/* * index.c * * Perform indexing (somehow) * * Copyright © 2012-2021 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * Copyright © 2012 Lorenzo Galli * * Authors: * 2010-2021 Thomas White * 2010-2011 Richard Kirian * 2012 Lorenzo Galli * 2013 Cornelius Gati * 2015 Kenneth Beyerlein * 2014 Takanori Nakane * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #include #include #include #include #include #include #include #include #include "image.h" #include "utils.h" #include "peaks.h" #include "index.h" #include "geometry.h" #include "cell-utils.h" #include "predict-refine.h" #include "profile.h" #include "indexers/dirax.h" #include "indexers/asdf.h" #include "indexers/mosflm.h" #include "indexers/xds.h" #include "indexers/felix.h" #include "indexers/taketwo.h" #include "indexers/xgandalf.h" #include "indexers/pinkindexer.h" #include "indexers/fromfile.h" #include "uthash.h" /** \file index.h */ struct _indexingprivate { IndexingFlags flags; UnitCell *target_cell; double tolerance[6]; double wavelength_estimate; double clen_estimate; int n_threads; int n_methods; IndexingMethod *methods; void **engine_private; }; static const char *onoff(int a) { if ( a ) return "on"; return "off"; } /* Definition and function definition duplicated here (from im-sandbox.{c,h}) * because libcrystfel code cannot depend on core CrystFEL programs. * * Must match the value and definition in im-sandbox.h */ #define MAX_TASK_LEN (32) static void set_last_task(char *lt, const char *task) { if ( lt == NULL ) return; assert(strlen(task) < MAX_TASK_LEN-1); strcpy(lt, task); } static void show_indexing_flags(IndexingFlags flags) { STATUS("Indexing parameters:\n"); STATUS(" Check unit cell parameters: %s\n", onoff(flags & INDEXING_CHECK_CELL)); STATUS(" Check peak alignment: %s\n", onoff(flags & INDEXING_CHECK_PEAKS)); STATUS(" Refine indexing solutions: %s\n", onoff(flags & INDEXING_REFINE)); STATUS(" Multi-lattice indexing (\"delete and retry\"): %s\n", onoff(flags & INDEXING_MULTI)); STATUS(" Retry indexing: %s\n", onoff(flags & INDEXING_RETRY)); } char *base_indexer_str(IndexingMethod indm) { char *str; str = cfmalloc(256); if ( str == NULL ) { ERROR("Failed to allocate string.\n"); return NULL; } str[0] = '\0'; switch ( indm & INDEXING_METHOD_MASK ) { case INDEXING_NONE : strcpy(str, "none"); return str; case INDEXING_DIRAX : strcpy(str, "dirax"); break; case INDEXING_ASDF : strcpy(str, "asdf"); break; case INDEXING_MOSFLM : strcpy(str, "mosflm"); break; case INDEXING_FELIX : strcpy(str, "felix"); break; case INDEXING_XDS : strcpy(str, "xds"); break; case INDEXING_TAKETWO : strcpy(str, "taketwo"); break; case INDEXING_XGANDALF: strcpy(str, "xgandalf"); break; case INDEXING_PINKINDEXER: strcpy(str, "pinkIndexer"); break; case INDEXING_SIMULATION : strcpy(str, "simulation"); break; case INDEXING_FILE : strcpy(str, "file"); break; default : strcpy(str, "(unknown)"); break; } return str; } static char *friendly_indexer_name(IndexingMethod m) { char *base = base_indexer_str(m & INDEXING_METHOD_MASK); if ( (m & INDEXING_USE_CELL_PARAMETERS) && (m & INDEXING_USE_LATTICE_TYPE) ) { strcat(base, " using cell parameters and Bravais lattice type " "as prior information"); } else if ( m & INDEXING_USE_CELL_PARAMETERS ) { strcat(base, " using cell parameters as prior information"); } else if ( m & INDEXING_USE_LATTICE_TYPE ) { strcat(base, " using Bravais lattice type as prior information"); } else { strcat(base, " - no prior information"); } return base; } static void *prepare_method(IndexingMethod *m, UnitCell *cell, double wavelength_estimate, double clen_estimate, struct xgandalf_options *xgandalf_opts, struct pinkindexer_options* pinkIndexer_opts, struct felix_options *felix_opts, struct taketwo_options *taketwo_opts, struct fromfile_options *fromfile_opts, struct asdf_options *asdf_opts) { char *str; IndexingMethod in = *m; void *priv = NULL; switch ( *m & INDEXING_METHOD_MASK ) { case INDEXING_NONE : priv = "none"; break; case INDEXING_DIRAX : priv = dirax_prepare(m, cell); break; case INDEXING_ASDF : priv = asdf_prepare(m, cell, asdf_opts); break; case INDEXING_MOSFLM : priv = mosflm_prepare(m, cell); break; case INDEXING_XDS : priv = xds_prepare(m, cell); break; case INDEXING_FILE : priv = fromfile_prepare(m, fromfile_opts); break; case INDEXING_FELIX : priv = felix_prepare(m, cell, felix_opts); break; case INDEXING_TAKETWO : priv = taketwo_prepare(m, taketwo_opts, cell); break; case INDEXING_XGANDALF : priv = xgandalf_prepare(m, cell, xgandalf_opts); break; case INDEXING_PINKINDEXER : priv = pinkIndexer_prepare(m, cell, pinkIndexer_opts, wavelength_estimate, clen_estimate); break; default : ERROR("Don't know how to prepare indexing method %i\n", *m); break; } str = indexer_str(*m); if ( priv == NULL ) { ERROR("Failed to prepare indexing method %s\n", str); cffree(str); return NULL; } cffree(str); if ( in != *m ) { ERROR("Note: flags were altered to take into account " "the information provided and/or the limitations " "of the indexing method.\nPlease check the " "methods listed above carefully.\n"); } return priv; } IndexingMethod *parse_indexing_methods(const char *method_list, int *pn) { int i, n; char **method_strings; IndexingMethod *methods; n = assplode(method_list, ",", &method_strings, ASSPLODE_NONE); methods = cfmalloc(n * sizeof(IndexingMethod)); if ( methods == NULL ) { ERROR("Failed to allocate indexing method list\n"); return NULL; } for ( i=0; i no cell checking, no prior cell */ if ( !cell_has_parameters(cell) ) { int warn = 0; if ( flags & INDEXING_CHECK_CELL ) { ERROR("WARNING: Forcing --no-check-cell because " "reference unit cell parameters were not " "given.\n"); flags &= ~INDEXING_CHECK_CELL; } for ( i=0; i no prior lattice type */ if ( cell == NULL ) { int warn = 0; for ( i=0; iengine_private = cfmalloc((n+1) * sizeof(void *)); for ( i=0; iengine_private[i] = prepare_method(&methods[i], cell, wavelength_estimate, clen_estimate, xgandalf_opts, pinkIndexer_opts, felix_opts, ttopts, fromfile_opts, asdf_opts); if ( ipriv->engine_private[i] == NULL ) { cffree(ipriv->engine_private); return NULL; } for ( j=0; jengine_private); return NULL; } } } ipriv->methods = methods; ipriv->n_methods = n; ipriv->flags = flags; ipriv->wavelength_estimate = wavelength_estimate; ipriv->clen_estimate = clen_estimate; ipriv->n_threads = n_threads; if ( cell != NULL ) { ipriv->target_cell = cell_new_from_cell(cell); } else { ipriv->target_cell = NULL; } for ( i=0; i<6; i++ ) ipriv->tolerance[i] = tols[i]; STATUS("List of indexing methods:\n"); for ( i=0; in_methods; return p->methods; } void cleanup_indexing(IndexingPrivate *ipriv) { int n; if ( ipriv == NULL ) return; /* Nothing to do */ for ( n=0; nn_methods; n++ ) { switch ( ipriv->methods[n] & INDEXING_METHOD_MASK ) { case INDEXING_NONE : break; case INDEXING_DIRAX : dirax_cleanup(ipriv->engine_private[n]); break; case INDEXING_ASDF : asdf_cleanup(ipriv->engine_private[n]); break; case INDEXING_MOSFLM : mosflm_cleanup(ipriv->engine_private[n]); break; case INDEXING_XDS : xds_cleanup(ipriv->engine_private[n]); break; case INDEXING_FELIX : felix_cleanup(ipriv->engine_private[n]); break; case INDEXING_FILE : fromfile_cleanup(ipriv->engine_private[n]); break; case INDEXING_TAKETWO : taketwo_cleanup(ipriv->engine_private[n]); break; case INDEXING_XGANDALF : xgandalf_cleanup(ipriv->engine_private[n]); break; case INDEXING_PINKINDEXER : pinkIndexer_cleanup(ipriv->engine_private[n]); break; default : ERROR("Don't know how to clean up indexing method %i\n", ipriv->methods[n]); break; } } cffree(ipriv->methods); cffree(ipriv->engine_private); cell_free(ipriv->target_cell); cffree(ipriv); } /* Return 0 for cell OK, 1 for cell incorrect */ static int check_cell(IndexingFlags flags, Crystal *cr, UnitCell *target, double *tolerance) { UnitCell *out; RationalMatrix *rm; /* Check at all? */ if ( !