/* * diffraction.c * * Calculate diffraction patterns by Fourier methods * * (c) 2007-2009 Thomas White * * pattern_sim - Simulate diffraction patterns from small crystals * */ #include #include #include #include #include #include "image.h" #include "utils.h" #include "cell.h" #include "ewald.h" #include "diffraction.h" #include "sfac.h" static double lattice_factor(struct threevec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, int na, int nb, int nc) { struct threevec Udotq; double f1, f2, f3; Udotq.u = ax*q.u + ay*q.v + az*q.w; Udotq.v = bx*q.u + by*q.v + bz*q.w; Udotq.w = cx*q.u + cy*q.v + cz*q.w; /* At exact Bragg condition, f1 = na */ if ( na > 1 ) { f1 = sin(M_PI*(double)na*Udotq.u) / sin(M_PI*Udotq.u); } else { f1 = 1.0; } /* At exact Bragg condition, f2 = nb */ if ( nb > 1 ) { f2 = sin(M_PI*(double)nb*Udotq.v) / sin(M_PI*Udotq.v); } else { f2 = 1.0; } /* At exact Bragg condition, f3 = nc */ if ( nc > 1 ) { f3 = sin(M_PI*(double)nc*Udotq.w) / sin(M_PI*Udotq.w); } else { f3 = 1.0; } /* At exact Bragg condition, this will multiply the molecular * part of the structure factor by the number of unit cells, * as desired (more scattering from bigger crystal!) */ return f1 * f2 * f3; } /* Look up the structure factor for the nearest Bragg condition */ static double complex molecule_factor(struct molecule *mol, struct threevec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz) { double hd, kd, ld; signed int h, k, l; double complex r; hd = q.u * ax + q.v * ay + q.w * az; kd = q.u * bx + q.v * by + q.w * bz; ld = q.u * cx + q.v * cy + q.w * cz; h = (signed int)rint(hd); k = (signed int)rint(kd); l = (signed int)rint(ld); r = lookup_sfac(mol->reflections, h, k, l); return r; } double water_intensity(struct threevec q, double en, double beam_r, double water_r) { double complex fH, fO; double s, modq; double width; double complex ifac; /* Interatomic distances in water molecule */ const double rOH = 0.09584e-9; const double rHH = 0.1515e-9; /* Volume of water column, approximated as: * (2water_r) * (2beam_r) * smallest(2beam_r, 2water_r) * neglecting the curvature of the faces of the volume */ if ( beam_r > water_r ) { width = 2.0 * water_r; } else { width = 2.0 * beam_r; } const double water_v = 2.0*beam_r * 2.0*water_r * width; /* Number of water molecules */ const double n_water = water_v * WATER_DENSITY * (AVOGADRO / WATER_MOLAR_MASS); /* s = sin(theta)/lambda = 1/2d = |q|/2 */ modq = modulus(q.u, q.v, q.w); s = modq / 2.0; fH = get_sfac("H", s, en); fO = get_sfac("O", s, en); /* Four O-H cross terms */ ifac = 4.0*fH*fO * sin(2.0*M_PI*modq*rOH)/(2.0*M_PI*modq*rOH); /* Three H-H cross terms */ ifac += 3.0*fH*fH * sin(2.0*M_PI*modq*rHH)/(2.0*M_PI*modq*rHH); /* Three diagonal terms */ ifac += 2.0*fH*fH + fO*fO; return cabs(ifac) * n_water; } void get_diffraction(struct image *image, int na, int nb, int nc) { int x, y; double ax, ay, az; double bx, by, bz; double cx, cy, cz; double a, b, c, d; /* Generate the array of reciprocal space vectors in image->qvecs */ get_ewald(image); if ( image->molecule == NULL ) { image->molecule = load_molecule(); if ( image->molecule == NULL ) return; } cell_get_cartesian(image->molecule->cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); cell_get_parameters(image->molecule->cell, &a, &b, &c, &d, &d, &d); STATUS("Particle size = %i x %i x %i (=%5.2f x %5.2f x %5.2f nm)\n", na, nb, nc, na*a/1.0e-9, nb*b/1.0e-9, nc*c/1.0e-9); image->sfacs = malloc(image->width * image->height * sizeof(double complex)); if ( image->molecule->reflections == NULL ) { get_reflections_cached(image->molecule, image->xray_energy); } for ( x=0; xwidth; x++ ) { for ( y=0; yheight; y++ ) { double f_lattice; double complex f_molecule; struct threevec q; double complex val; q = image->qvecs[x + image->width*y]; f_lattice = lattice_factor(q, ax,ay,az,bx,by,bz,cx,cy,cz, na, nb, nc); f_molecule = molecule_factor(image->molecule, q, ax,ay,az,bx,by,bz,cx,cy,cz); val = f_molecule * f_lattice; image->sfacs[x + image->width*y] = val; } progress_bar(x, image->width-1, "Calculating lattice factors"); } }