/* * process_image.c * * The processing pipeline for one image * * Copyright © 2012-2020 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2010-2019 Thomas White * 2014-2017 Valerio Mariani * 2017 Stijn de Graaf * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include "utils.h" #include "hdf5-file.h" #include "index.h" #include "peaks.h" #include "detector.h" #include "filters.h" #include "thread-pool.h" #include "geometry.h" #include "stream.h" #include "reflist-utils.h" #include "process_image.h" #include "integration.h" #include "predict-refine.h" #include "im-sandbox.h" #include "time-accounts.h" #include "im-zmq.h" #include "detgeom.h" static float **backup_image_data(float **dp, struct detector *det) { float **bu; int i; bu = malloc(det->n_panels * sizeof(float *)); if ( bu == NULL ) return NULL; for ( i=0; in_panels; i++ ) { size_t data_size; data_size = det->panels[i].w * det->panels[i].h * sizeof(float); bu[i] = malloc(data_size); if ( bu[i] == NULL ) { free(bu); ERROR("Failed to allocate pre-filter backup.\n"); return NULL; } memcpy(bu[i], dp[i], data_size); } return bu; } static void restore_image_data(float **dp, struct detector *det, float **bu) { int i; for ( i=0; in_panels; i++ ) { size_t data_size; data_size = det->panels[i].w * det->panels[i].h * sizeof(float); memcpy(dp[i], bu[i], data_size); free(bu[i]); } free(bu); } static int file_wait_open_read(struct sb_shm *sb_shared, struct image *image, TimeAccounts *taccs, char *last_task, signed int wait_for_file, int cookie, struct imagefile **pimfile) { signed int file_wait_time = wait_for_file; int wait_message_done = 0; int read_retry_done = 0; int r; struct imagefile *imfile; time_accounts_set(taccs, TACC_WAITFILE); set_last_task(last_task, "wait for file"); do { struct stat statbuf; sb_shared->pings[cookie]++; r = stat(image->filename, &statbuf); if ( r ) { if ( (wait_for_file != 0) && (file_wait_time != 0) ) { if ( !wait_message_done ) { STATUS("Waiting for '%s'\n", image->filename); wait_message_done = 1; } sleep(1); if ( wait_for_file != -1 ) { file_wait_time--; } continue; } ERROR("File %s not found\n", image->filename); return 1; } } while ( r ); time_accounts_set(taccs, TACC_HDF5OPEN); set_last_task(last_task, "open file"); sb_shared->pings[cookie]++; do { imfile = imagefile_open(image->filename); if ( imfile == NULL ) { if ( wait_for_file && !read_retry_done ) { read_retry_done = 1; r = 1; STATUS("File '%s' exists but could not be opened." " Trying again after 10 seconds.\n", image->filename); sleep(10); continue; } ERROR("Couldn't open file: %s\n", image->filename); return 1; } time_accounts_set(taccs, TACC_HDF5READ); set_last_task(last_task, "read file"); sb_shared->pings[cookie]++; r = imagefile_read(imfile, image, image->event); if ( r ) { if ( wait_for_file && !read_retry_done ) { read_retry_done = 1; imagefile_close(imfile); STATUS("File '%s' exists but could not be read." " Trying again after 10 seconds.\n", image->filename); sleep(10); continue; } ERROR("Couldn't open file: %s\n", image->filename); return 1; } } while ( r ); *pimfile = imfile; return 0; } static struct detgeom *detgeom_from_olddet(struct detector *det) { struct detgeom *dg; int i; dg = malloc(sizeof(struct detgeom)); if ( dg == NULL ) return NULL; dg->panels = malloc(det->n_panels*sizeof(struct detgeom_panel)); if ( dg->panels == NULL ) return NULL; dg->n_panels = det->n_panels; for ( i=0; in_panels; i++ ) { dg->panels[i].name = strdup(det->panels[i].name); dg->panels[i].cnx = det->panels[i].cnx; dg->panels[i].cny = det->panels[i].cny; dg->panels[i].cnz = det->panels[i].clen; dg->panels[i].pixel_pitch = 1.0/det->panels[i].res; dg->panels[i].adu_per_photon = det->panels[i].adu_per_photon; dg->panels[i].max_adu = det->panels[i].max_adu; dg->panels[i].fsx = det->panels[i].fsx; dg->panels[i].fsy = det->panels[i].fsy; dg->panels[i].fsz = det->panels[i].fsz; dg->panels[i].ssx = det->panels[i].ssx; dg->panels[i].ssy = det->panels[i].ssy; dg->panels[i].ssz = det->panels[i].ssz; dg->panels[i].w = det->panels[i].w; dg->panels[i].h = det->panels[i].h; } return dg; } void process_image(const struct index_args *iargs, struct pattern_args *pargs, Stream *st, int cookie, const char *tmpdir, int serial, struct sb_shm *sb_shared, TimeAccounts *taccs, char *last_task) { struct imagefile *imfile = NULL; struct image image; int i; int r; int ret; char *rn; float **prefilter; int any_crystals; image.features = NULL; image.copyme = iargs->copyme; image.id = cookie; image.beam = iargs->beam; image.det = copy_geom(iargs->det); image.crystals = NULL; image.n_crystals = 0; image.serial = serial; image.indexed_by = INDEXING_NONE; image.filename = pargs->filename_p_e->filename; image.event = pargs->filename_p_e->ev; if ( pargs->msgpack_obj != NULL ) { set_last_task(last_task, "unpacking messagepack object"); if ( unpack_msgpack_data(pargs->msgpack_obj, &image, iargs->no_image_data) ) return; } else { if ( file_wait_open_read(sb_shared, &image, taccs, last_task, iargs->wait_for_file, cookie, &imfile) ) { if ( iargs->wait_for_file != 0 ) { pthread_mutex_lock(&sb_shared->totals_lock); sb_shared->should_shutdown = 1; pthread_mutex_unlock(&sb_shared->totals_lock); } return; } } /* Create detgeom structure after loading image, * so we get the "filled in" clen values, etc. */ image.detgeom = detgeom_from_olddet(iargs->det); image.bw = iargs->beam->bandwidth; /* Take snapshot of image before applying horrible noise filters */ time_accounts_set(taccs, TACC_FILTER); set_last_task(last_task, "image filter"); sb_shared->pings[cookie]++; prefilter = backup_image_data(image.dp, image.det); if ( iargs->median_filter > 0 ) { filter_median(&image, iargs->median_filter); } if ( iargs->noisefilter ) { filter_noise(&image); } time_accounts_set(taccs, TACC_RESRANGE); set_last_task(last_task, "resolution range"); sb_shared->pings[cookie]++; mark_resolution_range_as_bad(&image, iargs->highres, +INFINITY); time_accounts_set(taccs, TACC_PEAKSEARCH); sb_shared->pings[cookie]++; switch ( iargs->peaks ) { struct hdfile *hdfile; case PEAK_HDF5: set_last_task(last_task, "peaksearch:hdf5"); hdfile = imagefile_get_hdfile(imfile); if ( (hdfile == NULL) || (get_peaks_2(&image, hdfile, iargs->hdf5_peak_path, iargs->half_pixel_shift)) ) { ERROR("Failed to get peaks from HDF5 file.\n"); } if ( !iargs->no_revalidate ) { validate_peaks(&image, iargs->min_snr, iargs->pk_inn, iargs->pk_mid, iargs->pk_out, iargs->use_saturated, iargs->check_hdf5_snr); } break; case PEAK_CXI: set_last_task(last_task, "peaksearch:cxi"); hdfile = imagefile_get_hdfile(imfile); if ( (hdfile == NULL) || (get_peaks_cxi_2(&image, hdfile, iargs->hdf5_peak_path, pargs->filename_p_e, iargs->half_pixel_shift)) ) { ERROR("Failed to get peaks from CXI file.\n"); } if ( !iargs->no_revalidate ) { validate_peaks(&image, iargs->min_snr, iargs->pk_inn, iargs->pk_mid, iargs->pk_out, iargs->use_saturated, iargs->check_hdf5_snr); } break; case PEAK_ZAEF: set_last_task(last_task, "peaksearch:zaef"); search_peaks(&image, iargs->threshold, iargs->min_sq_gradient, iargs->min_snr, iargs->pk_inn, iargs->pk_mid, iargs->pk_out, iargs->use_saturated); break; case PEAK_PEAKFINDER8: set_last_task(last_task, "peaksearch:pf8"); if ( search_peaks_peakfinder8(&image, 2048, iargs->threshold, iargs->min_snr, iargs->min_pix_count, iargs->max_pix_count, iargs->local_bg_radius, iargs->min_res, iargs->max_res, iargs->use_saturated) ) { if ( image.event != NULL ) { ERROR("Failed to find peaks in image %s" "(event %s).