/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2004, 05, 06 by Ralf Baechle * Copyright (C) 2005 by MIPS Technologies, Inc. */ #include <linux/cpumask.h> #include <linux/oprofile.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <asm/irq_regs.h> #include "op_impl.h" #define M_PERFCTL_EXL (1UL << 0) #define M_PERFCTL_KERNEL (1UL << 1) #define M_PERFCTL_SUPERVISOR (1UL << 2) #define M_PERFCTL_USER (1UL << 3) #define M_PERFCTL_INTERRUPT_ENABLE (1UL << 4) #define M_PERFCTL_EVENT(event) (((event) & 0x3f) << 5) #define M_PERFCTL_VPEID(vpe) ((vpe) << 16) #define M_PERFCTL_MT_EN(filter) ((filter) << 20) #define M_TC_EN_ALL M_PERFCTL_MT_EN(0) #define M_TC_EN_VPE M_PERFCTL_MT_EN(1) #define M_TC_EN_TC M_PERFCTL_MT_EN(2) #define M_PERFCTL_TCID(tcid) ((tcid) << 22) #define M_PERFCTL_WIDE (1UL << 30) #define M_PERFCTL_MORE (1UL << 31) #define M_COUNTER_OVERFLOW (1UL << 31) #ifdef CONFIG_MIPS_MT_SMP #define WHAT (M_TC_EN_VPE | M_PERFCTL_VPEID(smp_processor_id())) #define vpe_id() smp_processor_id() /* * The number of bits to shift to convert between counters per core and * counters per VPE. There is no reasonable interface atm to obtain the * number of VPEs used by Linux and in the 34K this number is fixed to two * anyways so we hardcore a few things here for the moment. The way it's * done here will ensure that oprofile VSMP kernel will run right on a lesser * core like a 24K also or with maxcpus=1. */ static inline unsigned int vpe_shift(void) { if (num_possible_cpus() > 1) return 1; return 0; } #else #define WHAT 0 #define vpe_id() 0 static inline unsigned int vpe_shift(void) { return 0; } #endif static inline unsigned int counters_total_to_per_cpu(unsigned int counters) { return counters >> vpe_shift(); } static inline unsigned int counters_per_cpu_to_total(unsigned int counters) { return counters << vpe_shift(); } #define __define_perf_accessors(r, n, np) \ \ static inline unsigned int r_c0_ ## r ## n(void) \ { \ unsigned int cpu = vpe_id(); \ \ switch (cpu) { \ case 0: \ return read_c0_ ## r ## n(); \ case 1: \ return read_c0_ ## r ## np(); \ default: \ BUG(); \ } \ return 0; \ } \ \ static inline void w_c0_ ## r ## n(unsigned int value) \ { \ unsigned int cpu = vpe_id(); \ \ switch (cpu) { \ case 0: \ write_c0_ ## r ## n(value); \ return; \ case 1: \ write_c0_ ## r ## np(value); \ return; \ default: \ BUG(); \ } \ return; \ } \ __define_perf_accessors(perfcntr, 0, 2) __define_perf_accessors(perfcntr, 1, 3) __define_perf_accessors(perfcntr, 2, 0) __define_perf_accessors(perfcntr, 3, 1) __define_perf_accessors(perfctrl, 0, 2) __define_perf_accessors(perfctrl, 1, 3) __define_perf_accessors(perfctrl, 2, 0) __define_perf_accessors(perfctrl, 3, 1) struct op_mips_model op_model_mipsxx_ops; static struct mipsxx_register_config { unsigned int control[4]; unsigned int counter[4]; } reg; /* Compute all of the registers in preparation for enabling profiling. */ static void mipsxx_reg_setup(struct op_counter_config *ctr) { unsigned int counters = op_model_mipsxx_ops.num_counters; int i; /* Compute the performance counter control word. */ for (i = 0; i < counters; i++) { reg.control[i] = 0; reg.counter[i] = 0; if (!ctr[i].enabled) continue; reg.control[i] = M_PERFCTL_EVENT(ctr[i].event) | M_PERFCTL_INTERRUPT_ENABLE; if (ctr[i].kernel) reg.control[i] |= M_PERFCTL_KERNEL; if (ctr[i].user) reg.control[i] |= M_PERFCTL_USER; if (ctr[i].exl) reg.control[i] |= M_PERFCTL_EXL; reg.counter[i] = 0x80000000 - ctr[i].count; } } /* Program all of the registers in preparation for enabling profiling. */ static void mipsxx_cpu_setup(void *args) { unsigned int counters = op_model_mipsxx_ops.num_counters; switch (counters) { case 4: w_c0_perfctrl3(0); w_c0_perfcntr3(reg.counter[3]); case 3: w_c0_perfctrl2(0); w_c0_perfcntr2(reg.counter[2]); case 