/* * Extensible Firmware Interface * * Based on Extensible Firmware Interface Specification version 1.0 * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 1999-2002 Hewlett-Packard Co. * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * * All EFI Runtime Services are not implemented yet as EFI only * supports physical mode addressing on SoftSDV. This is to be fixed * in a future version. --drummond 1999-07-20 * * Implemented EFI runtime services and virtual mode calls. --davidm * * Goutham Rao: <goutham.rao@intel.com> * Skip non-WB memory and ignore empty memory ranges. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/time.h> #include <linux/spinlock.h> #include <linux/bootmem.h> #include <linux/ioport.h> #include <linux/module.h> #include <linux/efi.h> #include <linux/kexec.h> #include <asm/setup.h> #include <asm/io.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/desc.h> #include <asm/tlbflush.h> #define EFI_DEBUG 0 #define PFX "EFI: " extern efi_status_t asmlinkage efi_call_phys(void *, ...); struct efi efi; EXPORT_SYMBOL(efi); static struct efi efi_phys; struct efi_memory_map memmap; /* * We require an early boot_ioremap mapping mechanism initially */ extern void * boot_ioremap(unsigned long, unsigned long); /* * To make EFI call EFI runtime service in physical addressing mode we need * prelog/epilog before/after the invocation to disable interrupt, to * claim EFI runtime service handler exclusively and to duplicate a memory in * low memory space say 0 - 3G. */ static unsigned long efi_rt_eflags; static DEFINE_SPINLOCK(efi_rt_lock); static pgd_t efi_bak_pg_dir_pointer[2]; static void efi_call_phys_prelog(void) __acquires(efi_rt_lock) { unsigned long cr4; unsigned long temp; struct Xgt_desc_struct *cpu_gdt_descr; spin_lock(&efi_rt_lock); local_irq_save(efi_rt_eflags); cpu_gdt_descr = &per_cpu(cpu_gdt_descr, 0); /* * If I don't have PSE, I should just duplicate two entries in page * directory. If I have PSE, I just need to duplicate one entry in * page directory. */ cr4 = read_cr4(); if (cr4 & X86_CR4_PSE) { efi_bak_pg_dir_pointer[0].pgd = swapper_pg_dir[pgd_index(0)].pgd; swapper_pg_dir[0].pgd = swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; } else { efi_bak_pg_dir_pointer[0].pgd = swapper_pg_dir[pgd_index(0)].pgd; efi_bak_pg_dir_pointer[1].pgd = swapper_pg_dir[pgd_index(0x400000)].pgd; swapper_pg_dir[pgd_index(0)].pgd = swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; temp = PAGE_OFFSET + 0x400000; swapper_pg_dir[pgd_index(0x400000)].pgd = swapper_pg_dir[pgd_index(temp)].pgd; } /* * After the lock is released, the original page table is restored. */ local_flush_tlb(); cpu_gdt_descr->address = __pa(cpu_gdt_descr->address); load_gdt(cpu_gdt_descr); } static void efi_call_phys_epilog(void) __releases(efi_rt_lock) { unsigned long cr4; struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, 0); cpu_gdt_descr->address = (unsigned long)__va(cpu_gdt_descr->address); load_gdt(cpu_gdt_descr); cr4 = read_cr4(); if (cr4 & X86_CR4_PSE) { swapper_pg_dir[pgd_index(0)].pgd = efi_bak_pg_dir_pointer[0].pgd; } else { swapper_pg_dir[pgd_index(0)].pgd = efi_bak_pg_dir_pointer[0].pgd; swapper_pg_dir[pgd_index(0x400000)].pgd = efi_bak_pg_dir_pointer[1].pgd; } /* * After the lock is released, the original page table is restored. */ local_flush_tlb(); local_irq_restore(efi_rt_eflags); spin_unlock(&efi_rt_lock); } static efi_status_t phys_efi_set_virtual_address_map(unsigned long memory_map_size, unsigned long descriptor_size, u32 descriptor_version, efi_memory_desc_t *virtual_map) { efi_status_t status; efi_call_phys_prelog(); status = efi_call_phys(efi_phys.set_virtual_address_map, memory_map_size, descriptor_size, descriptor_version, virtual_map); efi_call_phys_epilog(); return status; } static efi_status_t phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) { efi_status_t status; efi_call_phys_prelog(); status = efi_call_phys(efi_phys.get_time, tm, tc); efi_call_phys_epilog(); return status; } inline int efi_set_rtc_mmss(unsigned long nowtime) { int real_seconds, real_minutes; efi_status_t status; efi_time_t eft; efi_time_cap_t cap; spin_lock(&efi_rt_lock); status = efi.get_time(&eft, &cap); spin_unlock(&efi_rt_lock); if (status != EFI_SUCCESS) panic("Ooops, efitime: can't read time!