == -1 ) { *global_path_dim = panel_path_dim; } else if ( panel_path_dim != *global_path_dim ) { ERROR("All panels must have the same number of frames\n"); ERROR("Panel %s has %i frames in one dimension, but the first " "panel has %i.\n", p->name, panel_path_dim, *global_path_dim); free(size); free(max_size); return 1; } H5Sclose(sh); H5Dclose(dh); return 0; } struct event_list *image_expand_frames(const DataTemplate *dtempl, const char *filename) { struct event_list *master_el; hid_t fh; fh = H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT); if ( fh < 0 ) { ERROR("Couldn't open file '%s'\n", filename); return NULL; } master_el = initialize_event_list(); if ( master_el == NULL ) { ERROR("Failed to allocate event list.\n"); H5Fclose(fh); return NULL; } /* First expand any placeholders in the HDF5 paths */ if ( dtempl->path_dim != 0 ) { int pi; for ( pi=0; pin_panels; pi++ ) { if ( fill_paths(fh, dtempl, pi, master_el) ) { ERROR("Failed to enumerate paths.\n"); H5Fclose(fh); return NULL; } } } /* Now enumerate the placeholder dimensions */ if ( dtempl->dim_dim > 0 ) { struct event_list *master_el_with_dims; int evi; /* If there were no HDF5 path placeholders, add a dummy event */ if ( master_el->num_events == 0 ) { struct event *empty_ev; empty_ev = initialize_event(); append_event_to_event_list(master_el, empty_ev); free(empty_ev); } master_el_with_dims = initialize_event_list(); /* For each event so far, expand the dimensions */ for ( evi=0; evinum_events; evi++ ) { int pi; int global_path_dim = -1; int mlwd; /* Check the dimensionality of each panel */ for ( pi=0; pin_panels; pi++ ) { if ( check_dims(fh, &dtempl->panels[pi], master_el->events[evi], master_el_with_dims, &global_path_dim) ) { ERROR("Failed to enumerate dims.\n"); H5Fclose(fh); return NULL; } } /* Add this dimensionality to all events */ for ( mlwd=0; mlwdevents[evi]); push_dim_entry_to_event(mlwd_ev, mlwd); append_event_to_event_list(master_el_with_dims, mlwd_ev); free_event(mlwd_ev); } } free_event_list(master_el); H5Fclose(fh); return master_el_with_dims; } else { H5Fclose(fh); return master_el; } }