/* linux/arch/arm/mach-msm/timer.c * * Copyright (C) 2007 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/init.h> #include <linux/time.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/delay.h> #include <linux/io.h> #include <asm/mach/time.h> #include <mach/msm_iomap.h> #define MSM_DGT_BASE (MSM_GPT_BASE + 0x10) #define MSM_DGT_SHIFT (5) #define TIMER_MATCH_VAL 0x0000 #define TIMER_COUNT_VAL 0x0004 #define TIMER_ENABLE 0x0008 #define TIMER_ENABLE_CLR_ON_MATCH_EN 2 #define TIMER_ENABLE_EN 1 #define TIMER_CLEAR 0x000C #define CSR_PROTECTION 0x0020 #define CSR_PROTECTION_EN 1 #define GPT_HZ 32768 #define DGT_HZ 19200000 /* 19.2 MHz or 600 KHz after shift */ struct msm_clock { struct clock_event_device clockevent; struct clocksource clocksource; struct irqaction irq; void __iomem *regbase; uint32_t freq; uint32_t shift; }; static irqreturn_t msm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; evt->event_handler(evt); return IRQ_HANDLED; } static cycle_t msm_gpt_read(void) { return readl(MSM_GPT_BASE + TIMER_COUNT_VAL); } static cycle_t msm_dgt_read(void) { return readl(MSM_DGT_BASE + TIMER_COUNT_VAL) >> MSM_DGT_SHIFT; } static int msm_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct msm_clock *clock = container_of(evt, struct msm_clock, clockevent); uint32_t now = readl(clock->regbase + TIMER_COUNT_VAL); uint32_t alarm = now + (cycles << clock->shift); int late; writel(alarm, clock->regbase + TIMER_MATCH_VAL); now = readl(clock->regbase + TIMER_COUNT_VAL); late = now - alarm; if (late >= (-2 << clock->shift) && late < DGT_HZ*5) { printk(KERN_NOTICE "msm_timer_set_next_event(%lu) clock %s, " "alarm already expired, now %x, alarm %x, late %d\n", cycles, clock->clockevent.name, now, alarm, late); return -ETIME; } return 0; } static void msm_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { struct msm_clock *clock = container_of(evt, struct msm_clock, clockevent); switch (mode) { case CLOCK_EVT_MODE_RESUME: case CLOCK_EVT_MODE_PERIODIC: break; case CLOCK_EVT_MODE_ONESHOT: writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: writel(0, clock->regbase + TIMER_ENABLE); break; } } static struct msm_clock msm_clocks[] = { { .clockevent = { .name = "gp_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .shift = 32, .rating = 200, .set_next_event = msm_timer_set_next_event, .set_mode = msm_timer_set_mode, }, .clocksource = { .name = "gp_timer", .rating = 200, .read = msm_gpt_read, .mask = CLOCKSOURCE_MASK(32), .shift = 24, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, .irq = { .name = "gp_timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_RISING, .handler = msm_timer_interrupt, .dev_id = &msm_clocks[0].clockevent, .irq = INT_GP_TIMER_EXP }, .regbase = MSM_GPT_BASE, .freq = GPT_HZ }, { .clockevent = { .name = "dg_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .shift = 32 + MSM_DGT_SHIFT, .rating = 300, .set_next_event = msm_timer_set_next_event, .set_mode = msm_timer_set_mode, }, .clocksource = { .name = "dg_timer", .rating = 300, .read = msm_dgt_read, .mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT)), .shift = 24 - MSM_DGT_SHIFT, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, .irq = { .name = "dg_timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_RISING, .handler = msm_timer_interrupt, .dev_id = &msm_clocks[1].clockevent, .irq = INT_DEBUG_TIMER_EXP }, .regbase = MSM_DGT_BASE, .freq = DGT_HZ >> MSM_DGT_SHIFT, .shift = MSM_DGT_SHIFT } }; static void __init msm_timer_init(void) { int i; int res; for (i = 0; i < ARRAY_SIZE(msm_clocks); i++) { struct msm_clock *clock = &msm_clocks[i]; struct clock_event_device *ce = &clock->clockevent; struct clocksource *cs = &clock->clocksource; writel(0, clock->regbase + TIMER_ENABLE); writel(0, clock->regbase + TIMER_CLEAR); writel(~0, clock->regbase + TIMER_MATCH_VAL); ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift); /* allow at least 10 seconds to notice that the timer wrapped */ ce->max_delta_ns = clockevent_delta2ns(0xf0000000 >> clock->shift, ce); /* 4 gets rounded down to 3 */ ce->min_delta_ns = clockevent_delta2ns(4, ce); ce->cpumask = cpumask_of(0); cs->mult = clocksource_hz2mult(clock->freq, cs->shift); res = clocksource_register(cs); if (res) printk(KERN_ERR "msm_timer_init: clocksource_register " "failed for %s\n", cs->name); res = setup_irq(clock->irq.irq, &clock->irq); if (res) printk(KERN_ERR "msm_timer_init: setup_irq " "failed for %s\n", cs->name); clockevents_register_device(ce); } } struct sys_timer msm_timer = { .init = msm_timer_init };