/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen * Rework for PPC64 port. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This is called by /dev/mem to know if a given address has to * be mapped non-cacheable or not */ int page_is_ram(unsigned long pfn) { int i; unsigned long paddr = (pfn << PAGE_SHIFT); for (i=0; i < lmb.memory.cnt; i++) { unsigned long base; base = lmb.memory.region[i].base; if ((paddr >= base) && (paddr < (base + lmb.memory.region[i].size))) { return 1; } } return 0; } EXPORT_SYMBOL(page_is_ram); pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, unsigned long size, pgprot_t vma_prot) { if (ppc_md.phys_mem_access_prot) return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot); if (!page_is_ram(addr >> PAGE_SHIFT)) vma_prot = __pgprot(pgprot_val(vma_prot) | _PAGE_GUARDED | _PAGE_NO_CACHE); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot); void show_mem(void) { unsigned long total = 0, reserved = 0; unsigned long shared = 0, cached = 0; struct page *page; pg_data_t *pgdat; unsigned long i; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); for_each_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; i++) { page = pgdat_page_nr(pgdat, i); total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page) - 1; } } printk("%ld pages of RAM\n", total); printk("%ld reserved pages\n", reserved); printk("%ld pages shared\n", shared); printk("%ld pages swap cached\n", cached); } /* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean. We do the i-cache * flush later when the page is given to a user process, if necessary. */ void flush_dcache_page(struct page *page) { if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &page->flags)) clear_bit(PG_arch_1, &page->flags); } EXPORT_SYMBOL(flush_dcache_page); void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* * We shouldnt have to do this, but some versions of glibc * require it (ld.so assumes zero filled pages are icache clean) * - Anton */ /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &pg->flags)) clear_bit(PG_arch_1, &pg->flags); } EXPORT_SYMBOL(clear_user_page); void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, struct page *pg) { copy_page(vto, vfrom); /* * We should be able to use the following optimisation, however * there are two problems. * Firstly a bug in some versions of binutils meant PLT sections * were not marked executable. * Secondly the first word in the GOT section is blrl, used * to establish the GOT address. Until recently the GOT was * not marked executable. * - Anton */ #if 0 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) return; #endif if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &pg->flags)) clear_bit(PG_arch_1, &pg->flags); } void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len) { unsigned long maddr; maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK); flush_icache_range(maddr, maddr + len); } EXPORT_SYMBOL(flush_icache_user_range); /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. * * This must always be called with the mm->page_table_lock held */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea, pte_t pte) { unsigned long vsid; void *pgdir; pte_t *ptep; int local = 0; cpumask_t tmp; unsigned long flags; /* handle i-cache coherency */ if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && !cpu_has_feature(CPU_FTR_NOEXECUTE)) { unsigned long pfn = pte_pfn(pte); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page) && !test_bit(PG_arch_1, &page->flags)) { __flush_dcache_icache(page_address(page)); set_bit(PG_arch_1, &page->flags); } } } /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(pte)) return; pgdir = vma->vm_mm->pgd; if (pgdir == NULL) return; ptep = find_linux_pte(pgdir, ea); if (!ptep) return; vsid = get_vsid(vma->vm_mm->context.id, ea); local_irq_save(flags); tmp = cpumask_of_cpu(smp_processor_id()); if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp)) local = 1; __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep, 0x300, local); local_irq_restore(flags); }