(flags & INDEXING_CHECK_CELL) ) return 0; if ( !right_handed(target) ) { STATUS("WARNING: reference cell is left handed\n"); } if ( !right_handed(crystal_get_cell(cr)) ) { STATUS("WARNING: unmatched cell is left handed\n"); } out = compare_reindexed_cell_parameters(crystal_get_cell(cr), target, tolerance, &rm); if ( out != NULL ) { /* Replace crystal's cell with new one */ crystal_set_cell(cr, out); rtnl_mtx_free(rm); if ( !right_handed(out) ) STATUS("WARNING: left handed\n"); /* Copy the target cell's lattice type and unique axis * onto the crystal's cell. The cell from compare_r_c_p doesn't * (yet) have the right values, because cell_transform_rational * don't know how to determine them. The cell should be close * to the target, of course, so this is less bad than leaving * the lattice type as triclinic. */ cell_set_lattice_type(out, cell_get_lattice_type(target)); cell_set_unique_axis(out, cell_get_unique_axis(target)); /* Correct P to R centering, for the same reason */ if ( (cell_get_centering(target) == 'R') && (cell_get_centering(out) == 'P') ) { cell_set_centering(out, 'R'); } return 0; } return 1; } #ifdef MEASURE_INDEX_TIME static float real_time() { struct timespec tp; clock_gettime(CLOCK_MONOTONIC_RAW, &tp); return tp.tv_sec + tp.tv_nsec*1e-9; } #endif /* Return non-zero for "success" */ static int try_indexer(struct image *image, IndexingMethod indm, IndexingPrivate *ipriv, void *mpriv, char *last_task, Mille *mille, int max_mille_level) { int i, r; int n_bad = 0; int n_before = image->n_crystals; #ifdef MEASURE_INDEX_TIME float time_start; float time_end; time_start = real_time(); #endif switch ( indm & INDEXING_METHOD_MASK ) { case INDEXING_NONE : return 0; case INDEXING_DIRAX : set_last_task(last_task, "indexing:dirax"); profile_start("dirax"); r = run_dirax(image, mpriv); profile_end("dirax"); break; case INDEXING_ASDF : set_last_task(last_task, "indexing:asdf"); profile_start("asdf"); r = run_asdf(image, mpriv); profile_end("asdf"); break; case INDEXING_MOSFLM : set_last_task(last_task, "indexing:mosflm"); profile_start("mosflm"); r = run_mosflm(image, mpriv); profile_end("mosflm"); break; case INDEXING_XDS : set_last_task(last_task, "indexing:xds"); profile_start("xds"); r = run_xds(image, mpriv); profile_end("xds"); break; case INDEXING_FILE : set_last_task(last_task, "indexing:file"); profile_start("fromfile"); r = fromfile_index(image, mpriv); profile_end("fromfile"); break; case INDEXING_FELIX : set_last_task(last_task, "indexing:felix"); profile_start("felix"); r = felix_index(image, mpriv); profile_end("felix"); break; case INDEXING_TAKETWO : set_last_task(last_task, "indexing:taketwo"); profile_start("taketwo"); r = taketwo_index(image, mpriv); profile_end("taketwo"); break; case INDEXING_PINKINDEXER : set_last_task(last_task, "indexing:pinkindexer"); profile_start("pinkindexer"); r = run_pinkIndexer(image, mpriv, ipriv->n_threads); profile_end("pinkindexer"); break; case INDEXING_XGANDALF : set_last_task(last_task, "indexing:xgandalf"); profile_start("xgandalf"); r = run_xgandalf(image, mpriv); profile_end("xgandalf"); break; default : ERROR("Unrecognised indexing method: %i\n", indm); return 0; } set_last_task(last_task, "indexing:finalisation"); #ifdef MEASURE_INDEX_TIME time_end = real_time(); #endif /* Stop a really difficult to debug situation in its tracks */ if ( image->n_crystals - n_before != r ) { ERROR("Whoops, indexer didn't return the right number " "of crystals!