2: w_c0_perfctrl1(0); w_c0_perfcntr1(reg.counter[1]); case 1: w_c0_perfctrl0(0); w_c0_perfcntr0(reg.counter[0]); } } /* Start all counters on current CPU */ static void mipsxx_cpu_start(void *args) { unsigned int counters = op_model_mipsxx_ops.num_counters; switch (counters) { case 4: w_c0_perfctrl3(WHAT | reg.control[3]); case 3: w_c0_perfctrl2(WHAT | reg.control[2]); case 2: w_c0_perfctrl1(WHAT | reg.control[1]); case 1: w_c0_perfctrl0(WHAT | reg.control[0]); } } /* Stop all counters on current CPU */ static void mipsxx_cpu_stop(void *args) { unsigned int counters = op_model_mipsxx_ops.num_counters; switch (counters) { case 4: w_c0_perfctrl3(0); case 3: w_c0_perfctrl2(0); case 2: w_c0_perfctrl1(0); case 1: w_c0_perfctrl0(0); } } static int mipsxx_perfcount_handler(void) { unsigned int counters = op_model_mipsxx_ops.num_counters; unsigned int control; unsigned int counter; int handled = IRQ_NONE; if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26))) return handled; switch (counters) { #define HANDLE_COUNTER(n) \ case n + 1: \ control = r_c0_perfctrl ## n(); \ counter = r_c0_perfcntr ## n(); \ if ((control & M_PERFCTL_INTERRUPT_ENABLE) && \ (counter & M_COUNTER_OVERFLOW)) { \ oprofile_add_sample(get_irq_regs(), n); \ w_c0_perfcntr ## n(reg.counter[n]); \ handled = IRQ_HANDLED; \ } HANDLE_COUNTER(3) HANDLE_COUNTER(2) HANDLE_COUNTER(1) HANDLE_COUNTER(0) } return handled; } #define M_CONFIG1_PC (1 << 4) static inline int __n_counters(void) { if (!(read_c0_config1() & M_CONFIG1_PC)) return 0; if (!(r_c0_perfctrl0() & M_PERFCTL_MORE)) return 1; if (!(r_c0_perfctrl1() & M_PERFCTL_MORE)) return 2; if (!(r_c0_perfctrl2() & M_PERFCTL_MORE)) return 3; return 4; } static inline int n_counters(void) { int counters; switch (current_cpu_type()) { case CPU_R10000: counters = 2; break; case CPU_R12000: case CPU_R14000: counters = 4; break; default: counters = __n_counters(); } return counters; } static inline void reset_counters(int counters) { switch (counters) { case 4: w_c0_perfctrl3(0); w_c0_perfcntr3(0); case 3: w_c0_perfctrl2(0); w_c0_perfcntr2(0); case 2: w_c0_perfctrl1(0); w_c0_perfcntr1(0); case 1: w_c0_perfctrl0(0); w_c0_perfcntr0(0); } } static int __init mipsxx_init(void) { int counters; counters = n_counters(); if (counters == 0) { printk(KERN_ERR "Oprofile: CPU has no performance counters\n"); return -ENODEV; } reset_counters(counters); counters = counters_total_to_per_cpu(counters); op_model_mipsxx_ops.num_counters = counters; switch (current_cpu_type()) { case CPU_20KC: op_model_mipsxx_ops.cpu_type = "mips/20K"; break; case CPU_24K: op_model_mipsxx_ops.cpu_type = "mips/24K"; break; case CPU_25KF: op_model_mipsxx_ops.cpu_type = "mips/25K"; break; case CPU_34K: op_model_mipsxx_ops.cpu_type = "mips/34K"; break; case CPU_74K: op_model_mipsxx_ops.cpu_type = "mips/74K"; break; case CPU_5KC: op_model_mipsxx_ops.cpu_type = "mips/5K"; break; case CPU_R10000: if ((current_cpu_data.processor_id & 0xff) == 0x20) op_model_mipsxx_ops.cpu_type = "mips/r10000-v2.x"; else op_model_mipsxx_ops.cpu_type = "mips/r10000"; break; case CPU_R12000: case CPU_R14000: op_model_mipsxx_ops.cpu_type = "mips/r12000"; break; case CPU_SB1: case CPU_SB1A: op_model_mipsxx_ops.cpu_type = "mips/sb1"; break; default: printk(KERN_ERR "Profiling unsupported for this CPU\n"); return -ENODEV; } perf_irq = mipsxx_perfcount_handler; return 0; } static void mipsxx_exit(void) { int counters = op_model_mipsxx_ops.num_counters; counters = counters_per_cpu_to_total(counters); reset_counters(counters); perf_irq = null_perf_irq; } struct op_mips_model op_model_mipsxx_ops = { .reg_setup = mipsxx_reg_setup, .cpu_setup = mipsxx_cpu_setup, .init = mipsxx_init, .exit = mipsxx_exit, .cpu_start = mipsxx_cpu_start, .cpu_stop = mipsxx_cpu_stop, };