aboutsummaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/hugetlb.c4
-rw-r--r--mm/madvise.c21
-rw-r--r--mm/memory.c10
-rw-r--r--mm/mempolicy.c18
-rw-r--r--mm/page_alloc.c22
-rw-r--r--mm/slab.c10
-rw-r--r--mm/swap.c2
-rw-r--r--mm/vmscan.c106
8 files changed, 129 insertions, 64 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 67f29516662..508707704d2 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -85,7 +85,7 @@ void free_huge_page(struct page *page)
BUG_ON(page_count(page));
INIT_LIST_HEAD(&page->lru);
- page[1].mapping = NULL;
+ page[1].lru.next = NULL; /* reset dtor */
spin_lock(&hugetlb_lock);
enqueue_huge_page(page);
@@ -105,7 +105,7 @@ struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
}
spin_unlock(&hugetlb_lock);
set_page_count(page, 1);
- page[1].mapping = (void *)free_huge_page;
+ page[1].lru.next = (void *)free_huge_page; /* set dtor */
for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
clear_user_highpage(&page[i], addr);
return page;
diff --git a/mm/madvise.c b/mm/madvise.c
index ae0ae3ea299..af3d573b014 100644
--- a/mm/madvise.c
+++ b/mm/madvise.c
@@ -22,16 +22,23 @@ static long madvise_behavior(struct vm_area_struct * vma,
struct mm_struct * mm = vma->vm_mm;
int error = 0;
pgoff_t pgoff;
- int new_flags = vma->vm_flags & ~VM_READHINTMASK;
+ int new_flags = vma->vm_flags;
switch (behavior) {
+ case MADV_NORMAL:
+ new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
+ break;
case MADV_SEQUENTIAL:
- new_flags |= VM_SEQ_READ;
+ new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
break;
case MADV_RANDOM:
- new_flags |= VM_RAND_READ;
+ new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
break;
- default:
+ case MADV_DONTFORK:
+ new_flags |= VM_DONTCOPY;
+ break;
+ case MADV_DOFORK:
+ new_flags &= ~VM_DONTCOPY;
break;
}
@@ -177,6 +184,12 @@ madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
long error;
switch (behavior) {
+ case MADV_DOFORK:
+ if (vma->vm_flags & VM_IO) {
+ error = -EINVAL;
+ break;
+ }
+ case MADV_DONTFORK:
case MADV_NORMAL:
case MADV_SEQUENTIAL:
case MADV_RANDOM:
diff --git a/mm/memory.c b/mm/memory.c
index 2bee1f21aa8..9abc6008544 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -82,6 +82,16 @@ EXPORT_SYMBOL(num_physpages);
EXPORT_SYMBOL(high_memory);
EXPORT_SYMBOL(vmalloc_earlyreserve);
+int randomize_va_space __read_mostly = 1;
+
+static int __init disable_randmaps(char *s)
+{
+ randomize_va_space = 0;
+ return 0;
+}
+__setup("norandmaps", disable_randmaps);
+
+
/*
* If a p?d_bad entry is found while walking page tables, report
* the error, before resetting entry to p?d_none. Usually (but
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 3bd7fb7e4b7..323fdcf128c 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -132,19 +132,29 @@ static int mpol_check_policy(int mode, nodemask_t *nodes)
}
return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
}
+
/* Generate a custom zonelist for the BIND policy. */
static struct zonelist *bind_zonelist(nodemask_t *nodes)
{
struct zonelist *zl;
- int num, max, nd;
+ int num, max, nd, k;
max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
- zl = kmalloc(sizeof(void *) * max, GFP_KERNEL);
+ zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
if (!zl)
return NULL;
num = 0;
- for_each_node_mask(nd, *nodes)
- zl->zones[num++] = &NODE_DATA(nd)->node_zones[policy_zone];
+ /* First put in the highest zones from all nodes, then all the next
+ lower zones etc. Avoid empty zones because the memory allocator
+ doesn't like them. If you implement node hot removal you
+ have to fix that. */
+ for (k = policy_zone; k >= 0; k--) {
+ for_each_node_mask(nd, *nodes) {
+ struct zone *z = &NODE_DATA(nd)->node_zones[k];
+ if (z->present_pages > 0)
+ zl->zones[num++] = z;
+ }
+ }
zl->zones[num] = NULL;
return zl;
}
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index dde04ff4be3..62c12252858 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -56,6 +56,7 @@ long nr_swap_pages;
int percpu_pagelist_fraction;
static void fastcall free_hot_cold_page(struct page *page, int cold);
+static void __free_pages_ok(struct page *page, unsigned int order);
/*
* results with 256, 32 in the lowmem_reserve sysctl:
@@ -169,20 +170,23 @@ static void bad_page(struct page *page)
* All pages have PG_compound set. All pages have their ->private pointing at
* the head page (even the head page has this).
