/* * pinkindexer.c * * Interface to PinkIndexer * * Copyright © 2017-2020 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2017-2019 Yaroslav Gevorkov * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #include "pinkindexer.h" #ifdef HAVE_PINKINDEXER #include #include "utils.h" #include "cell-utils.h" #include "peaks.h" #include "pinkIndexer/adaptions/crystfel/Lattice.h" #include "pinkIndexer/adaptions/crystfel/ExperimentSettings.h" #include "pinkIndexer/adaptions/crystfel/PinkIndexer.h" #define MAX_MULTI_LATTICE_COUNT 8 struct pinkIndexer_private_data { PinkIndexer *pinkIndexer; reciprocalPeaks_1_per_A_t reciprocalPeaks_1_per_A; float *intensities; IndexingMethod indm; UnitCell *cellTemplate; int threadCount; int multi; int min_peaks; int no_check_indexed; IntegerMatrix *centeringTransformation; LatticeTransform_t latticeReductionTransform; }; //static void reduceCell(UnitCell* cell, LatticeTransform_t* appliedReductionTransform); //static void restoreCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform); static void reduceReciprocalCell(UnitCell* cell, LatticeTransform_t* appliedReductionTransform); static void restoreReciprocalCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform); static void makeRightHanded(UnitCell* cell); static void update_detector(struct detector *det, double xoffs, double yoffs); int run_pinkIndexer(struct image *image, void *ipriv) { struct pinkIndexer_private_data* pinkIndexer_private_data = (struct pinkIndexer_private_data*) ipriv; reciprocalPeaks_1_per_A_t* reciprocalPeaks_1_per_A = &(pinkIndexer_private_data->reciprocalPeaks_1_per_A); float *intensities = pinkIndexer_private_data->intensities; int peakCountMax = image_feature_count(image->features); if (peakCountMax < 5) { int goodLatticesCount = 0; return goodLatticesCount; } reciprocalPeaks_1_per_A->peakCount = 0; for (int i = 0; i < peakCountMax && i < MAX_PEAK_COUNT_FOR_INDEXER; i++) { struct imagefeature *f; f = image_get_feature(image->features, i); if (f == NULL) { continue; } reciprocalPeaks_1_per_A->coordinates_x[reciprocalPeaks_1_per_A->peakCount] = f->rz * 1e-10; reciprocalPeaks_1_per_A->coordinates_y[reciprocalPeaks_1_per_A->peakCount] = f->rx * 1e-10; reciprocalPeaks_1_per_A->coordinates_z[reciprocalPeaks_1_per_A->peakCount] = f->ry * 1e-10; intensities[reciprocalPeaks_1_per_A->peakCount] = (float) (f->intensity); reciprocalPeaks_1_per_A->peakCount++; } int indexed = 0; Lattice_t indexedLattice[MAX_MULTI_LATTICE_COUNT]; float center_shift[MAX_MULTI_LATTICE_COUNT][2]; float maxRefinementDisbalance = 0.4; do { int peakCount = reciprocalPeaks_1_per_A->peakCount; int matchedPeaksCount = PinkIndexer_indexPattern(pinkIndexer_private_data->pinkIndexer, &(indexedLattice[indexed]), center_shift[indexed], reciprocalPeaks_1_per_A, intensities, maxRefinementDisbalance, pinkIndexer_private_data->threadCount); if ((matchedPeaksCount >= 25 && matchedPeaksCount >= peakCount * 0.30) || matchedPeaksCount >= peakCount * 0.4 || matchedPeaksCount >= 70 || pinkIndexer_private_data->no_check_indexed == 1) { UnitCell *uc; uc = cell_new(); Lattice_t *l = &(indexedLattice[indexed]); cell_set_reciprocal(uc, l->ay * 1e10, l->az * 1e10, l->ax * 1e10, l->by * 1e10, l->bz * 1e10, l->bx * 1e10, l->cy * 1e10, l->cz * 1e10, l->cx * 1e10); restoreReciprocalCell(uc, &pinkIndexer_private_data->latticeReductionTransform); UnitCell *new_cell_trans = cell_transform_intmat(uc, pinkIndexer_private_data->centeringTransformation); cell_free(uc); uc = new_cell_trans; cell_set_lattice_type(new_cell_trans, cell_get_lattice_type(pinkIndexer_private_data->cellTemplate)); cell_set_centering(new_cell_trans, cell_get_centering(pinkIndexer_private_data->cellTemplate)); cell_set_unique_axis(new_cell_trans, cell_get_unique_axis(pinkIndexer_private_data->cellTemplate)); if (validate_cell(uc)) { ERROR("pinkIndexer: problem with returned cell!