From 4baa9922430662431231ac637adedddbb0cfb2d7 Mon Sep 17 00:00:00 2001 From: Russell King Date: Sat, 2 Aug 2008 10:55:55 +0100 Subject: [ARM] move include/asm-arm to arch/arm/include/asm Move platform independent header files to arch/arm/include/asm, leaving those in asm/arch* and asm/plat* alone. Signed-off-by: Russell King --- include/asm-arm/pgtable.h | 401 ---------------------------------------------- 1 file changed, 401 deletions(-) delete mode 100644 include/asm-arm/pgtable.h (limited to 'include/asm-arm/pgtable.h') diff --git a/include/asm-arm/pgtable.h b/include/asm-arm/pgtable.h deleted file mode 100644 index 5571c13c3f3..00000000000 --- a/include/asm-arm/pgtable.h +++ /dev/null @@ -1,401 +0,0 @@ -/* - * linux/include/asm-arm/pgtable.h - * - * Copyright (C) 1995-2002 Russell King - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ -#ifndef _ASMARM_PGTABLE_H -#define _ASMARM_PGTABLE_H - -#include -#include - -#ifndef CONFIG_MMU - -#include "pgtable-nommu.h" - -#else - -#include -#include -#include - -/* - * Just any arbitrary offset to the start of the vmalloc VM area: the - * current 8MB value just means that there will be a 8MB "hole" after the - * physical memory until the kernel virtual memory starts. That means that - * any out-of-bounds memory accesses will hopefully be caught. - * The vmalloc() routines leaves a hole of 4kB between each vmalloced - * area for the same reason. ;) - * - * Note that platforms may override VMALLOC_START, but they must provide - * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space, - * which may not overlap IO space. - */ -#ifndef VMALLOC_START -#define VMALLOC_OFFSET (8*1024*1024) -#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) -#endif - -/* - * Hardware-wise, we have a two level page table structure, where the first - * level has 4096 entries, and the second level has 256 entries. Each entry - * is one 32-bit word. Most of the bits in the second level entry are used - * by hardware, and there aren't any "accessed" and "dirty" bits. - * - * Linux on the other hand has a three level page table structure, which can - * be wrapped to fit a two level page table structure easily - using the PGD - * and PTE only. However, Linux also expects one "PTE" table per page, and - * at least a "dirty" bit. - * - * Therefore, we tweak the implementation slightly - we tell Linux that we - * have 2048 entries in the first level, each of which is 8 bytes (iow, two - * hardware pointers to the second level.) The second level contains two - * hardware PTE tables arranged contiguously, followed by Linux versions - * which contain the state information Linux needs. We, therefore, end up - * with 512 entries in the "PTE" level. - * - * This leads to the page tables having the following layout: - * - * pgd pte - * | | - * +--------+ +0 - * | |-----> +------------+ +0 - * +- - - - + +4 | h/w pt 0 | - * | |-----> +------------+ +1024 - * +--------+ +8 | h/w pt 1 | - * | | +------------+ +2048 - * +- - - - + | Linux pt 0 | - * | | +------------+ +3072 - * +--------+ | Linux pt 1 | - * | | +------------+ +4096 - * - * See L_PTE_xxx below for definitions of bits in the "Linux pt", and - * PTE_xxx for definitions of bits appearing in the "h/w pt". - * - * PMD_xxx definitions refer to bits in the first level page table. - * - * The "dirty" bit is emulated by only granting hardware write permission - * iff the page is marked "writable" and "dirty" in the Linux PTE. This - * means that a write to a clean page will cause a permission fault, and - * the Linux MM layer will mark the page dirty via handle_pte_fault(). - * For the hardware to notice the permission change, the TLB entry must - * be flushed, and ptep_set_access_flags() does that for us. - * - * The "accessed" or "young" bit is emulated by a similar method; we only - * allow accesses to the page if the "young" bit is set. Accesses to the - * page will cause a fault, and handle_pte_fault() will set the young bit - * for us as long as the page is marked present in the corresponding Linux - * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is - * up to date. - * - * However, when the "young" bit is cleared, we deny access to the page - * by clearing the hardware PTE. Currently Linux does not flush the TLB - * for us in this case, which means the TLB will retain the transation - * until either the TLB entry is evicted under pressure, or a context - * switch which changes the user space mapping occurs. - */ -#define PTRS_PER_PTE 512 -#define PTRS_PER_PMD 1 -#define PTRS_PER_PGD 2048 - -/* - * PMD_SHIFT determines the size of the area a second-level page table can map - * PGDIR_SHIFT determines what a third-level page table entry can map - */ -#define PMD_SHIFT 21 -#define PGDIR_SHIFT 21 - -#define LIBRARY_TEXT_START 0x0c000000 - -#ifndef __ASSEMBLY__ -extern void __pte_error(const char *file, int line, unsigned long val); -extern void __pmd_error(const char *file, int line, unsigned long val); -extern void __pgd_error(const char *file, int line, unsigned long val); - -#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) -#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) -#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) -#endif /* !