/* * diffraction.c * * Calculate diffraction patterns by Fourier methods * * (c) 2006-2011 Thomas White * * Part of CrystFEL - crystallography with a FEL * */ #include #include #include #include #include #include #include #include "image.h" #include "utils.h" #include "cell.h" #include "diffraction.h" #include "beam-parameters.h" #include "symmetry.h" #define SAMPLING (4) #define BWSAMPLING (1) #define DIVSAMPLING (4) #define SINC_LUT_ELEMENTS (4096) static double *get_sinc_lut(int n) { int i; double *lut; lut = malloc(SINC_LUT_ELEMENTS*sizeof(double)); lut[0] = n; if ( n == 1 ) { for ( i=1; i= 0.0); val1 = sym_lookup_intensity(ref, flags, sym, h, k, l); val2 = sym_lookup_intensity(ref, flags, sym, h+1, k, l); val1 = val1; val2 = val2; return (1.0-f)*val1 + f*val2; } static double interpolate_bilinear(const double *ref, const unsigned char *flags, const char *sym, float hd, float kd, signed int l) { signed int k; double val1, val2; float f; k = (signed int)kd; if ( kd < 0.0 ) k -= 1; f = kd - (float)k; assert(f >= 0.0); val1 = interpolate_linear(ref, flags, sym, hd, k, l); val2 = interpolate_linear(ref, flags, sym, hd, k+1, l); return (1.0-f)*val1 + f*val2; } static double interpolate_intensity(const double *ref, const unsigned char *flags, const char *sym, float hd, float kd, float ld) { signed int l; double val1, val2; float f; l = (signed int)ld; if ( ld < 0.0 ) l -= 1; f = ld - (float)l; assert(f >= 0.0); val1 = interpolate_bilinear(ref, flags, sym, hd, kd, l); val2 = interpolate_bilinear(ref, flags, sym, hd, kd, l+1); return (1.0-f)*val1 + f*val2; } static double complex interpolate_phased_linear(const double *ref, const double *phases, const unsigned char *flags, const char *sym, float hd, signed int k, signed int l) { signed int h; double val1, val2; float f; double ph1, ph2; double re1, re2, im1, im2; double re, im; h = (signed int)hd; if ( hd < 0.0 ) h -= 1; f = hd - (float)h; assert(f >= 0.0); val1 = sym_lookup_intensity(ref, flags, sym, h, k, l); val2 = sym_lookup_intensity(ref, flags, sym, h+1, k, l); ph1 = sym_lookup_phase(phases, flags, sym, h, k, l); ph2 = sym_lookup_phase(phases, flags, sym, h+1, k, l); val1 = val1; val2 = val2; /* Calculate real and imaginary parts */ re1 = val1 * cos(ph1); im1 = val1 * sin(ph1); re2 = val2 * cos(ph2); im2 = val2 * sin(ph2); re = (1.0-f)*re1 + f*re2; im = (1.0-f)*im1 + f*im2; return re + im*I; } static double complex interpolate_phased_bilinear(const double *ref, const double *phases, const unsigned char *flags, const char *sym, float hd, float kd, signed int l) { signed int k; double complex val1, val2; float f; k = (signed int)kd; if ( kd < 0.0 ) k -= 1; f = kd - (float)k; assert(f >= 0.0); val1 = interpolate_phased_linear(ref, phases, flags, sym, hd, k, l); val2 = interpolate_phased_linear(ref, phases, flags, sym, hd, k+1, l); return (1.0-f)*val1 + f*val2; } static double interpolate_phased_intensity(const double *ref, const double *phases, const unsigned char *flags, const char *sym, float hd, float kd, float ld) { signed int l; double complex val1, val2; float f; l = (signed int)ld; if ( ld < 0.0 ) l -= 1; f = ld - (float)l; assert(f >= 0.0); val1 = interpolate_phased_bilinear(ref, phases, flags, sym, hd, kd, l); val2 = interpolate_phased_bilinear(ref, phases, flags, sym, hd, kd, l+1); return cabs((1.0-f)*val1 + f*val2); } /* Look up the structure factor for the nearest Bragg condition */ static double molecule_factor(const double *intensities, const double *phases, const unsigned char *flags, struct rvec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, GradientMethod m, const char *sym) { float hd, kd, ld; signed int h, k, l; double r; hd = q.u * ax + q.v * ay + q.w * az; kd = q.u * bx + q.v * by + q.w * bz; ld = q.u * cx + q.v * cy + q.w * cz; /* No flags -> flat intensity distribution */ if ( flags == NULL ) return 1.0e5; switch ( m ) { case GRADIENT_MOSAIC : fesetround(1); /* Round to nearest */ h = (signed int)rint(hd); k = (signed int)rint(kd); l = (signed int)rint(ld); if ( abs(h) > INDMAX ) r = 0.0; else if ( abs(k) > INDMAX ) r = 0.0; else if ( abs(l) > INDMAX ) r = 0.0; else r = sym_lookup_intensity(intensities, flags, sym, h, k, l); break; case GRADIENT_INTERPOLATE : r = interpolate_intensity(intensities, flags, sym, hd, kd, ld); break; case GRADIENT_PHASED : r = interpolate_phased_intensity(intensities, phases, flags, sym, hd, kd, ld); break; default: ERROR("This gradient method not implemented yet.\n"); exit(1); } return r; } void get_diffraction(struct image *image, int na, int nb, int nc, const double *intensities, const double *phases, const unsigned char *flags, UnitCell *cell, GradientMethod m, const char *sym) { unsigned int fs, ss; double ax, ay, az; double bx, by, bz; double cx, cy, cz; float klow, khigh, bwstep; double *lut_a; double *lut_b; double *lut_c; double divxlow, divylow, divxstep, divystep; cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); /* Allocate (and zero) the "diffraction array" */ image->data = calloc(image->width * image->height, sizeof(float)); /* Needed later for Lorentz calculation */ image->twotheta = malloc(image->width * image->height * sizeof(double)); klow = 1.0/(image->lambda*(1.0 + image->beam->bandwidth/2.0)); khigh = 1.0/(image->lambda*(1.0 - image->beam->bandwidth/2.0)); bwstep = (khigh-klow) / BWSAMPLING; divxlow = -image->beam->divergence/2.0; divylow = -image->beam->divergence/2.0; divxstep = image->beam->divergence / DIVSAMPLING; divystep = image->beam->divergence / DIVSAMPLING; lut_a = get_sinc_lut(na); lut_b = get_sinc_lut(nb); lut_c = get_sinc_lut(nc); for ( fs=0; fswidth; fs++ ) { for ( ss=0; ssheight; ss++ ) { int fs_step, ss_step, kstep; int divxval, divyval; int idx = fs + image->width*ss; for ( fs_step=0; fs_stepdata[idx] += intensity; if ( fs_step + ss_step + kstep == 0 ) { image->twotheta[idx] = twotheta; } } } } } } image->data[idx] /= (SAMPLING*SAMPLING*BWSAMPLING *DIVSAMPLING*DIVSAMPLING); } progress_bar(fs, image->width-1, "Calculating diffraction"); } free(lut_a); free(lut_b); free(lut_c); }