\n"); } Crystal * cr = crystal_new(); if (cr == NULL) { ERROR("Failed to allocate crystal.\n"); return 0; } crystal_set_cell(cr, uc); crystal_set_det_shift(cr, center_shift[indexed][0], center_shift[indexed][1]); update_detector(image->det, center_shift[indexed][0], center_shift[indexed][1]); image_add_crystal(image, cr); indexed++; } else { break; } } while (pinkIndexer_private_data->multi && indexed <= MAX_MULTI_LATTICE_COUNT && reciprocalPeaks_1_per_A->peakCount >= pinkIndexer_private_data->min_peaks); return indexed; } void *pinkIndexer_prepare(IndexingMethod *indm, UnitCell *cell, struct pinkIndexer_options *pinkIndexer_opts, struct detector *det, struct beam_params *beam) { if ( beam->photon_energy_from != NULL && pinkIndexer_opts->customPhotonEnergy > 0) { ERROR("For pinkIndexer, the photon_energy must be defined as a " "constant in the geometry file or a parameter\n"); return NULL; } if ( (det->panels[0].clen_from != NULL) && pinkIndexer_opts->refinement_type == REFINEMENT_TYPE_firstFixedThenVariableLatticeParametersCenterAdjustmentMultiSeed) { ERROR("Using center refinement makes it necessary to have the detector distance fixed in the geometry file!"); return NULL; } if(cell == NULL){ ERROR("Pink indexer needs a unit cell file to be specified!") return NULL; } struct pinkIndexer_private_data* pinkIndexer_private_data = malloc(sizeof(struct pinkIndexer_private_data)); allocReciprocalPeaks(&(pinkIndexer_private_data->reciprocalPeaks_1_per_A)); pinkIndexer_private_data->intensities = malloc(MAX_PEAK_COUNT_FOR_INDEXER * sizeof(float)); pinkIndexer_private_data->indm = *indm; pinkIndexer_private_data->cellTemplate = cell; pinkIndexer_private_data->threadCount = pinkIndexer_opts->thread_count; pinkIndexer_private_data->multi = pinkIndexer_opts->multi; pinkIndexer_private_data->min_peaks = pinkIndexer_opts->min_peaks; pinkIndexer_private_data->no_check_indexed = pinkIndexer_opts->no_check_indexed; UnitCell* primitiveCell = uncenter_cell(cell, &pinkIndexer_private_data->centeringTransformation, NULL); //reduceCell(primitiveCell, &pinkIndexer_private_data->latticeReductionTransform); reduceReciprocalCell(primitiveCell, &pinkIndexer_private_data->latticeReductionTransform); double asx, asy, asz, bsx, bsy, bsz, csx, csy, csz; int ret = cell_get_reciprocal(primitiveCell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); if (ret != 0) { ERROR("cell_get_reciprocal did not finish properly!"); } Lattice_t lattice = { .ax = asz * 1e-10, .ay = asx * 1e-10, .az = asy * 1e-10, .bx = bsz * 1e-10, .by = bsx * 1e-10, .bz = bsy * 1e-10, .cx = csz * 1e-10, .cy = csx * 1e-10, .cz = csy * 1e-10 }; float detectorDistance_m; if ( det->panels[0].clen_from != NULL ) { detectorDistance_m = 0.25; /* fake value */ } else { detectorDistance_m = det->panels[0].clen + det->panels[0].coffset; } float beamEenergy_eV = beam->photon_energy; float nonMonochromaticity = beam->bandwidth*5; if(pinkIndexer_opts->customPhotonEnergy > 0){ beamEenergy_eV = pinkIndexer_opts->customPhotonEnergy; } if(pinkIndexer_opts->customBandwidth >= 0){ nonMonochromaticity = pinkIndexer_opts->customBandwidth; } float reflectionRadius_1_per_A; if (pinkIndexer_opts->reflectionRadius < 0) { reflectionRadius_1_per_A = 0.02 * sqrt(lattice.ax * lattice.ax + lattice.ay * lattice.ay + lattice.az * lattice.az); } else { reflectionRadius_1_per_A = pinkIndexer_opts->reflectionRadius * 1e10; /* m^-1 to A^-1*/ } float divergenceAngle_deg = 0.01; //fake float tolerance = pinkIndexer_opts->tolerance; Lattice_t sampleReciprocalLattice_1_per_A = lattice; float detectorRadius_m = 0.03; //fake, only for prediction ExperimentSettings* experimentSettings = ExperimentSettings_new(beamEenergy_eV, detectorDistance_m, detectorRadius_m, divergenceAngle_deg, nonMonochromaticity, sampleReciprocalLattice_1_per_A, tolerance, reflectionRadius_1_per_A); consideredPeaksCount_t consideredPeaksCount = pinkIndexer_opts->considered_peaks_count; angleResolution_t angleResolution = pinkIndexer_opts->angle_resolution; refinementType_t refinementType = pinkIndexer_opts->refinement_type; float maxResolutionForIndexing_1_per_A = pinkIndexer_opts->maxResolutionForIndexing_1_per_A; pinkIndexer_private_data->pinkIndexer = PinkIndexer_new(experimentSettings, consideredPeaksCount, angleResolution, refinementType, maxResolutionForIndexing_1_per_A); ExperimentSettings_delete(experimentSettings); cell_free(primitiveCell); /* Flags that pinkIndexer knows about */ *indm &= INDEXING_METHOD_MASK | INDEXING_USE_CELL_PARAMETERS; return pinkIndexer_private_data; } //static void reduceCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform) //{ // double ax, ay, az, bx, by, bz, cx, cy, cz; // cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); // // Lattice_t l = { ax, ay, az, bx, by, bz, cx, cy, cz }; // // reduceLattice(&l, appliedReductionTransform); // // cell_set_cartesian(cell, l.ax, l.ay, l.az, // l.bx, l.by, l.bz, // l.cx, l.cy, l.cz); // // makeRightHanded(cell); //} // //static void restoreCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform) //{ // // double ax, ay, az, bx, by, bz, cx, cy, cz; // cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); // // Lattice_t l = { ax, ay, az, bx, by, bz, cx, cy, cz }; // // restoreLattice(&l, appliedReductionTransform); // // cell_set_cartesian(cell, l.ax, l.ay, l.az, // l.bx, l.by, l.bz, // l.cx, l.cy, l.cz); // // makeRightHanded(cell); //} static void reduceReciprocalCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform) { double ax, ay, az, bx, by, bz, cx, cy, cz; cell_get_reciprocal(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); Lattice_t l = { ax, ay, az, bx, by, bz, cx, cy, cz }; reduceLattice(&l, appliedReductionTransform); cell_set_reciprocal(cell, l.ax, l.ay, l.az, l.bx, l.by, l.bz, l.cx, l.cy, l.cz); makeRightHanded(cell); } static void restoreReciprocalCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform) { double ax, ay, az, bx, by, bz, cx, cy, cz; cell_get_reciprocal(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); Lattice_t l = { ax, ay, az, bx, by, bz, cx, cy, cz }; restoreLattice(&l, appliedReductionTransform); cell_set_reciprocal(cell, l.ax, l.ay, l.az, l.bx, l.by, l.bz, l.cx, l.cy, l.cz); makeRightHanded(cell); } static void makeRightHanded(UnitCell *cell) { double ax, ay, az, bx, by, bz, cx, cy, cz; cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); if (!right_handed(cell)) { cell_set_cartesian(cell, -ax, -ay, -az, -bx, -by, -bz, -cx, -cy, -cz); } } //hack