*
- * The first tail page's ->mapping, if non-zero, holds the address of the
- * compound page's put_page() function.
- *
- * The order of the allocation is stored in the first tail page's ->index
- * This is only for debug at present. This usage means that zero-order pages
- * may not be compound.
+ * The first tail page's ->lru.next holds the address of the compound page's
+ * put_page() function. Its ->lru.prev holds the order of allocation.
+ * This usage means that zero-order pages may not be compound.
*/
+
+static void free_compound_page(struct page *page)
+{
+ __free_pages_ok(page, (unsigned long)page[1].lru.prev);
+}
+
static void prep_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
- page[1].mapping = NULL;
- page[1].index = order;
+ page[1].lru.next = (void *)free_compound_page; /* set dtor */
+ page[1].lru.prev = (void *)order;
for (i = 0; i < nr_pages; i++) {
struct page *p = page + i;
@@ -196,7 +200,7 @@ static void destroy_compound_page(struct page *page, unsigned long order)
int i;
int nr_pages = 1 << order;
- if (unlikely(page[1].index != order))
+ if (unlikely((unsigned long)page[1].lru.prev != order))
bad_page(page);
for (i = 0; i < nr_pages; i++) {
diff --git a/mm/slab.c b/mm/slab.c
index d66c2b0d971..add05d808a4 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -1717,6 +1717,12 @@ kmem_cache_create (const char *name, size_t size, size_t align,
BUG();
}
+ /*
+ * Prevent CPUs from coming and going.
+ * lock_cpu_hotplug() nests outside cache_chain_mutex
+ */
+ lock_cpu_hotplug();
+
mutex_lock(&cache_chain_mutex);
list_for_each(p, &cache_chain) {
@@ -1918,8 +1924,6 @@ kmem_cache_create (const char *name, size_t size, size_t align,
cachep->dtor = dtor;
cachep->name = name;
- /* Don't let CPUs to come and go */
- lock_cpu_hotplug();
if (g_cpucache_up == FULL) {
enable_cpucache(cachep);
@@ -1978,12 +1982,12 @@ kmem_cache_create (const char *name, size_t size, size_t align,
/* cache setup completed, link it into the list */
list_add(&cachep->next, &cache_chain);
- unlock_cpu_hotplug();
oops:
if (!cachep && (flags & SLAB_PANIC))
panic("kmem_cache_create(): failed to create slab `%s'\n",
name);
mutex_unlock(&cache_chain_mutex);
+ unlock_cpu_hotplug();
return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);
diff --git a/mm/swap.c b/mm/swap.c
index 76247424dea..cce3dda59c5 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -40,7 +40,7 @@ static void put_compound_page(struct page *page)
if (put_page_testzero(page)) {
void (*dtor)(struct page *page);
- dtor = (void (*)(struct page *))page[1].mapping;
+ dtor = (void (*)(struct page *))page[1].lru.next;
(*dtor)(page);
}
}
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 5a610804cd0..1838c15ca4f 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -443,6 +443,10 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
BUG_ON(PageActive(page));
sc->nr_scanned++;
+
+ if (!sc->may_swap && page_mapped(page))
+ goto keep_locked;
+
/* Double the slab pressure for mapped and swapcache pages */
if (page_mapped(page) || PageSwapCache(page))
sc->nr_scanned++;
@@ -632,7 +636,7 @@ static int swap_page(struct page *page)
struct address_space *mapping = page_mapping(page);
if (page_mapped(page) && mapping)
- if (try_to_unmap(page, 0) != SWAP_SUCCESS)
+ if (try_to_unmap(page, 1) != SWAP_SUCCESS)
goto unlock_retry;
if (PageDirty(page)) {
@@ -839,7 +843,7 @@ EXPORT_SYMBOL(migrate_page);
* pages are swapped out.
*
* The function returns after 10 attempts or if no pages
- * are movable anymore because t has become empty
+ * are movable anymore because to has become empty
* or no retryable pages exist anymore.
*
* Return: Number of pages not migrated when "to" ran empty.