\n"); exit(1); } /* For all the crystals found this time ... */ for ( i=0; in_crystals - i - 1; /* ... starting at the end of the (complete) list ... */ Crystal *cr = image->crystals[this_crystal].cr; crystal_set_profile_radius(cr, 0.02e9); crystal_set_mosaicity(cr, 0.0); /* Pre-refinement unit cell check if requested */ profile_start("prerefine-cell-check"); r = check_cell(ipriv->flags, cr, ipriv->target_cell, ipriv->tolerance); profile_end("prerefine-cell-check"); if ( r ) { crystal_set_user_flag(cr, 1); continue; } /* Prediction refinement if requested */ if ( ipriv->flags & INDEXING_REFINE ) { int r; profile_start("refine"); r = refine_prediction(image, cr, mille, max_mille_level); profile_end("refine"); if ( r ) { crystal_set_user_flag(cr, 1); continue; } } /* After refinement unit cell check if requested */ profile_start("postrefine-cell-check"); if ( (ipriv->flags & INDEXING_CHECK_CELL) && !compare_cell_parameters(crystal_get_cell(cr), ipriv->target_cell, ipriv->tolerance) ) { profile_end("postrefine-cell-check"); crystal_set_user_flag(cr, 1); continue; } profile_end("postrefine-cell-check"); /* Peak alignment check if requested */ if ( ipriv->flags & INDEXING_CHECK_PEAKS ) { int mm = ipriv->flags & INDEXING_MULTI; if ( !indexing_peak_check(image, image->features, &cr, 1, mm) ) { crystal_set_user_flag(cr, 1); continue; } } /* Don't do similarity check if this crystal is bad */ if ( crystal_get_user_flag(cr) ) continue; /* Check if cell is too similar to existing ones */ profile_start("cell-compare-to-others"); for ( j=0; jcrystals[j].cr; /* 'tols' is in frac (not %) and radians */ const double tols[] = {0.1, 0.1, 0.1, deg2rad(5.0), deg2rad(5.0), deg2rad(5.0)}; /* Don't do similarity check against bad crystals */ if ( crystal_get_user_flag(that_cr) ) continue; if ( compare_permuted_cell_parameters_and_orientation(crystal_get_cell(cr), crystal_get_cell(that_cr), tols, NULL) ) { crystal_set_user_flag(cr, 1); } } profile_end("cell-compare-to-others"); } n_bad = remove_flagged_crystals(image); assert(r >= n_bad); #ifdef MEASURE_INDEX_TIME printf("%s took %f s, %i crystals found of which %i accepted. %s %s\n", indexer_str(indm & INDEXING_METHOD_MASK), time_end - time_start, r, r - n_bad, image->filename, image->ev); fflush(stdout); #endif return r - n_bad; } static int delete_weakest_peaks(ImageFeatureList *peaks) { int i; int np, ndel, n; np = image_feature_count(peaks); n = 0; for ( i=0; in-ndel-1; i-- ) { image_remove_feature(peaks, i); } return 0; } static int delete_explained_peaks(struct image *image, Crystal *cr) { double ax, ay, az; double bx, by, bz; double cx, cy, cz; double dx, dy; const double min_dist = 0.25; int i, nspots = 0, nindexed = 0; /* Round towards nearest */ fesetround(1); /* Cell basis vectors for this image */ cell_get_cartesian(crystal_get_cell(cr), &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); crystal_get_det_shift(cr, &dx, &dy); /* Loop over peaks, checking proximity to nearest reflection */ for ( i=0; ifeatures); i++ ) { struct imagefeature *f; double q[3]; double h, k, l, hd, kd, ld; double dsq; f = image_get_feature(image->features, i); if ( f == NULL ) continue; nspots++; /* Reciprocal space position of found peak */ detgeom_transform_coords(&image->detgeom->panels[f->pn], f->fs, f->ss, image->lambda, dx, dy, q); /* Decimal and fractional Miller indices of nearest * reciprocal lattice point */ hd = q[0] * ax + q[1] * ay + q[2] * az; kd = q[0] * bx + q[1] * by + q[2] * bz; ld = q[0] * cx + q[1] * cy + q[2] * cz; h = lrint(hd); k = lrint(kd); l = lrint(ld); /* Check distance */ dsq = pow(h-hd, 2.0) + pow(k-kd, 2.0) + pow(l-ld, 2.0); if ( sqrt(dsq) < min_dist ) { image_remove_feature(image->features, i); nindexed++; } } /* Return TRUE if not enough peaks to continue */ return (nspots - nindexed) < 5; } /* indm = the current indexing method * r = the result from try_indexer() on this method just now * image = the image structure * * Returns false for "try again", true for "no, stop now" */ static int finished_retry(IndexingMethod indm, IndexingFlags flags, int r, struct image *image) { if ( r == 0 ) { /* Indexing failed on the previous attempt. Maybe try again * after poking the peak list a bit */ if ( flags & INDEXING_RETRY ) { /* Retry with fewer peaks */ return delete_weakest_peaks(image->features); } else { /* Indexing failed, opted not to try again */ return 1; } } else { /* Indexing succeeded on previous attempt. Maybe try again * after deleting