for electron crystallography while crystal_set_det_shift is not working approprietly static void update_detector(struct detector *det, double xoffs, double yoffs) { int i; for (i = 0; i < det->n_panels; i++) { struct panel *p = &det->panels[i]; p->cnx += xoffs * p->res; p->cny += yoffs * p->res; } } void pinkIndexer_cleanup(void *pp) { struct pinkIndexer_private_data* pinkIndexer_private_data = (struct pinkIndexer_private_data*) pp; freeReciprocalPeaks(pinkIndexer_private_data->reciprocalPeaks_1_per_A); free(pinkIndexer_private_data->intensities); intmat_free(pinkIndexer_private_data->centeringTransformation); PinkIndexer_delete(pinkIndexer_private_data->pinkIndexer); } const char *pinkIndexer_probe(UnitCell *cell) { return "pinkIndexer"; } #else /* HAVE_PINKINDEXER */ int run_pinkIndexer(struct image *image, void *ipriv) { ERROR("This copy of CrystFEL was compiled without PINKINDEXER support.\n"); return 0; } extern void *pinkIndexer_prepare(IndexingMethod *indm, UnitCell *cell, struct pinkIndexer_options *pinkIndexer_opts, struct detector *det, struct beam_params *beam) { ERROR("This copy of CrystFEL was compiled without PINKINDEXER support.\n"); ERROR("To use PINKINDEXER indexing, recompile with PINKINDEXER.\n"); return NULL; } void pinkIndexer_cleanup(void *pp) { } const char *pinkIndexer_probe(UnitCell *cell) { return NULL; } #endif /* HAVE_PINKINDEXER */ static void show_help() { printf( "Parameters for the PinkIndexer indexing algorithm:\n" " --pinkIndexer-considered-peaks-count=n\n" " Considered peaks count, 0 (fewest) to 4 (most)\n" " Default: 4\n" " --pinkIndexer-angle-resolution=n\n" " Angle resolution, 0 (loosest) to 4 (most dense)\n" " Default: 2\n" " --pinkIndexer-refinement-type=n\n" " Refinement type, 0 (none) to 5 (most accurate)\n" " Default: 1\n" " --pinkIndexer-tolerance=n\n" " Relative tolerance of the lattice vectors.\n" " Default 0.06\n" " --pinkIndexer-reflection-radius=n\n" " Radius of the reflections in reciprocal space.\n" " Specified in 1/A. Default is 2%% of a*.\n" " --pinkIndexer-max-resolution-for-indexing=n\n" " Measured in 1/A\n" " --pinkIndexer-multi Use pinkIndexers own multi indexing.\n" " --pinkIndexer-thread-count=n\n" " Thread count for internal parallelization \n" " Default: 1\n" " --pinkIndexer-no-check-indexed\n" " Disable internal check for correct indexing\n" " solutions\n" " --pinkIndexer-override-photon-energy=ev\n" " Mean energy in eV to use for indexing.\n" " --pinkIndexer-override-bandwidth=n\n" " Bandwidth in (delta energy)/(mean energy) to use for indexing.\n" " --pinkIndexer-override-visible-energy-range=min-max\n" " Overrides photon energy and bandwidth according to a range of \n" " energies that have high enough intensity to produce \"visible\" \n" " Bragg spots on the detector.\n" " Min and max range borders are separated by a minus sign (no whitespace).\n" ); } static error_t parse_arg(int key, char *arg, struct argp_state *state) { float tmp, tmp2; struct pinkIndexer_options **opts_ptr = state->input; switch ( key ) { case ARGP_KEY_INIT : *opts_ptr = malloc(sizeof(struct pinkIndexer_options)); if ( *opts_ptr == NULL ) return ENOMEM; (*opts_ptr)->considered_peaks_count = 4; (*opts_ptr)->angle_resolution = 2; (*opts_ptr)->refinement_type = 1; (*opts_ptr)->tolerance = 0.06; (*opts_ptr)->maxResolutionForIndexing_1_per_A = +INFINITY; (*opts_ptr)->thread_count = 1; (*opts_ptr)->multi = 0; (*opts_ptr)->no_check_indexed = 0; (*opts_ptr)->min_peaks = 2; (*opts_ptr)->reflectionRadius = -1; (*opts_ptr)->customPhotonEnergy = -1; (*opts_ptr)->customBandwidth = -1; break; case 1 : show_help(); return EINVAL; case 2 : if (sscanf(arg, "%u", &(*opts_ptr)->considered_peaks_count) != 1) { ERROR("Invalid value for " "--pinkIndexer-considered-peaks-count\n"); return EINVAL; } break; case 3 : if (sscanf(arg, "%u", &(*opts_ptr)->angle_resolution) != 1) { ERROR("Invalid value for " "--pinkIndexer-angle_resolution\n"); return EINVAL; } break; case 4 : if (sscanf(arg, "%u", &(*opts_ptr)->refinement_type) != 1) { ERROR("Invalid value for " "--pinkIndexer-refinement-type\n"); return EINVAL; } break; case 5 : if (sscanf(arg, "%d", &(*opts_ptr)->thread_count) != 1) { ERROR("Invalid value for --pinkIndexer-thread-count\n"); return EINVAL; } break; case 6 : if (sscanf(arg, "%f", &(*opts_ptr)->maxResolutionForIndexing_1_per_A) != 1) { ERROR("Invalid value for " "--pinkIndexer-max-resolution-for-indexing\n"); return EINVAL; } break; case 7 : if (sscanf(arg, "%f", &(*opts_ptr)->tolerance) != 1) { ERROR("Invalid value for --pinkIndexer-tolerance\n"); return EINVAL; } break; case 8 : (*opts_ptr)->multi = 1; break; case 9 : (*opts_ptr)->no_check_indexed = 1; break; case 10 : if (sscanf(arg, "%f", &tmp) != 1) { ERROR("Invalid value for --pinkIndexer-reflection-radius\n"); return EINVAL; } (*opts_ptr)->reflectionRadius = tmp / 1e10; /* A^-1 to m^-1 */ break; case 11 : if (sscanf(arg, "%f", &(*opts_ptr)->customPhotonEnergy) != 1) { ERROR("Invalid value for --pinkIndexer-override-photon-energy\n"); return EINVAL; } break; case 12 : if (sscanf(arg, "%f", &(*opts_ptr)->customBandwidth) != 1) { ERROR("Invalid value for --pinkIndexer-override-bandwidth\n"); return EINVAL; } break; case 13 : if (sscanf(arg, "%f-%f", &tmp, &tmp2) != 2) { ERROR("Invalid value for --pinkIndexer-override-visible-energy-range\n"); return EINVAL; } (*opts_ptr)->customPhotonEnergy = (tmp + tmp2)/2; (*opts_ptr)->customBandwidth = (tmp2 - tmp)/(*opts_ptr)->customPhotonEnergy; if((*opts_ptr)->customBandwidth < 0){ (*opts_ptr)->customBandwidth *= -1; } break; } return 0; } static struct argp_option options[] = { {"help-pinkindexer", 1, NULL, OPTION_NO_USAGE, "Show options for PinkIndexer indexing algorithm", 99}, {"pinkIndexer-considered-peaks-count", 2, "n", OPTION_HIDDEN, NULL}, {"pinkIndexer-cpc", 2, "n", OPTION_HIDDEN, NULL}, {"pinkIndexer-angle-resolution", 3, "ang", OPTION_HIDDEN, NULL}, {"pinkIndexer-ar", 3, "ang", OPTION_HIDDEN, NULL}, {"pinkIndexer-refinement-type", 4, "t", OPTION_HIDDEN, NULL}, {"pinkIndexer-rt", 4, "t", OPTION_HIDDEN, NULL}, {"pinkIndexer-thread-count", 5, "n", OPTION_HIDDEN, NULL}, {"pinkIndexer-tc", 5, "n", OPTION_HIDDEN, NULL}, {"pinkIndexer-max-resolution-for-indexing", 6, "res", OPTION_HIDDEN, NULL}, {"pinkIndexer-mrfi", 6, "res", OPTION_HIDDEN, NULL}, {"pinkIndexer-tolerance", 7, "tol", OPTION_HIDDEN, NULL}, {"pinkIndexer-tol", 7, "tol", OPTION_HIDDEN, NULL}, {"pinkIndexer-multi", 8, NULL, OPTION_HIDDEN, NULL}, {"pinkIndexer-no-check-indexed", 9, NULL, OPTION_HIDDEN, NULL}, {"pinkIndexer-reflection-radius", 10, "r", OPTION_HIDDEN, NULL}, {"pinkIndexer-override-photon-energy", 11, "ev", OPTION_HIDDEN, NULL}, {"pinkIndexer-override-bandwidth", 12, "bw", OPTION_HIDDEN, NULL}, {"pinkIndexer-override-visible-energy-range", 13, "overridenVisibleEnergyRange", OPTION_HIDDEN, NULL}, {0} }; struct argp pinkIndexer_argp = { options, parse_arg, NULL, NULL, NULL, NULL, NULL };