__ASSEMBLY__ */ - -#define PMD_SIZE (1UL << PMD_SHIFT) -#define PMD_MASK (~(PMD_SIZE-1)) -#define PGDIR_SIZE (1UL << PGDIR_SHIFT) -#define PGDIR_MASK (~(PGDIR_SIZE-1)) - -/* - * This is the lowest virtual address we can permit any user space - * mapping to be mapped at. This is particularly important for - * non-high vector CPUs. - */ -#define FIRST_USER_ADDRESS PAGE_SIZE - -#define FIRST_USER_PGD_NR 1 -#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) - -/* - * section address mask and size definitions. - */ -#define SECTION_SHIFT 20 -#define SECTION_SIZE (1UL << SECTION_SHIFT) -#define SECTION_MASK (~(SECTION_SIZE-1)) - -/* - * ARMv6 supersection address mask and size definitions. - */ -#define SUPERSECTION_SHIFT 24 -#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) -#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) - -/* - * "Linux" PTE definitions. - * - * We keep two sets of PTEs - the hardware and the linux version. - * This allows greater flexibility in the way we map the Linux bits - * onto the hardware tables, and allows us to have YOUNG and DIRTY - * bits. - * - * The PTE table pointer refers to the hardware entries; the "Linux" - * entries are stored 1024 bytes below. - */ -#define L_PTE_PRESENT (1 << 0) -#define L_PTE_FILE (1 << 1) /* only when !PRESENT */ -#define L_PTE_YOUNG (1 << 1) -#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */ -#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */ -#define L_PTE_USER (1 << 4) -#define L_PTE_WRITE (1 << 5) -#define L_PTE_EXEC (1 << 6) -#define L_PTE_DIRTY (1 << 7) -#define L_PTE_SHARED (1 << 10) /* shared(v6), coherent(xsc3) */ - -#ifndef __ASSEMBLY__ - -/* - * The pgprot_* and protection_map entries will be fixed up in runtime - * to include the cachable and bufferable bits based on memory policy, - * as well as any architecture dependent bits like global/ASID and SMP - * shared mapping bits. - */ -#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE -#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC - -extern pgprot_t pgprot_user; -extern pgprot_t pgprot_kernel; - -#define PAGE_NONE pgprot_user -#define PAGE_COPY __pgprot(pgprot_val(pgprot_user) | _L_PTE_READ) -#define PAGE_SHARED __pgprot(pgprot_val(pgprot_user) | _L_PTE_READ | \ - L_PTE_WRITE) -#define PAGE_READONLY __pgprot(pgprot_val(pgprot_user) | _L_PTE_READ) -#define PAGE_KERNEL pgprot_kernel - -#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT) -#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) -#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE) -#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) - -#endif /* __ASSEMBLY__ */ - -/* - * The table below defines the page protection levels that we insert into our - * Linux page table version. These get translated into the best that the - * architecture can perform. Note that on most ARM hardware: - * 1) We cannot do execute protection - * 2) If we could do execute protection, then read is implied - * 3) write implies read permissions - */ -#define __P000 __PAGE_NONE -#define __P001 __PAGE_READONLY -#define __P010 __PAGE_COPY -#define __P011 __PAGE_COPY -#define __P100 __PAGE_READONLY -#define __P101 __PAGE_READONLY -#define __P110 __PAGE_COPY -#define __P111 __PAGE_COPY - -#define __S000 __PAGE_NONE -#define __S001 __PAGE_READONLY -#define __S010 __PAGE_SHARED -#define __S011 __PAGE_SHARED -#define __S100 __PAGE_READONLY -#define __S101 __PAGE_READONLY -#define __S110 __PAGE_SHARED -#define __S111 __PAGE_SHARED - -#ifndef __ASSEMBLY__ -/* - * ZERO_PAGE is a global shared page that is always zero: used - * for zero-mapped memory areas etc.. - */ -extern struct page *empty_zero_page; -#define ZERO_PAGE(vaddr) (empty_zero_page) - -#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) -#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))) - -#define pte_none(pte) (!pte_val(pte)) -#define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0) -#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) -#define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr)) -#define pte_offset_map(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr)) -#define pte_offset_map_nested(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr)) -#define pte_unmap(pte) do { } while (0) -#define pte_unmap_nested(pte) do { } while (0) - -#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext) - -#define set_pte_at(mm,addr,ptep,pteval) do { \ - set_pte_ext(ptep, pteval, (addr) >= TASK_SIZE ? 