/* * This code largely moved from arch/i386/kernel/time.c. * See comments there for proper credits. * * 2004-06-25 Jesper Juhl * moved mark_offset_tsc below cpufreq_delayed_get to avoid gcc 3.4 * failing to inline. */ #include #include #include #include #include #include #include #include #include /* processor.h for distable_tsc flag */ #include #include "io_ports.h" #include "mach_timer.h" #include #ifdef CONFIG_HPET_TIMER static unsigned long hpet_usec_quotient; static unsigned long hpet_last; static struct timer_opts timer_tsc; #endif static inline void cpufreq_delayed_get(void); int tsc_disable __initdata = 0; extern spinlock_t i8253_lock; static int use_tsc; /* Number of usecs that the last interrupt was delayed */ static int delay_at_last_interrupt; static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */ static unsigned long last_tsc_high; /* msb 32 bits of Time Stamp Counter */ static unsigned long long monotonic_base; static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; /* convert from cycles(64bits) => nanoseconds (64bits) * basic equation: * ns = cycles / (freq / ns_per_sec) * ns = cycles * (ns_per_sec / freq) * ns = cycles * (10^9 / (cpu_mhz * 10^6)) * ns = cycles * (10^3 / cpu_mhz) * * Then we use scaling math (suggested by george@mvista.com) to get: * ns = cycles * (10^3 * SC / cpu_mhz) / SC * ns = cycles * cyc2ns_scale / SC * * And since SC is a constant power of two, we can convert the div * into a shift. * -johnstul@us.ibm.com "math is hard, lets go shopping!" */ static unsigned long cyc2ns_scale; #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ static inline void set_cyc2ns_scale(unsigned long cpu_mhz) { cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz; } static inline unsigned long long cycles_2_ns(unsigned long long cyc) { return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; } static int count2; /* counter for mark_offset_tsc() */ /* Cached *multiplier* to convert TSC counts to microseconds. * (see the equation below). * Equal to 2^32 * (1 / (clocks per usec) ). * Initialized in time_init. */ static unsigned long fast_gettimeoffset_quotient; static unsigned long get_offset_tsc(void) { register unsigned long eax, edx; /* Read the Time Stamp Counter */ rdtsc(eax,edx); /* .. relative to previous jiffy (32 bits is enough) */ eax -= last_tsc_low; /* tsc_low delta */ /* * Time offset = (tsc_low delta) * fast_gettimeoffset_quotient * = (tsc_low delta) * (usecs_per_clock) * = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy) * * Using a mull instead of a divl saves up to 31 clock cycles * in the critical path. */ __asm__("mull %2" :"=a" (eax), "=d" (edx) :"rm" (fast_gettimeoffset_quotient), "0" (eax)); /* our adjusted time offset in microseconds */ return delay_at_last_interrupt + edx; } static unsigned long long monotonic_clock_tsc(void) { unsigned long long last_offset, this_offset, base; unsigned seq; /* atomically read monotonic base & last_offset */ do { seq = read_seqbegin(&monotonic_lock); last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; base = monotonic_base; } while (read_seqretry(&monotonic_lock, seq)); /* Read the Time Stamp Counter */ rdtscll(this_offset); /* return the value in ns */ return base + cycles_2_ns(this_offset - last_offset); } /* * Scheduler clock - returns current time in nanosec units. */ unsigned long long sched_clock(void) { unsigned long long this_offset; /* * In the NUMA case we dont use the TSC as they are not * synchronized across all CPUs. */ #ifndef CONFIG_NUMA if (!use_tsc) #endif /* no locking but a rare wrong value is not a big deal */ return jiffies_64 * (1000000000 / HZ); /* Read the Time Stamp Counter */ rdtscll(this_offset); /* return the value in ns */ return cycles_2_ns(this_offset); } static void delay_tsc(unsigned long loops) { unsigned long bclock, now; rdtscl(bclock); do { rep_nop(); rdtscl(now); } while ((now-bclock) < loops); } #ifdef CONFIG_HPET_TIMER static void mark_offset_tsc_hpet(void) { unsigned long long this_offset, last_offset; unsigned long offset, temp, hpet_current; write_seqlock(&monotonic_lock); last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; /* * It is important that these two operations happen almost at * the same time. We do the RDTSC stuff first, since it's * faster. To avoid any inconsistencies, we need interrupts * disabled locally. */ /* * Interrupts are just disabled locally since the timer irq * has the SA_INTERRUPT flag set. -arca */ /* read Pentium cycle counter */ hpet_current = hpet_readl(HPET_COUNTER); rdtsc(last_tsc_low, last_tsc_high); /* lost tick compensation */ offset = hpet_readl(HPET_T0_CMP) - hpet_tick; if (unlikely(((offset - hpet_last) > hpet_tick) && (hpet_last != 0))) { int lost_ticks = (offset - hpet_last) / hpet_tick; jiffies_64 += lost_ticks; } hpet_last = hpet_current; /* update the monotonic base value */ this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; monotonic_base += cycles_2_ns(this_offset - last_offset); write_sequnlock(&monotonic_lock); /* calculate delay_at_last_interrupt */ /* * Time offset = (hpet delta) * ( usecs per HPET clock ) * = (hpet delta) * ( usecs per tick / HPET clocks per tick) * = (hpet delta) * ( hpet_usec_quotient ) / (2^32) * Where, * hpet_usec_quotient = (2^32 * usecs per tick)/HPET clocks per tick */ delay_at_last_interrupt = hpet_current - offset; ASM_MUL64_REG(temp, delay_at_last_interrupt, hpet_usec_quotient, delay_at_last_interrupt); } #endif #ifdef CONFIG_CPU_FREQ #include static unsigned int cpufreq_delayed_issched = 0; static unsigned int cpufreq_init = 0; static struct work_struct cpufreq_delayed_get_work; static void handle_cpufreq_delayed_get(void *v) { unsigned int cpu; for_each_online_cpu(cpu) { cpufreq_get(cpu); } cpufreq_delayed_issched = 0; } /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries * to verify the CPU frequency the timing core thinks the CPU is running * at is still correct. */ static inline void cpufreq_delayed_get(void) { if (cpufreq_init && !cpufreq_delayed_issched) { cpufreq_delayed_issched = 1; printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n"); schedule_work(&cpufreq_delayed_get_work); } } /* If the CPU frequency is scaled, TSC-based delays will need a different * loops_per_jiffy value to function properly. */ static unsigned int ref_freq = 0; static unsigned long loops_per_jiffy_ref = 0; #ifndef CONFIG_SMP static unsigned long fast_gettimeoffset_ref = 0; static unsigned int cpu_khz_ref = 0; #endif static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; if (val != CPUFREQ_RESUMECHANGE) write_seqlock_irq(&xtime_lock); if (!ref_freq) { ref_freq = freq->old; loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy; #ifndef CONFIG_SMP fast_gettimeoffset_ref = fast_gettimeoffset_quotient; cpu_khz_ref = cpu_khz; #endif } if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || (val == CPUFREQ_RESUMECHANGE)) { if (!(freq->flags & CPUFREQ_CONST_LOOPS)) cpu_data[freq->cpu].loops_per_jiffy = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); #ifndef CONFIG_SMP if (cpu_khz) cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new); if (use_tsc) { if (!