/* * process_image.c * * The processing pipeline for one image * * Copyright © 2012-2013 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2010-2013 Thomas White * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include "utils.h" #include "hdf5-file.h" #include "index.h" #include "peaks.h" #include "detector.h" #include "filters.h" #include "thread-pool.h" #include "beam-parameters.h" #include "geometry.h" #include "stream.h" #include "reflist-utils.h" #include "process_image.h" void process_image(const struct index_args *iargs, struct pattern_args *pargs, Stream *st, int cookie) { float *data_for_measurement; size_t data_size; int check; struct hdfile *hdfile; struct image image; int i; char filename[1024]; /* Prefix to jump out of temporary folder */ if ( pargs->filename[0] != '/' ) { snprintf(filename, 1023, "../../%s", pargs->filename); } else { snprintf(filename, 1023, "%s", pargs->filename); } image.features = NULL; image.data = NULL; image.flags = NULL; image.copyme = iargs->copyme; image.id = cookie; image.filename = pargs->filename; /* Relative to top level */ image.beam = iargs->beam; image.det = iargs->det; image.crystals = NULL; image.n_crystals = 0; hdfile = hdfile_open(filename); /* Relative to temporary folder */ if ( hdfile == NULL ) return; if ( iargs->element != NULL ) { int r; r = hdfile_set_image(hdfile, iargs->element); if ( r ) { ERROR("Couldn't select path '%s'\n", iargs->element); hdfile_close(hdfile); return; } } else { int r; r = hdfile_set_first_image(hdfile, "/"); if ( r ) { ERROR("Couldn't select first path\n"); hdfile_close(hdfile); return; } } check = hdf5_read(hdfile, &image, 1); if ( check ) { hdfile_close(hdfile); return; } if ( (image.width != image.det->max_fs + 1 ) || (image.height != image.det->max_ss + 1)) { ERROR("Image size doesn't match geometry size" " - rejecting image.\n"); ERROR("Image size: %i,%i. Geometry size: %i,%i\n", image.width, image.height, image.det->max_fs + 1, image.det->max_ss + 1); hdfile_close(hdfile); return; } fill_in_values(image.det, hdfile); fill_in_beam_parameters(image.beam, hdfile); image.lambda = ph_en_to_lambda(eV_to_J(image.beam->photon_energy)); if ( (image.beam->photon_energy < 0.0) || (image.lambda > 1000) ) { /* Error message covers a silly value in the beam file or in * the HDF5 file. */ ERROR("Nonsensical wavelength (%e m or %e eV) value for %s.\n", image.lambda, image.beam->photon_energy, image.filename); hdfile_close(hdfile); return; } /* Take snapshot of image after CM subtraction but before applying * horrible noise filters to it */ data_size = image.width * image.height * sizeof(float); data_for_measurement = malloc(data_size); memcpy(data_for_measurement, image.data, data_size); if ( iargs->median_filter > 0 ) { filter_median(&image, iargs->median_filter); } if ( iargs->noisefilter ) { filter_noise(&image); } switch ( iargs->peaks ) { case PEAK_HDF5: /* Get peaks from HDF5 */ if ( get_peaks(&image, hdfile, iargs->hdf5_peak_path) ) { ERROR("Failed to get peaks from HDF5 file.\n"); } if ( !iargs->no_revalidate ) { validate_peaks(&image, iargs->min_int_snr, iargs->ir_inn, iargs->ir_mid, iargs->ir_out, iargs->use_saturated); } break; case PEAK_ZAEF: search_peaks(&image, iargs->threshold, iargs->min_gradient, iargs->min_snr, iargs->ir_inn, iargs->ir_mid, iargs->ir_out, iargs->use_saturated); break; } /* Get rid of noise-filtered version at this point * - it was strictly for the purposes of peak detection. */ free(image.data); image.data = data_for_measurement; /* Index the pattern */ index_pattern(&image, iargs->indm, iargs->ipriv); pargs->n_crystals = image.n_crystals; /* Default beam parameters */ image.div = image.beam->divergence; image.bw = image.beam->bandwidth; /* Integrate each crystal's diffraction spots */ for ( i=0; iprofile_radius); if ( iargs->integrate_found ) { reflections = select_intersections(&image, image.crystals[i]); } else { reflections = find_intersections(&image, image.crystals[i]); } crystal_set_reflections(image.crystals[i], reflections); } /* Integrate all the crystals at once - need all the crystals so that * overlaps can be detected. */ integrate_reflections(&image, iargs->closer, iargs->bgsub, iargs->min_int_snr, iargs->ir_inn, iargs->ir_mid, iargs->ir_out, iargs->integrate_saturated, iargs->res_cutoff); write_chunk(st, &image, hdfile, iargs->stream_peaks, iargs->stream_refls); for ( i=0; i