/* * diffraction.c * * Calculate diffraction patterns by Fourier methods * * Copyright © 2012-2021 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2009-2020 Thomas White * 2013-2014 Chun Hong Yoon * 2013 Alexandra Tolstikova * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #include #include #include #include #include #include #include #include "image.h" #include "utils.h" #include "cell.h" #include "diffraction.h" #include "symmetry.h" #include "pattern_sim.h" #define SINC_LUT_ELEMENTS (4096) static double *get_sinc_lut(int n, int no_fringes, int flat) { int i; double *lut; lut = malloc(SINC_LUT_ELEMENTS*sizeof(double)); lut[0] = n; if ( n == 1 ) { for ( i=1; i 1.0/n) && (1.0-x > 1.0/n) ) { val = 0.0; } else if ( flat ) { val = n; } else { val = fabs(sin(M_PI*n*x)/sin(M_PI*x)); } lut[i] = val; } } return lut; } static double interpolate_lut(double *lut, double val) { double i, pos, f; unsigned int low, high; pos = SINC_LUT_ELEMENTS * modf(fabs(val), &i); low = (int)pos; /* Discard fractional part */ high = low + 1; f = modf(pos, &i); /* Fraction */ if ( high == SINC_LUT_ELEMENTS ) high = 0; return (1.0-f)*lut[low] + f*lut[high]; } static double lattice_factor(struct rvec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, double *lut_a, double *lut_b, double *lut_c) { struct rvec Udotq; double f1, f2, f3; Udotq.u = ax*q.u + ay*q.v + az*q.w; Udotq.v = bx*q.u + by*q.v + bz*q.w; Udotq.w = cx*q.u + cy*q.v + cz*q.w; f1 = interpolate_lut(lut_a, Udotq.u); f2 = interpolate_lut(lut_b, Udotq.v); f3 = interpolate_lut(lut_c, Udotq.w); return f1 * f2 * f3; } static double sym_lookup_intensity(const double *intensities, const unsigned char *flags, const SymOpList *sym, signed int h, signed int k, signed int l) { int i; double ret = 0.0; for ( i=0; i= 0.0); val1 = sym_lookup_intensity(ref, flags, sym, h, k, l); val2 = sym_lookup_intensity(ref, flags, sym, h+1, k, l); return (1.0-f)*val1 + f*val2; } static double interpolate_bilinear(const double *ref, const unsigned char *flags, const SymOpList *sym, float hd, float kd, signed int l) { signed int k; double val1, val2; float f; k = (signed int)kd; if ( kd < 0.0 ) k -= 1; f = kd - (float)k; assert(f >= 0.0); val1 = interpolate_linear(ref, flags, sym, hd, k, l); val2 = interpolate_linear(ref, flags, sym, hd, k+1, l); return (1.0-f)*val1 + f*val2; } static double interpolate_intensity(const double *ref, const unsigned char *flags, const SymOpList *sym, float hd, float kd, float ld) { signed int l; double val1, val2; float f; l = (signed int)ld; if ( ld < 0.0 ) l -= 1; f = ld - (float)l; assert(f >= 0.0); val1 = interpolate_bilinear(ref, flags, sym, hd, kd, l); val2 = interpolate_bilinear(ref, flags, sym, hd, kd, l+1); return (1.0-f)*val1 + f*val2; } static double complex interpolate_phased_linear(const double *ref, const double *phases, const unsigned char *flags, const SymOpList *sym, float hd, signed int k, signed int l) { signed int h; double val1, val2; float f; double ph1, ph2; double re1, re2, im1, im2; double re, im; h = (signed int)hd; if ( hd < 0.0 ) h -= 1; f = hd - (float)h; assert(f >= 0.0); val1 = sym_lookup_intensity(ref, flags, sym, h, k, l); val2 = sym_lookup_intensity(ref, flags, sym, h+1, k, l); ph1 = sym_lookup_phase(phases, flags, sym, h, k, l); ph2 = sym_lookup_phase(phases, flags, sym, h+1, k, l); /* Calculate real and imaginary parts */ re1 = val1 * cos(ph1); im1 = val1 * sin(ph1); re2 = val2 * cos(ph2); im2 = val2 * sin(ph2); re = (1.0-f)*re1 + f*re2; im = (1.0-f)*im1 + f*im2; return re + im*I; } static double complex interpolate_phased_bilinear(const double *ref, const double *phases, const unsigned char *flags, const SymOpList *sym, float hd, float kd, signed int l) { signed int k; double complex val1, val2; float f; k = (signed int)kd; if ( kd < 0.0 ) k -= 1; f = kd - (float)k; assert(f >= 0.0); val1 = interpolate_phased_linear(ref, phases, flags, sym, hd, k, l); val2 = interpolate_phased_linear(ref, phases, flags, sym, hd, k+1, l); return (1.0-f)*val1 + f*val2; } static double interpolate_phased_intensity(const double *ref, const