(freq->flags & CPUFREQ_CONST_LOOPS)) { fast_gettimeoffset_quotient = cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq); set_cyc2ns_scale(cpu_khz/1000); } } #endif } if (val != CPUFREQ_RESUMECHANGE) write_sequnlock_irq(&xtime_lock); return 0; } static struct notifier_block time_cpufreq_notifier_block = { .notifier_call = time_cpufreq_notifier }; static int __init cpufreq_tsc(void) { int ret; INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL); ret = cpufreq_register_notifier(&time_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); if (!ret) cpufreq_init = 1; return ret; } core_initcall(cpufreq_tsc); #else /* CONFIG_CPU_FREQ */ static inline void cpufreq_delayed_get(void) { return; } #endif int recalibrate_cpu_khz(void) { #ifndef CONFIG_SMP unsigned int cpu_khz_old = cpu_khz; if (cpu_has_tsc) { init_cpu_khz(); cpu_data[0].loops_per_jiffy = cpufreq_scale(cpu_data[0].loops_per_jiffy, cpu_khz_old, cpu_khz); return 0; } else return -ENODEV; #else return -ENODEV; #endif } EXPORT_SYMBOL(recalibrate_cpu_khz); static void mark_offset_tsc(void) { unsigned long lost,delay; unsigned long delta = last_tsc_low; int count; int countmp; static int count1 = 0; unsigned long long this_offset, last_offset; static int lost_count = 0; write_seqlock(&monotonic_lock); last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; /* * It is important that these two operations happen almost at * the same time. We do the RDTSC stuff first, since it's * faster. To avoid any inconsistencies, we need interrupts * disabled locally. */ /* * Interrupts are just disabled locally since the timer irq * has the SA_INTERRUPT flag set. -arca */ /* read Pentium cycle counter */ rdtsc(last_tsc_low, last_tsc_high); spin_lock(&i8253_lock); outb_p(0x00, PIT_MODE); /* latch the count ASAP */ count = inb_p(PIT_CH0); /* read the latched count */ count |= inb(PIT_CH0) << 8; /* * VIA686a test code... reset the latch if count > max + 1 * from timer_pit.c - cjb */ if (count > LATCH) { outb_p(0x34, PIT_MODE); outb_p(LATCH & 0xff, PIT_CH0); outb(LATCH >> 8, PIT_CH0); count = LATCH - 1; } spin_unlock(&i8253_lock); if (pit_latch_buggy) { /* get center value of last 3 time lutch */ if ((count2 >= count && count >= count1) || (count1 >= count && count >= count2)) { count2 = count1; count1 = count; } else if ((count1 >= count2 && count2 >= count) || (count >= count2 && count2 >= count1)) { countmp = count;count = count2; count2 = count1;count1 = countmp; } else { count2 = count1; count1 = count; count = count1; } } /* lost tick compensation */ delta = last_tsc_low - delta; { register unsigned long eax, edx; eax = delta; __asm__("mull %2" :"=a" (eax), "=d" (edx) :"rm" (fast_gettimeoffset_quotient), "0" (eax)); delta = edx; } delta += delay_at_last_interrupt; lost = delta/(1000000/HZ); delay = delta%(1000000/HZ); if (lost >= 2) { jiffies_64 += lost-1; /* sanity check to ensure we're not always losing ticks */ if (lost_count++ > 100) { printk(KERN_WARNING "Losing too many ticks!\n"); printk(KERN_WARNING "TSC cannot be used as a timesource. \n"); printk(KERN_WARNING "Possible reasons for this are:\n"); printk(KERN_WARNING " You're running with Speedstep,\n"); printk(KERN_WARNING " You don't have DMA enabled for your hard disk (see hdparm),\n"); printk(KERN_WARNING " Incorrect TSC synchronization on an SMP system (see dmesg).\n"); printk(KERN_WARNING "Falling back to a sane timesource now.