\n"); real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - eft.minute) + 15)/30) & 1) real_minutes += 30; real_minutes %= 60; eft.minute = real_minutes; eft.second = real_seconds; if (status != EFI_SUCCESS) { printk("Ooops: efitime: can't read time!\n"); return -1; } return 0; } /* * This is used during kernel init before runtime * services have been remapped and also during suspend, therefore, * we'll need to call both in physical and virtual modes. */ inline unsigned long efi_get_time(void) { efi_status_t status; efi_time_t eft; efi_time_cap_t cap; if (efi.get_time) { /* if we are in virtual mode use remapped function */ status = efi.get_time(&eft, &cap); } else { /* we are in physical mode */ status = phys_efi_get_time(&eft, &cap); } if (status != EFI_SUCCESS) printk("Oops: efitime: can't read time status: 0x%lx\n",status); return mktime(eft.year, eft.month, eft.day, eft.hour, eft.minute, eft.second); } int is_available_memory(efi_memory_desc_t * md) { if (!(md->attribute & EFI_MEMORY_WB)) return 0; switch (md->type) { case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: return 1; } return 0; } /* * We need to map the EFI memory map again after paging_init(). */ void __init efi_map_memmap(void) { memmap.map = NULL; memmap.map = bt_ioremap((unsigned long) memmap.phys_map, (memmap.nr_map * memmap.desc_size)); if (memmap.map == NULL) printk(KERN_ERR PFX "Could not remap the EFI memmap!\n"); memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); } #if EFI_DEBUG static void __init print_efi_memmap(void) { efi_memory_desc_t *md; void *p; int i; for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) { md = p; printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, " "range=[0x%016llx-0x%016llx) (%lluMB)\n", i, md->type, md->attribute, md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), (md->num_pages >> (20 - EFI_PAGE_SHIFT))); } } #endif /* EFI_DEBUG */ /* * Walks the EFI memory map and calls CALLBACK once for each EFI * memory descriptor that has memory that is available for kernel use. */ void efi_memmap_walk(efi_freemem_callback_t callback, void *arg) { int prev_valid = 0; struct range { unsigned long start; unsigned long end; } prev, curr; efi_memory_desc_t *md; unsigned long start, end; void *p; for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { md = p; if ((md->num_pages == 0) || (!is_available_memory(md))) continue; curr.start = md->phys_addr; curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT); if (!prev_valid) { prev = curr; prev_valid = 1; } else { if (curr.start < prev.start) printk(KERN_INFO PFX "Unordered memory map\n"); if (prev.end == curr.start) prev.end = curr.end; else { start = (unsigned long) (PAGE_ALIGN(prev.start)); end = (unsigned long) (prev.end & PAGE_MASK); if ((end > start) && (*callback) (start, end, arg) < 0) return; prev = curr; } } } if (prev_valid) { start = (unsigned long) PAGE_ALIGN(prev.start); end = (unsigned long) (prev.end & PAGE_MASK); if (end > start) (*callback) (start, end, arg); } } void __init efi_init(void) { efi_config_table_t *config_tables; efi_runtime_services_t *runtime; efi_char16_t *c16; char vendor[100] = "unknown"; unsigned long num_config_tables; int i = 0; memset(&efi, 0, sizeof(efi) ); memset(&efi_phys, 0, sizeof(efi_phys)); efi_phys.systab = EFI_SYSTAB; memmap.phys_map = EFI_MEMMAP; memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE; memmap.desc_version = EFI_MEMDESC_VERSION; memmap.desc_size = EFI_MEMDESC_SIZE; efi.systab = (efi_system_table_t *) boot_ioremap((unsigned long) efi_phys.systab, sizeof(efi_system_table_t)); /* * Verify the EFI Table */ if (efi.systab == NULL) printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n"); if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n"); if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) printk(KERN_ERR PFX "Warning: EFI system table major version mismatch: " "got %d.%02d, expected %d.