the explained peaks */ if ( flags & INDEXING_MULTI ) { /* Remove "used" spots and try for another lattice */ Crystal *cr; cr = image->crystals[image->n_crystals-1].cr; return delete_explained_peaks(image, cr); } else { return 1; } } } void index_pattern(struct image *image, IndexingPrivate *ipriv) { index_pattern_4(image, ipriv, NULL, NULL, NULL, 0); } void index_pattern_2(struct image *image, IndexingPrivate *ipriv, int *ping) { index_pattern_4(image, ipriv, ping, NULL, NULL, 0); } void index_pattern_3(struct image *image, IndexingPrivate *ipriv, int *ping, char *last_task) { index_pattern_4(image, ipriv, ping, last_task, NULL, 0); } void index_pattern_4(struct image *image, IndexingPrivate *ipriv, int *ping, char *last_task, Mille *mille, int max_mille_level) { int n = 0; ImageFeatureList *orig; if ( ipriv == NULL ) return; free_all_crystals(image); /* No peaks? */ if ( image->features == NULL ) return; if ( image_feature_count(image->features) == 0 ) return; if ( !isnan(ipriv->wavelength_estimate) ) { if ( !within_tolerance(image->lambda, ipriv->wavelength_estimate, 10.0) ) { ERROR("WARNING: Wavelength for %s %s (%e) differs by " "more than 10%% from estimated value (%e)\n", image->filename, image->ev, image->lambda, ipriv->wavelength_estimate); } } if ( !isnan(ipriv->clen_estimate) ) { double mean_clen = detgeom_mean_camera_length(image->detgeom); if ( !within_tolerance(mean_clen, ipriv->clen_estimate, 10.0) ) { ERROR("WARNING: Camera length for %s %s (%e) differs by " "more than 10%% from estimated value (%e)\n", image->filename, image->ev, mean_clen, ipriv->clen_estimate); } } orig = image->features; for ( n=0; nn_methods; n++ ) { int done = 0; int ntry = 0; int success = 0; if ( ipriv->methods[0] != INDEXING_FILE ) { image->features = sort_peaks(orig); } do { int r; r = try_indexer(image, ipriv->methods[n], ipriv, ipriv->engine_private[n], last_task, mille, max_mille_level); success += r; ntry++; done = finished_retry(ipriv->methods[n], ipriv->flags, r, image); if ( ntry > 5 ) done = 1; if ( ping != NULL ) (*ping)++; } while ( !done ); if ( ipriv->methods[0] != INDEXING_FILE ) { image_feature_list_free(image->features); } /* Stop now if the pattern is indexed (don't try again for more * crystals with a different indexing method) */ if ( success ) { image->n_indexing_tries = ntry; break; } } if ( n < ipriv->n_methods ) { image->indexed_by = ipriv->methods[n]; } else { image->indexed_by = INDEXING_NONE; } image->features = orig; } /* Set the indexer flags for "use no lattice type information" */ static IndexingMethod set_nolattice(IndexingMethod a) { return a & ~INDEXING_USE_LATTICE_TYPE; } /* Set the indexer flags for "use lattice type information" */ static IndexingMethod set_lattice(IndexingMethod a) { return a | INDEXING_USE_LATTICE_TYPE; } /* Set the indexer flags for "use no unit cell parameters" */ static IndexingMethod set_nocellparams(IndexingMethod a) { return a & ~INDEXING_USE_CELL_PARAMETERS; } /* Set the indexer flags for "use unit cell parameters" */ static IndexingMethod set_cellparams(IndexingMethod a) { return a | INDEXING_USE_CELL_PARAMETERS; } char *indexer_str(IndexingMethod indm) { char *str = base_indexer_str(indm); if ( (indm & INDEXING_METHOD_MASK) == INDEXING_SIMULATION ) return str; if ( (indm & INDEXING_METHOD_MASK) == INDEXING_NONE ) return str; if ( indm & INDEXING_USE_LATTICE_TYPE ) { strcat(str, "-latt"); } else { strcat(str, "-nolatt"); } if ( indm & INDEXING_USE_CELL_PARAMETERS ) { strcat(str, "-cell"); } else { strcat(str, "-nocell"); } return str; } static IndexingMethod warn_method(const char *str) { ERROR("Indexing method must contain exactly one engine name: '%s'\n", str); return INDEXING_ERROR; } IndexingMethod get_indm_from_string_2(const char *str, int *err) { int n, i; char **bits; IndexingMethod method = INDEXING_NONE; int have_method = 0; if ( err != NULL ) *err = 0; n = assplode(str, "-", &bits, ASSPLODE_NONE); for ( i=0; i