/* * post-refinement.c * * Post refinement * * Copyright © 2012-2014 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2010-2014 Thomas White * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include "image.h" #include "post-refinement.h" #include "peaks.h" #include "symmetry.h" #include "geometry.h" #include "cell.h" #include "cell-utils.h" /* Minimum partiality of a reflection for it to be used for refinement */ #define MIN_PART_REFINE (0.1) /* Maximum number of iterations of NLSq to do for each image per macrocycle. */ #define MAX_CYCLES (10) /* Returns dp(gauss)/dr at "r" */ static double gaussian_fraction_gradient(double r, double R) { const double ng = 2.6; const double sig = R/ng; /* If the Ewald sphere isn't within the profile, the gradient is zero */ if ( r < -R ) return 0.0; if ( r > +R ) return 0.0; return exp(-pow(r/sig, 2.0)/2.0) / (sig*sqrt(2.0*M_PI)); } /* Returns dp(sph)/dr at "r" */ static double sphere_fraction_gradient(double r, double pr) { double q, dpdq, dqdr; /* If the Ewald sphere isn't within the profile, the gradient is zero */ if ( r < -pr ) return 0.0; if ( r > +pr ) return 0.0; q = (r + pr)/(2.0*pr); dpdq = 6.0*(q - q*q); dqdr = 1.0 / (2.0*pr); return dpdq * dqdr; } /* Returns dp/dr at "r" */ static double partiality_gradient(double r, double pr, PartialityModel pmodel, double rlow, double rhigh) { double A, D; D = rlow - rhigh; switch ( pmodel ) { default: case PMODEL_UNITY: return 0.0; case PMODEL_SCSPHERE: A = sphere_fraction_gradient(r, pr)/D; return 4.0*pr*A/3.0; case PMODEL_SCGAUSSIAN: A = gaussian_fraction_gradient(r, pr)/D; return 4.0*pr*A/3.0; } } static double sphere_fraction_rgradient(double r, double R) { /* If the Ewald sphere isn't within the profile, the gradient is zero */ if ( r < -R ) return 0.0; if ( r > +R ) return 0.0; return -(3.0*r/(4.0*R*R)) * (1.0 - r*r/(R*R)); } static double gaussian_fraction_rgradient(double r, double R) { const double ng = 2.6; const double sig = R/ng; /* If the Ewald sphere isn't within the profile, the gradient is zero */ if ( r < -R ) return 0.0; if ( r > +R ) return 0.0; return -(ng*r/(sqrt(2.0*M_PI)*R*R))*exp(-r*r/(2.0*sig*sig)); } static double volume_fraction_rgradient(double r, double pr, PartialityModel pmodel) { switch ( pmodel ) { case PMODEL_UNITY : return 1.0; case PMODEL_SCSPHERE : return sphere_fraction_rgradient(r, pr); case PMODEL_SCGAUSSIAN : return gaussian_fraction_rgradient(r, pr); } ERROR("No pmodel in volume_fraction_rgradient!\n"); return 1.0; } static double volume_fraction(double rlow, double rhigh, double pr, PartialityModel pmodel) { switch ( pmodel ) { case PMODEL_UNITY : return 1.0; case PMODEL_SCSPHERE : return sphere_fraction(rlow, rhigh, pr); case PMODEL_SCGAUSSIAN : return gaussian_fraction(rlow, rhigh, pr); } ERROR("No pmodel in volume_fraction!\n"); return 1.0; } /* Return the gradient of partiality wrt parameter 'k' given the current status * of 'image'. */ double p_gradient(Crystal *cr, int k, Reflection *refl, PartialityModel pmodel) { double azi; double glow, ghigh; double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; double xl, yl, zl; double ds; signed int hs, ks, ls; double rlow, rhigh, p; double philow, phihigh, phi; double khigh, klow; double tl, cet, cez; struct image *image = crystal_get_image(cr); double R = crystal_get_profile_radius(cr); double D, psph; get_partial(refl, &rlow, &rhigh, &p); if ( k == REF_R ) { double Rglow, Rghigh; D = rlow - rhigh; psph = volume_fraction(rlow, rhigh, R, pmodel); Rglow = volume_fraction_rgradient(rlow, R, pmodel); Rghigh = volume_fraction_rgradient(rhigh, R, pmodel); return 4.0*psph/(3.0*D) + (4.0*R/(3.0*D))*(Rglow - Rghigh); } /* Calculate the gradient of partiality wrt excitation error. */ glow = partiality_gradient(rlow, R, pmodel, rlow, rhigh); ghigh = partiality_gradient(rhigh, R, pmodel, rlow, rhigh); get_symmetric_indices(refl, &hs, &ks, &ls); ds = 2.0 * resolution(crystal_get_cell(cr), hs, ks, ls); cell_get_reciprocal(crystal_get_cell(cr), &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); xl = hs*asx + ks*bsx + ls*csx; yl = hs*asy + ks*bsy + ls*csy; zl = hs*asz + ks*bsz + ls*csz; /* "low" gives the largest Ewald sphere (wavelength short => k large) * "high" gives the smallest Ewald sphere (wavelength long => k small) */ klow = 1.0/(image->lambda - image->lambda*image->bw/2.0); khigh = 1.0/(image->lambda + image->lambda*image->bw/2.0); tl = sqrt(xl*xl + yl*yl); cet = -sin(image->div/2.0) * klow; cez = -cos(image->div/2.0) * klow; philow = angle_between_2d(tl-cet, zl-cez, 0.0, 1.0); cet = -sin(image->div/2.0) * khigh; cez = -cos(image->div/2.0) * khigh; phihigh = angle_between_2d(tl-cet, zl-cez, 0.0, 1.0); /* Approximation: philow and phihigh are very similar */ phi = (philow + phihigh) / 2.0; azi = atan2(yl, xl); /* For many gradients, just multiply the above number by the gradient * of excitation error wrt whatever. */ switch ( k ) { /* Cell parameters and orientation */ case REF_ASX : return - hs * sin(phi) * cos(azi) * (glow-ghigh); case REF_BSX : return - ks * sin(phi) * cos(azi) * (glow-ghigh); case REF_CSX : return - ls * sin(phi) * cos(azi) * (glow-ghigh); case REF_ASY : return - hs * sin(phi) * sin(azi) * (glow-ghigh); case REF_BSY : return - ks * sin(phi) * sin(azi) * (glow-ghigh); case REF_CSY : return - ls * sin(phi) * sin(azi) * (glow-ghigh); case REF_ASZ : return - hs * cos(phi) * (glow-ghigh); case REF_BSZ : return - ks * cos(phi) * (glow-ghigh); case REF_CSZ : return - ls * cos(phi) * (glow-ghigh); case REF_DIV : D = rlow - rhigh; psph = volume_fraction(rlow, rhigh, R, pmodel); return (ds/2.0)*(glow+ghigh) - 4.0*R*psph*ds/(3.0*D*D); } ERROR("No gradient defined for parameter %i\n", k); abort(); } static void apply_cell_shift(UnitCell *cell, int k, double shift) { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; cell_get_reciprocal(cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); switch ( k ) { case REF_ASX : asx += shift; break; case REF_ASY : asy += shift; break; case REF_ASZ : asz += shift; break; case REF_BSX : bsx += shift; break; case REF_BSY : bsy += shift; break; case REF_BSZ : bsz += shift; break; case REF_CSX : csx += shift; break; case REF_CSY : csy += shift; break; case REF_CSZ : csz += shift; break; } cell_set_reciprocal(cell, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); } /* Apply the given shift to the 'k'th parameter of 'image'. */ static void apply_shift(Crystal *cr, int k, double shift) { double t; struct image *image = crystal_get_image(cr); switch ( k ) { case REF_DIV : if ( isnan(shift) ) { ERROR("NaN divergence shift\n"); } else { image->div += shift; if ( image->div < 0.0 ) image->div = 0.0; } break; case REF_R : t = crystal_get_profile_radius(cr); t += shift; crystal_set_profile_radius(cr, t); break; case REF_ASX : case REF_ASY : case REF_ASZ : case REF_BSX : case REF_BSY : case REF_BSZ : case REF_CSX : case REF_CSY : case REF_CSZ : apply_cell_shift(crystal_get_cell(cr), k, shift); break; default : ERROR("No shift defined for parameter %i\n", k); abort(); } } /* Perform one cycle of post refinement on 'image' against 'full' */ static double pr_iterate(Crystal *cr, const RefList *full, PartialityModel pmodel, int *n_filtered) { gsl_matrix *M; gsl_vector *v; gsl_vector *shifts; int param; Reflection *refl; RefListIterator *iter; RefList *reflections; double max_shift; int nref = 0; const int verbose = 0; *n_filtered = 0; reflections = crystal_get_reflections(cr); M = gsl_matrix_calloc(NUM_PARAMS, NUM_PARAMS); v = gsl_vector_calloc(NUM_PARAMS); /* Construct the equations, one per reflection in this image */ for ( refl = first_refl(reflections, &iter); refl != NULL; refl = next_refl(refl, iter) ) { signed int ha, ka, la; double I_full, delta_I; double w; double I_partial; int k; double p, l; Reflection *match; double gradients[NUM_PARAMS]; /* Find the full version */ get_indices(refl, &ha, &ka, &la); match = find_refl(full, ha, ka, la); if ( match == NULL ) continue; if ( (get_intensity(refl) < 3.0*get_esd_intensity(refl)) || (get_partiality(refl) < MIN_PART_REFINE) || (get_redundancy(match) < 2) ) continue; I_full = get_intensity(match); /* Actual measurement of this reflection from this pattern? */ I_partial = get_intensity(refl) / crystal_get_osf(cr); p = get_partiality(refl); l = get_lorentz(refl); /* Calculate the weight for this reflection */ w = pow(get_esd_intensity(refl), 2.0); w += l * p * I_full * pow(get_esd_intensity(match), 2.0); w = pow(w, -1.0); /* Calculate all gradients for this reflection */ for ( k=0; k k ) continue; M_c = gradients[g] * gradients[k]; M_c *= w * pow(I_full, 2.0); M_curr = gsl_matrix_get(M, k, g); gsl_matrix_set(M, k, g, M_curr + M_c); gsl_matrix_set(M, g, k, M_curr + M_c); } delta_I = I_partial - (l * p * I_full); v_c = w * delta_I * I_full * gradients[k]; v_curr = gsl_vector_get(v, k); gsl_vector_set(v, k, v_curr + v_c); } nref++; } if ( verbose ) { STATUS("The original equation:\n"); show_matrix_eqn(M, v); } //STATUS("%i reflections went into the equations.\n", nref); if ( nref == 0 ) { crystal_set_user_flag(cr, 2); gsl_matrix_free(M); gsl_vector_free(v); return 0.0; } max_shift = 0.0; shifts = solve_svd(v, M, n_filtered, verbose); if ( shifts != NULL ) { for ( param=0; param max_shift ) max_shift = fabs(shift); } } else { crystal_set_user_flag(cr, 3); } gsl_matrix_free(M); gsl_vector_free(v); gsl_vector_free(shifts); return max_shift; } static double guide_dev(Crystal *cr, const RefList *full) { double dev = 0.0; /* For each reflection */ Reflection *refl; RefListIterator *iter; for ( refl = first_refl(crystal_get_reflections(cr), &iter); refl != NULL; refl = next_refl(refl, iter) ) { double G, p; signed int h, k, l; Reflection *full_version; double I_full, I_partial; if ( (get_intensity(refl) < 3.0*get_esd_intensity(refl)) || (get_partiality(refl) < MIN_PART_REFINE) ) continue; get_indices(refl, &h, &k, &l); assert((h!=0) || (k!=0) || (l!=0)); full_version = find_refl(full, h, k, l); if ( full_version == NULL ) continue; /* Some reflections may have recently become scalable, but * scale_intensities() might not yet have been called, so the * full version may not have been calculated yet. */ G = crystal_get_osf(cr); p = get_partiality(refl); I_partial = get_intensity(refl); I_full = get_intensity(full_version); //STATUS("%3i %3i %3i %5.2f %5.2f %5.2f %5.2f %5.2f\n", // h, k, l, G, p, I_partial, I_full, // I_partial - p*G*I_full); dev += pow(I_partial - p*G*I_full, 2.0); } return dev; } struct param_backup { UnitCell *cell; double profile_radius; double div; }; static struct param_backup backup_crystal(Crystal *cr) { struct param_backup b; struct image *image = crystal_get_image(cr); b.cell = cell_new_from_cell(crystal_get_cell(cr)); b.profile_radius = crystal_get_profile_radius(cr); b.div = image->div; return b; } static void revert_crystal(Crystal *cr, struct param_backup b) { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; struct image *image = crystal_get_image(cr); cell_get_reciprocal(b.cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); cell_set_reciprocal(crystal_get_cell(cr), asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); crystal_set_profile_radius(cr, b.profile_radius); image->div = b.div; } static void free_backup_crystal(struct param_backup b) { cell_free(b.cell); } struct prdata pr_refine(Crystal *cr, const RefList *full, PartialityModel pmodel) { double dev; int i; struct param_backup backup; const int verbose = 0; struct prdata prdata; double mean_p_change = 0.0; prdata.refined = 0; prdata.n_filtered = 0; /* Don't refine crystal if scaling was bad */ if ( crystal_get_user_flag(cr) != 0 ) return prdata; if ( verbose ) { dev = guide_dev(cr, full); STATUS("\n"); /* Deal with progress bar */ STATUS("Before iteration: dev = %10.5e\n", dev); } backup = backup_crystal(cr); i = 0; do { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; double dev; cell_get_reciprocal(crystal_get_cell(cr), &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); pr_iterate(cr, full, pmodel, &prdata.n_filtered); update_partialities(cr, pmodel); if ( verbose ) { dev = guide_dev(cr, full); STATUS("PR Iteration %2i: dev = %10.5e\n", i+1, dev); } i++; } while ( (mean_p_change > 0.01) && (i < MAX_CYCLES) ); free_backup_crystal(backup); if ( crystal_get_user_flag(cr) == 0 ) { prdata.refined = 1; } return prdata; }