%02d\n", efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff); /* * Grab some details from the system table */ num_config_tables = efi.systab->nr_tables; config_tables = (efi_config_table_t *)efi.systab->tables; runtime = efi.systab->runtime; /* * Show what we know for posterity */ c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2); if (c16) { for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i) vendor[i] = *c16++; vendor[i] = '\0'; } else printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n", efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor); /* * Let's see what config tables the firmware passed to us. */ config_tables = (efi_config_table_t *) boot_ioremap((unsigned long) config_tables, num_config_tables * sizeof(efi_config_table_t)); if (config_tables == NULL) printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n"); efi.mps = EFI_INVALID_TABLE_ADDR; efi.acpi = EFI_INVALID_TABLE_ADDR; efi.acpi20 = EFI_INVALID_TABLE_ADDR; efi.smbios = EFI_INVALID_TABLE_ADDR; efi.sal_systab = EFI_INVALID_TABLE_ADDR; efi.boot_info = EFI_INVALID_TABLE_ADDR; efi.hcdp = EFI_INVALID_TABLE_ADDR; efi.uga = EFI_INVALID_TABLE_ADDR; for (i = 0; i < num_config_tables; i++) { if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { efi.mps = config_tables[i].table; printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { efi.acpi20 = config_tables[i].table; printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { efi.acpi = config_tables[i].table; printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { efi.smbios = config_tables[i].table; printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { efi.hcdp = config_tables[i].table; printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) { efi.uga = config_tables[i].table; printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table); } } printk("\n"); /* * Check out the runtime services table. We need to map * the runtime services table so that we can grab the physical * address of several of the EFI runtime functions, needed to * set the firmware into virtual mode. */ runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long) runtime, sizeof(efi_runtime_services_t)); if (runtime != NULL) { /* * We will only need *early* access to the following * two EFI runtime services before set_virtual_address_map * is invoked. */ efi_phys.get_time = (efi_get_time_t *) runtime->get_time; efi_phys.set_virtual_address_map = (efi_set_virtual_address_map_t *) runtime->set_virtual_address_map; } else printk(KERN_ERR PFX "Could not map the runtime service table!\n"); /* Map the EFI memory map for use until paging_init() */ memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE); if (memmap.map == NULL) printk(KERN_ERR PFX "Could not map the EFI memory map!\n"); memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); #if EFI_DEBUG print_efi_memmap(); #endif } static inline void __init check_range_for_systab(efi_memory_desc_t *md) { if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) && ((unsigned long)efi_phys.systab < md->phys_addr + ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) { unsigned long addr; addr = md->virt_addr - md->phys_addr + (unsigned long)efi_phys.systab; efi.systab = (efi_system_table_t *)addr; } } /* * Wrap all the virtual calls in a way that forces the parameters on the stack. */ #define efi_call_virt(f, args...) \ ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args) static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) { return efi_call_virt(get_time, tm, tc); } static efi_status_t virt_efi_set_time (efi_time_t *tm) { return efi_call_virt(set_time, tm); } static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) { return efi_call_virt(get_wakeup_time, enabled, pending, tm); } static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) { return efi_call_virt(set_wakeup_time, enabled, tm); } static efi_status_t virt_efi_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, unsigned long *data_size, void *data) { return efi_call_virt(get_variable, name, vendor, attr, data_size, data); } static efi_status_t virt_efi_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) { return efi_call_virt(get_next_variable, name_size, name, vendor); } static efi_status_t virt_efi_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, unsigned long data_size, void *data) { return efi_call_virt(set_variable, name, vendor, attr, data_size, data); } static efi_status_t virt_efi_get_next_high_mono_count (u32 *count) { return efi_call_virt(get_next_high_mono_count, count); } static void virt_efi_reset_system (int reset_type, efi_status_t status, unsigned long data_size, efi_char16_t *data) { efi_call_virt(reset_system, reset_type, status, data_size, data); } /* * This function will switch the EFI runtime services to virtual mode. * Essentially, look through the EFI memmap and map every region that * has the runtime attribute bit set in its memory descriptor and update * that memory descriptor with the virtual address obtained from ioremap(). * This enables the runtime services to be called without having to * thunk back into physical mode for every invocation. */ void __init efi_enter_virtual_mode(void) { efi_memory_desc_t *md; efi_status_t status; void *p; efi.systab = NULL; for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { md = p; if (!