@@ -928,12 +932,21 @@ redo:
goto unlock_both;
if (mapping->a_ops->migratepage) {
+ /*
+ * Most pages have a mapping and most filesystems
+ * should provide a migration function. Anonymous
+ * pages are part of swap space which also has its
+ * own migration function. This is the most common
+ * path for page migration.
+ */
rc = mapping->a_ops->migratepage(newpage, page);
goto unlock_both;
}
/*
- * Trigger writeout if page is dirty
+ * Default handling if a filesystem does not provide
+ * a migration function. We can only migrate clean
+ * pages so try to write out any dirty pages first.
*/
if (PageDirty(page)) {
switch (pageout(page, mapping)) {
@@ -949,9 +962,10 @@ redo:
; /* try to migrate the page below */
}
}
+
/*
- * If we have no buffer or can release the buffer
- * then do a simple migration.
+ * Buffers are managed in a filesystem specific way.
+ * We must have no buffers or drop them.
*/
if (!page_has_buffers(page) ||
try_to_release_page(page, GFP_KERNEL)) {
@@ -966,6 +980,11 @@ redo:
* swap them out.
*/
if (pass > 4) {
+ /*
+ * Persistently unable to drop buffers..... As a
+ * measure of last resort we fall back to
+ * swap_page().
+ */
unlock_page(newpage);
newpage = NULL;
rc = swap_page(page);
@@ -1176,9 +1195,47 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc)
struct page *page;
struct pagevec pvec;
int reclaim_mapped = 0;
- long mapped_ratio;
- long distress;
- long swap_tendency;
+
+ if (unlikely(sc->may_swap)) {
+ long mapped_ratio;
+ long distress;
+ long swap_tendency;
+
+ /*
+ * `distress' is a measure of how much trouble we're having
+ * reclaiming pages. 0 -> no problems. 100 -> great trouble.
+ */
+ distress = 100 >> zone->prev_priority;
+
+ /*
+ * The point of this algorithm is to decide when to start
+ * reclaiming mapped memory instead of just pagecache. Work out
+ * how much memory
+ * is mapped.
+ */
+ mapped_ratio = (sc->nr_mapped * 100) / total_memory;
+
+ /*
+ * Now decide how much we really want to unmap some pages. The
+ * mapped ratio is downgraded - just because there's a lot of
+ * mapped memory doesn't necessarily mean that page reclaim
+ * isn't succeeding.
+ *
+ * The distress ratio is important - we don't want to start
+ * going oom.
+ *
+ * A 100% value of vm_swappiness overrides this algorithm
+ * altogether.
+ */
+ swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
+
+ /*
+ * Now use this metric to decide whether to start moving mapped
+ * memory onto the inactive list.
+ */
+ if (swap_tendency >= 100)
+ reclaim_mapped = 1;
+ }
lru_add_drain();
spin_lock_irq(&zone->lru_lock);
@@ -1188,37 +1245,6 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc)
zone->nr_active -= pgmoved;
spin_unlock_irq(&zone->lru_lock);
- /*
- * `distress' is a measure of how much trouble we're having reclaiming
- * pages. 0 -> no problems. 100 -> great trouble.
- */
- distress = 100 >> zone->prev_priority;
-
- /*
- * The point of this algorithm is to decide when to start reclaiming
- * mapped memory instead of just pagecache. Work out how much memory
- * is mapped.
- */
- mapped_ratio = (sc->nr_mapped * 100) / total_memory;
-
- /*
- * Now decide how much we really want to unmap some pages. The mapped
- * ratio is downgraded - just because there's a lot of mapped memory
- * doesn't necessarily mean that page reclaim isn't succeeding.
- *
- * The distress ratio is important - we don't want to start going oom.
- *
- * A 100% value of vm_swappiness overrides this algorithm altogether.
- */
- swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
-
- /*
- * Now use this metric to decide whether to start moving mapped memory
- * onto the inactive list.
- */
- if (swap_tendency >= 100)
- reclaim_mapped = 1;
-
while (!list_empty(&l_hold)) {
cond_resched();
page = lru_to_page(&l_hold);
@@ -1595,9 +1621,7 @@ scan:
sc.nr_reclaimed = 0;
sc.priority = priority;
sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
- atomic_inc(&zone->reclaim_in_progress);
shrink_zone(zone, &sc);
- atomic_dec(&zone->reclaim_in_progress);
reclaim_state->reclaimed_slab = 0;
nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
lru_pages);