0 : PTE_EXT_NG); \ - } while (0) - -/* - * The following only work if pte_present() is true. - * Undefined behaviour if not.. - */ -#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT) -#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE) -#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY) -#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG) -#define pte_special(pte) (0) - -/* - * The following only works if pte_present() is not true. - */ -#define pte_file(pte) (pte_val(pte) & L_PTE_FILE) -#define pte_to_pgoff(x) (pte_val(x) >> 2) -#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE) - -#define PTE_FILE_MAX_BITS 30 - -#define PTE_BIT_FUNC(fn,op) \ -static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } - -PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE); -PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE); -PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY); -PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY); -PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG); -PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG); - -static inline pte_t pte_mkspecial(pte_t pte) { return pte; } - -/* - * Mark the prot value as uncacheable and unbufferable. - */ -#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE)) -#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE) - -#define pmd_none(pmd) (!pmd_val(pmd)) -#define pmd_present(pmd) (pmd_val(pmd)) -#define pmd_bad(pmd) (pmd_val(pmd) & 2) - -#define copy_pmd(pmdpd,pmdps) \ - do { \ - pmdpd[0] = pmdps[0]; \ - pmdpd[1] = pmdps[1]; \ - flush_pmd_entry(pmdpd); \ - } while (0) - -#define pmd_clear(pmdp) \ - do { \ - pmdp[0] = __pmd(0); \ - pmdp[1] = __pmd(0); \ - clean_pmd_entry(pmdp); \ - } while (0) - -static inline pte_t *pmd_page_vaddr(pmd_t pmd) -{ - unsigned long ptr; - - ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1); - ptr += PTRS_PER_PTE * sizeof(void *); - - return __va(ptr); -} - -#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd))) - -/* - * Permanent address of a page. We never have highmem, so this is trivial. - */ -#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) - -/* - * Conversion functions: convert a page and protection to a page entry, - * and a page entry and page directory to the page they refer to. - */ -#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) - -/* - * The "pgd_xxx()" functions here are trivial for a folded two-level - * setup: the pgd is never bad, and a pmd always exists (as it's folded - * into the pgd entry) - */ -#define pgd_none(pgd) (0) -#define pgd_bad(pgd) (0) -#define pgd_present(pgd) (1) -#define pgd_clear(pgdp) do { } while (0) -#define set_pgd(pgd,pgdp) do { } while (0) - -/* to find an entry in a page-table-directory */ -#define pgd_index(addr) ((addr) >> PGDIR_SHIFT) - -#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) - -/* to find an entry in a kernel page-table-directory */ -#define pgd_offset_k(addr) pgd_offset(&init_mm, addr) - -/* Find an entry in the second-level page table.. */ -#define pmd_offset(dir, addr) ((pmd_t *)(dir)) - -/* Find an entry in the third-level page table.. */ -#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) - -static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) -{ - const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER; - pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); - return pte; -} - -extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; - -/* Encode and decode a swap entry. - * - * We support up to 32GB of swap on 4k machines - */ -#define __swp_type(x) (((x).val >> 2) & 0x7f) -#define __swp_offset(x) ((x).val >> 9) -#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) }) -#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) -#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) - -/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ -/* FIXME: this is not correct */ -#define kern_addr_valid(addr) (1) - -#include - -/* - * We provide our own arch_get_unmapped_area to cope with VIPT caches. - */ -#define HAVE_ARCH_UNMAPPED_AREA - -/* - * remap a physical page `pfn' of size `size' with page protection `prot' - * into virtual address `from' - */ -#define io_remap_pfn_range(vma,from,pfn,size,prot) \ - remap_pfn_range(vma, from, pfn, size, prot) - -#define pgtable_cache_init() do { } while (0) - -#endif /* !__ASSEMBLY__ */ - -#endif /* CONFIG_MMU */ - -#endif /* _ASMARM_PGTABLE_H */ -- cgit v1.2.3