(md->attribute & EFI_MEMORY_RUNTIME)) continue; md->virt_addr = (unsigned long)ioremap(md->phys_addr, md->num_pages << EFI_PAGE_SHIFT); if (!(unsigned long)md->virt_addr) { printk(KERN_ERR PFX "ioremap of 0x%lX failed\n", (unsigned long)md->phys_addr); } /* update the virtual address of the EFI system table */ check_range_for_systab(md); } BUG_ON(!efi.systab); status = phys_efi_set_virtual_address_map( memmap.desc_size * memmap.nr_map, memmap.desc_size, memmap.desc_version, memmap.phys_map); if (status != EFI_SUCCESS) { printk (KERN_ALERT "You are screwed! " "Unable to switch EFI into virtual mode " "(status=%lx)\n", status); panic("EFI call to SetVirtualAddressMap() failed!"); } /* * Now that EFI is in virtual mode, update the function * pointers in the runtime service table to the new virtual addresses. */ efi.get_time = virt_efi_get_time; efi.set_time = virt_efi_set_time; efi.get_wakeup_time = virt_efi_get_wakeup_time; efi.set_wakeup_time = virt_efi_set_wakeup_time; efi.get_variable = virt_efi_get_variable; efi.get_next_variable = virt_efi_get_next_variable; efi.set_variable = virt_efi_set_variable; efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; efi.reset_system = virt_efi_reset_system; } void __init efi_initialize_iomem_resources(struct resource *code_resource, struct resource *data_resource) { struct resource *res; efi_memory_desc_t *md; void *p; for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { md = p; if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) > 0x100000000ULL) continue; res = kzalloc(sizeof(struct resource), GFP_ATOMIC); switch (md->type) { case EFI_RESERVED_TYPE: res->name = "Reserved Memory"; break; case EFI_LOADER_CODE: res->name = "Loader Code"; break; case EFI_LOADER_DATA: res->name = "Loader Data"; break; case EFI_BOOT_SERVICES_DATA: res->name = "BootServices Data"; break; case EFI_BOOT_SERVICES_CODE: res->name = "BootServices Code"; break; case EFI_RUNTIME_SERVICES_CODE: res->name = "Runtime Service Code"; break; case EFI_RUNTIME_SERVICES_DATA: res->name = "Runtime Service Data"; break; case EFI_CONVENTIONAL_MEMORY: res->name = "Conventional Memory"; break; case EFI_UNUSABLE_MEMORY: res->name = "Unusable Memory"; break; case EFI_ACPI_RECLAIM_MEMORY: res->name = "ACPI Reclaim"; break; case EFI_ACPI_MEMORY_NVS: res->name = "ACPI NVS"; break; case EFI_MEMORY_MAPPED_IO: res->name = "Memory Mapped IO"; break; case EFI_MEMORY_MAPPED_IO_PORT_SPACE: res->name = "Memory Mapped IO Port Space"; break; default: res->name = "Reserved"; break; } res->start = md->phys_addr; res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1); res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; if (request_resource(&iomem_resource, res) < 0) printk(KERN_ERR PFX "Failed to allocate res %s : " "0x%llx-0x%llx\n", res->name, (unsigned long long)res->start, (unsigned long long)res->end); /* * We don't know which region contains kernel data so we try * it repeatedly and let the resource manager test it. */ if (md->type == EFI_CONVENTIONAL_MEMORY) { request_resource(res, code_resource); request_resource(res, data_resource); #ifdef CONFIG_KEXEC request_resource(res, &crashk_res); #endif } } } /* * Convenience functions to obtain memory types and attributes */ u32 efi_mem_type(unsigned long phys_addr) { efi_memory_desc_t *md; void *p; for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { md = p; if ((md->phys_addr <= phys_addr) && (phys_addr < (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) return md->type; } return 0; } u64 efi_mem_attributes(unsigned long phys_addr) { efi_memory_desc_t *md; void *p; for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { md = p; if ((md->phys_addr <= phys_addr) && (phys_addr < (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) return md->attribute; } return 0; }