\n", image.filename, get_event_string(image.event)); } else { ERROR("Failed to find peaks in image %s.", image.filename); } } break; case PEAK_PEAKFINDER9: set_last_task(last_task, "peaksearch:pf9"); if ( search_peaks_peakfinder9(&image, iargs->min_snr_biggest_pix, iargs->min_snr_peak_pix, iargs->min_snr, iargs->min_sig, iargs->min_peak_over_neighbour, iargs->local_bg_radius) ) { if ( image.event != NULL ) { ERROR("Failed to find peaks in image %s" "(event %s).\n", image.filename, get_event_string(image.event)); } else { ERROR("Failed to find peaks in image %s.", image.filename); } } break; case PEAK_MSGPACK: image.features = get_peaks_msgpack(pargs->msgpack_obj, iargs->dtempl, iargs->half_pixel_shift); break; case PEAK_NONE: case PEAK_ERROR: break; } image.peak_resolution = estimate_peak_resolution(image.features, image.lambda, image.det); restore_image_data(image.dp, image.det, prefilter); rn = getcwd(NULL, 0); r = chdir(tmpdir); if ( r ) { ERROR("Failed to chdir to temporary folder: %s\n", strerror(errno)); imagefile_close(imfile); return; } /* Set beam parameters */ if ( iargs->fix_divergence >= 0.0 ) { image.div = iargs->fix_divergence; } else { image.div = 0.0; } /* Set beam spectrum */ if ( iargs->spectrum != NULL ) { image.spectrum = iargs->spectrum; } else { image.spectrum = spectrum_generate_gaussian(image.lambda, image.bw); } if ( image_feature_count(image.features) < iargs->min_peaks ) { r = chdir(rn); if ( r ) { ERROR("Failed to chdir: %s\n", strerror(errno)); imagefile_close(imfile); return; } free(rn); image.hit = 0; if ( iargs->stream_nonhits ) { goto streamwrite; } else { goto out; } } image.hit = 1; /* Index the pattern */ time_accounts_set(taccs, TACC_INDEXING); set_last_task(last_task, "indexing"); index_pattern_3(&image, iargs->ipriv, &sb_shared->pings[cookie], last_task); r = chdir(rn); if ( r ) { ERROR("Failed to chdir: %s\n", strerror(errno)); imagefile_close(imfile); return; } free(rn); /* Set beam/crystal parameters */ time_accounts_set(taccs, TACC_PREDPARAMS); set_last_task(last_task, "prediction params"); if ( iargs->fix_profile_r >= 0.0 ) { for ( i=0; ifix_profile_r); crystal_set_mosaicity(image.crystals[i], 0.0); } } else { for ( i=0; ifix_profile_r < 0.0 ) { for ( i=0; ipings[cookie]++; integrate_all_5(&image, iargs->int_meth, PMODEL_XSPHERE, iargs->push_res, iargs->ir_inn, iargs->ir_mid, iargs->ir_out, iargs->int_diag, iargs->int_diag_h, iargs->int_diag_k, iargs->int_diag_l, &sb_shared->term_lock, iargs->overpredict); streamwrite: time_accounts_set(taccs, TACC_WRITESTREAM); set_last_task(last_task, "stream write"); sb_shared->pings[cookie]++; ret = write_chunk(st, &image, imfile, iargs->stream_peaks, iargs->stream_refls, pargs->filename_p_e->ev); if ( ret != 0 ) { ERROR("Error writing stream file.\n"); } int n = 0; for ( i=0; i 0 ) { STATUS("WARNING: %i implausibly negative reflection%s in %s " "%s\n", n, n>1?"s":"", image.filename, get_event_string(image.event)); } out: /* Count crystals which are still good */ time_accounts_set(taccs, TACC_TOTALS); set_last_task(last_task, "process_image finalisation"); sb_shared->pings[cookie]++; pthread_mutex_lock(&sb_shared->totals_lock); any_crystals = 0; for ( i=0; in_crystals++; any_crystals = 1; } } sb_shared->n_processed++; sb_shared->n_hits += image.hit; sb_shared->n_hadcrystals += any_crystals; pthread_mutex_unlock(&sb_shared->totals_lock); for ( i=0; ispectrum == NULL ) { spectrum_free(image.spectrum); } for ( i=0; in_panels; i++ ) { free(image.dp[i]); free(image.bad[i]); free(image.sat[i]); } free(image.dp); free(image.bad); free(image.sat); image_feature_list_free(image.features); free_detector_geometry(image.det); if ( imfile != NULL ) imagefile_close(imfile); set_last_task(last_task, "sandbox"); }