\n"); clock_fallback(); } /* ... but give the TSC a fair chance */ if (lost_count > 25) cpufreq_delayed_get(); } else lost_count = 0; /* update the monotonic base value */ this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; monotonic_base += cycles_2_ns(this_offset - last_offset); write_sequnlock(&monotonic_lock); /* calculate delay_at_last_interrupt */ count = ((LATCH-1) - count) * TICK_SIZE; delay_at_last_interrupt = (count + LATCH/2) / LATCH; /* catch corner case where tick rollover occured * between tsc and pit reads (as noted when * usec delta is > 90% # of usecs/tick) */ if (lost && abs(delay - delay_at_last_interrupt) > (900000/HZ)) jiffies_64++; } static int __init init_tsc(char* override) { /* check clock override */ if (override[0] && strncmp(override,"tsc",3)) { #ifdef CONFIG_HPET_TIMER if (is_hpet_enabled()) { printk(KERN_ERR "Warning: clock= override failed. Defaulting to tsc\n"); } else #endif { return -ENODEV; } } /* * If we have APM enabled or the CPU clock speed is variable * (CPU stops clock on HLT or slows clock to save power) * then the TSC timestamps may diverge by up to 1 jiffy from * 'real time' but nothing will break. * The most frequent case is that the CPU is "woken" from a halt * state by the timer interrupt itself, so we get 0 error. In the * rare cases where a driver would "wake" the CPU and request a * timestamp, the maximum error is < 1 jiffy. But timestamps are * still perfectly ordered. * Note that the TSC counter will be reset if APM suspends * to disk; this won't break the kernel, though, 'cuz we're * smart. See arch/i386/kernel/apm.c. */ /* * Firstly we have to do a CPU check for chips with * a potentially buggy TSC. At this point we haven't run * the ident/bugs checks so we must run this hook as it * may turn off the TSC flag. * * NOTE: this doesn't yet handle SMP 486 machines where only * some CPU's have a TSC. Thats never worked and nobody has * moaned if you have the only one in the world - you fix it! */ count2 = LATCH; /* initialize counter for mark_offset_tsc() */ if (cpu_has_tsc) { unsigned long tsc_quotient; #ifdef CONFIG_HPET_TIMER if (is_hpet_enabled() && hpet_use_timer) { unsigned long result, remain; printk("Using TSC for gettimeofday\n"); tsc_quotient = calibrate_tsc_hpet(NULL); timer_tsc.mark_offset = &mark_offset_tsc_hpet; /* * Math to calculate hpet to usec multiplier * Look for the comments at get_offset_tsc_hpet() */ ASM_DIV64_REG(result, remain, hpet_tick, 0, KERNEL_TICK_USEC); if (remain > (hpet_tick >> 1)) result++; /* rounding the result */ hpet_usec_quotient = result; } else #endif { tsc_quotient = calibrate_tsc(); } if (tsc_quotient) { fast_gettimeoffset_quotient = tsc_quotient; use_tsc = 1; /* * We could be more selective here I suspect * and just enable this for the next intel chips ? */ /* report CPU clock rate in Hz. * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = * clock/second. Our precision is about 100 ppm. */ { unsigned long eax=0, edx=1000; __asm__("divl %2" :"=a" (cpu_khz), "=d" (edx) :"r" (tsc_quotient), "0" (eax), "1" (edx)); printk("Detected %u.%03u MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); } set_cyc2ns_scale(cpu_khz/1000); return 0; } } return -ENODEV; } #ifndef CONFIG_X86_TSC /* disable flag for tsc. Takes effect by clearing the TSC cpu flag * in cpu/common.c */ static int __init tsc_setup(char *str) { tsc_disable = 1; return 1; } #else static int __init tsc_setup(char *str) { printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " "cannot disable TSC.\n"); return 1; } #endif __setup("notsc", tsc_setup); /************************************************************/ /* tsc timer_opts struct */ static struct timer_opts timer_tsc = { .name = "tsc", .mark_offset = mark_offset_tsc, .get_offset = get_offset_tsc, .monotonic_clock = monotonic_clock_tsc, .delay = delay_tsc, .read_timer = read_timer_tsc, }; struct init_timer_opts __initdata timer_tsc_init = { .init = init_tsc, .opts = &timer_tsc, };