double *phases, const unsigned char *flags, const SymOpList *sym, float hd, float kd, float ld) { signed int l; double complex val1, val2; float f; l = (signed int)ld; if ( ld < 0.0 ) l -= 1; f = ld - (float)l; assert(f >= 0.0); val1 = interpolate_phased_bilinear(ref, phases, flags, sym, hd, kd, l); val2 = interpolate_phased_bilinear(ref, phases, flags, sym, hd, kd, l+1); return cabs((1.0-f)*val1 + f*val2); } /* Look up the structure factor for the nearest Bragg condition */ static double molecule_factor(const double *intensities, const double *phases, const unsigned char *flags, struct rvec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, GradientMethod m, const SymOpList *sym) { float hd, kd, ld; signed int h, k, l; double r; hd = q.u * ax + q.v * ay + q.w * az; kd = q.u * bx + q.v * by + q.w * bz; ld = q.u * cx + q.v * cy + q.w * cz; /* No flags -> flat intensity distribution */ if ( flags == NULL ) return 100.0; switch ( m ) { case GRADIENT_MOSAIC : fesetround(1); /* Round to nearest */ h = (signed int)rint(hd); k = (signed int)rint(kd); l = (signed int)rint(ld); if ( abs(h) > INDMAX ) r = 0.0; else if ( abs(k) > INDMAX ) r = 0.0; else if ( abs(l) > INDMAX ) r = 0.0; else r = sym_lookup_intensity(intensities, flags, sym, h, k, l); break; case GRADIENT_INTERPOLATE : r = interpolate_intensity(intensities, flags, sym, hd, kd, ld); break; case GRADIENT_PHASED : r = interpolate_phased_intensity(intensities, phases, flags, sym, hd, kd, ld); break; default: ERROR("This gradient method not implemented yet.\n"); exit(1); } return r; } static void diffraction_panel(struct image *image, const double *intensities, const double *phases, const unsigned char *flags, UnitCell *cell, GradientMethod m, const SymOpList *sym, double k, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, double *lut_a, double *lut_b, double *lut_c, int pn, double weight) { int fs, ss; const int nxs = 4; const int nys = 4; struct detgeom_panel *p = &image->detgeom->panels[pn]; weight /= nxs*nys; for ( ss=0; ssh; ss++ ) { for ( fs=0; fsw; fs++ ) { int idx; double f_lattice, I_lattice; double I_molecule; int xs, ys; float xo, yo; for ( xs=0; xsw*ss; image->dp[pn][idx] += I_lattice * I_molecule * weight; } } } progress_bar(ss, p->h-1, "Calculating diffraction"); } } static void diffraction_at_k(struct image *image, const double *intensities, const double *phases, const unsigned char *flags, UnitCell *cell, GradientMethod m, const SymOpList *sym, double k, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, double *lut_a, double *lut_b, double *lut_c, double weight) { int i; for ( i=0; idetgeom->n_panels; i++ ) { diffraction_panel(image, intensities, phases, flags, cell, m, sym, k, ax, ay, az, bx, by, bz, cx, cy, cz, lut_a, lut_b, lut_c, i, weight); } } void get_diffraction(struct image *image, int na, int nb, int nc, const double *intensities, const double *phases, const unsigned char *flags, UnitCell *cell, GradientMethod m, const SymOpList *sym, int no_fringes, int flat, int n_samples) { double ax, ay, az; double bx, by, bz; double cx, cy, cz; double *lut_a; double *lut_b; double *lut_c; int i; double kmin, kmax, step; double norm = 0.0; cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); lut_a = get_sinc_lut(na, no_fringes, flat); lut_b = get_sinc_lut(nb, no_fringes, flat); lut_c = get_sinc_lut(nc, no_fringes, flat); spectrum_get_range(image->spectrum, &kmin, &kmax); step = (kmax-kmin)/(n_samples+1); /* Determine normalisation factor such that weights add up to 1 after * sampling (bins must have constant width) */ for ( i=1; i<=n_samples; i++ ) { double k = kmin + i*step; norm += spectrum_get_density_at_k(image->spectrum, k); } for ( i=1; i<=n_samples; i++ ) { double k = kmin + i*step; double prob; /* Probability = p.d.f. times step width */ prob = spectrum_get_density_at_k(image->spectrum, k)/norm; STATUS("Wavelength: %e m, weight = %.5f\n", 1.0/k, prob); diffraction_at_k(image, intensities, phases, flags, cell, m, sym, k, ax, ay, az, bx, by, bz, cx, cy, cz, lut_a, lut_b, lut_c, prob); } free(lut_a); free(lut_b); free(lut_c); }