/* * diffraction.c * * Calculate diffraction patterns by Fourier methods * * (c) 2007-2009 Thomas White * * pattern_sim - Simulate diffraction patterns from small crystals * */ #include #include #include #include #include #include "image.h" #include "utils.h" #include "cell.h" #include "ewald.h" #include "diffraction.h" #include "sfac.h" /* Density of water in kg/m^3 */ #define WATER_DENSITY (1.0e6) /* Molar mass of water, in kg/mol */ #define WATER_MOLAR_MASS (18.01528e3) /* Avogadro's number */ #define AVOGADRO (6.022e23) static double lattice_factor(struct threevec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz) { struct threevec Udotq; double f1, f2, f3; int na = 4; int nb = 4; int nc = 30; Udotq.u = ax*q.u + ay*q.v + az*q.w; Udotq.v = bx*q.u + by*q.v + bz*q.w; Udotq.w = cx*q.u + cy*q.v + cz*q.w; /* At exact Bragg condition, f1 = na */ if ( na > 1 ) { f1 = sin(M_PI*(double)na*Udotq.u) / sin(M_PI*Udotq.u); } else { f1 = 1.0; } /* At exact Bragg condition, f2 = nb */ if ( nb > 1 ) { f2 = sin(M_PI*(double)nb*Udotq.v) / sin(M_PI*Udotq.v); } else { f2 = 1.0; } /* At exact Bragg condition, f3 = nc */ if ( nc > 1 ) { f3 = sin(M_PI*(double)nc*Udotq.w) / sin(M_PI*Udotq.w); } else { f3 = 1.0; } /* At exact Bragg condition, this will multiply the molecular * part of the structure factor by the number of unit cells, * as desired (more scattering from bigger crystal!) */ return f1 * f2 * f3; } /* Return structure factor for molecule 'mol' at energy 'en' (J/photon) at * scattering vector 'q' */ static double complex molecule_factor(struct molecule *mol, struct threevec q, double en) { int i; double complex F = 0.0; double s; /* s = sin(theta)/lambda = 1/2d = (1/d)/2.0 */ s = modulus(q.u, q.v, q.w) / 2.0; /* Atoms are grouped by species for faster calculation */ for ( i=0; in_species; i++ ) { double complex sfac; double complex contrib = 0.0; struct mol_species *spec; int j; spec = mol->species[i]; for ( j=0; jn_atoms; j++ ) { double ph; ph = q.u*spec->x[j] + q.v*spec->y[j] + q.w*spec->z[j]; /* Conversion from revolutions to radians is required */ contrib += cos(2.0*M_PI*ph) + I*sin(2.0*M_PI*ph); } sfac = get_sfac(spec->species, s, en); F += sfac * contrib * exp(-2.0 * spec->B[j] * s); } return F; } static double complex water_factor(struct threevec q, double en) { return 0.0; } void get_diffraction(struct image *image, UnitCell *cell) { int x, y; double ax, ay, az; double bx, by, bz; double cx, cy, cz; /* Generate the array of reciprocal space vectors in image->qvecs */ get_ewald(image); if ( image->molecule == NULL ) { image->molecule = load_molecule(); if ( image->molecule == NULL ) return; } cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); image->sfacs = malloc(image->width * image->height * sizeof(double complex)); progress_bar(0, image->width-1); for ( x=0; xwidth; x++ ) { for ( y=0; yheight; y++ ) { double f_lattice; double complex f_molecule; double complex f_water; struct threevec q; q = image->qvecs[x + image->width*y]; f_lattice = lattice_factor(q, ax,ay,az,bx,by,bz,cx,cy,cz); f_molecule = molecule_factor(image->molecule, q, image->xray_energy); /* Nasty approximation follows */ if ( y == image->height/2 ) { f_water = water_factor(q, image->xray_energy); } else { f_water = 0.0; } image->sfacs[x + image->width*y] = (f_lattice * f_molecule) + f_water; } progress_bar(x, image->width-1); } }