/* * Low-level SPU handling * * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 * * Author: Arnd Bergmann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "interrupt.h" const struct spu_priv1_ops *spu_priv1_ops; EXPORT_SYMBOL_GPL(spu_priv1_ops); static int __spu_trap_invalid_dma(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); spu->dma_callback(spu, SPE_EVENT_INVALID_DMA); return 0; } static int __spu_trap_dma_align(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); spu->dma_callback(spu, SPE_EVENT_DMA_ALIGNMENT); return 0; } static int __spu_trap_error(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); spu->dma_callback(spu, SPE_EVENT_SPE_ERROR); return 0; } static void spu_restart_dma(struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags)) out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); } static int __spu_trap_data_seg(struct spu *spu, unsigned long ea) { struct spu_priv2 __iomem *priv2 = spu->priv2; struct mm_struct *mm = spu->mm; u64 esid, vsid, llp; pr_debug("%s\n", __FUNCTION__); if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) { /* SLBs are pre-loaded for context switch, so * we should never get here! */ printk("%s: invalid access during switch!\n", __func__); return 1; } esid = (ea & ESID_MASK) | SLB_ESID_V; switch(REGION_ID(ea)) { case USER_REGION_ID: #ifdef CONFIG_HUGETLB_PAGE if (in_hugepage_area(mm->context, ea)) llp = mmu_psize_defs[mmu_huge_psize].sllp; else #endif llp = mmu_psize_defs[mmu_virtual_psize].sllp; vsid = (get_vsid(mm->context.id, ea) << SLB_VSID_SHIFT) | SLB_VSID_USER | llp; break; case VMALLOC_REGION_ID: llp = mmu_psize_defs[mmu_virtual_psize].sllp; vsid = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL | llp; break; case KERNEL_REGION_ID: llp = mmu_psize_defs[mmu_linear_psize].sllp; vsid = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL | llp; break; default: /* Future: support kernel segments so that drivers * can use SPUs. */ pr_debug("invalid region access at %016lx\n", ea); return 1; } out_be64(&priv2->slb_index_W, spu->slb_replace); out_be64(&priv2->slb_vsid_RW, vsid); out_be64(&priv2->slb_esid_RW, esid); spu->slb_replace++; if (spu->slb_replace >= 8) spu->slb_replace = 0; spu_restart_dma(spu); return 0; } extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr) { pr_debug("%s, %lx, %lx\n", __FUNCTION__, dsisr, ea); /* Handle kernel space hash faults immediately. User hash faults need to be deferred to process context. */ if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) && REGION_ID(ea) != USER_REGION_ID && hash_page(ea, _PAGE_PRESENT, 0x300) == 0) { spu_restart_dma(spu); return 0; } if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) { printk("%s: invalid access during switch!\n", __func__); return 1; } spu->dar = ea; spu->dsisr = dsisr; mb(); spu->stop_callback(spu); return 0; } static irqreturn_t spu_irq_class_0(int irq, void *data) { struct spu *spu; spu = data; spu->class_0_pending = 1; spu->stop_callback(spu); return IRQ_HANDLED; } int spu_irq_class_0_bottom(struct spu *spu) { unsigned long stat, mask; spu->class_0_pending = 0; mask = spu_int_mask_get(spu, 0); stat = spu_int_stat_get(spu, 0); stat &= mask; if (stat & 1) /* invalid DMA alignment */ __spu_trap_dma_align(spu); if (stat & 2) /* invalid MFC DMA */ __spu_trap_invalid_dma(spu); if (stat & 4) /* error on SPU */ __spu_trap_error(spu); spu_int_stat_clear(spu, 0, stat); return (stat & 0x7) ? -EIO : 0; } EXPORT_SYMBOL_GPL(spu_irq_class_0_bottom); static irqreturn_t spu_irq_class_1(int irq, void *data) { struct spu *spu; unsigned long stat, mask, dar, dsisr; spu = data; /* atomically read & clear class1 status. */ spin_lock(&spu->register_lock); mask = spu_int_mask_get(spu, 1); stat = spu_int_stat_get(spu, 1) & mask; dar = spu_mfc_dar_get(spu); dsisr = spu_mfc_dsisr_get(spu); if (stat & 2) /* mapping fault */ spu_mfc_dsisr_set(spu, 0ul); spu_int_stat_clear(spu, 1, stat); spin_unlock(&spu->register_lock); pr_debug("%s: %lx %lx %lx %lx\n", __FUNCTION__, mask, stat, dar, dsisr); if (stat & 1) /* segment fault */ __spu_trap_data_seg(spu, dar); if (stat & 2) { /* mapping fault */ __spu_trap_data_map(spu, dar, dsisr); } if (stat & 4) /* ls compare & suspend on get */ ; if (stat & 8) /* ls compare & suspend on put */ ; return stat ? IRQ_HANDLED : IRQ_NONE; } EXPORT_SYMBOL_GPL(spu_irq_class_1_bottom); static irqreturn_t spu_irq_class_2(int irq, void *data) { struct spu *spu; unsigned long stat; unsigned long mask; spu = data; spin_lock(&spu->register_lock); stat = spu_int_stat_get(spu, 2); mask = spu_int_mask_get(spu, 2); /* ignore interrupts we're not waiting for */ stat &= mask; /* * mailbox interrupts (0x1 and 0x10) are level triggered. * mask them now before acknowledging. */ if (stat & 0x11) spu_int_mask_and(spu, 2, ~(stat & 0x11)); /* acknowledge all interrupts before the callbacks */ spu_int_stat_clear(spu, 2, stat); spin_unlock(&spu->register_lock); pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask); if (stat & 1) /* PPC core mailbox */ spu->ibox_callback(spu); if (stat & 2) /* SPU stop-and-signal */ spu->stop_callback(spu); if (stat & 4) /* SPU halted */ spu->stop_callback(spu); if (stat & 8) /* DMA tag group complete */ spu->mfc_callback(spu); if (stat & 0x10) /* SPU mailbox threshold */ spu->wbox_callback(spu); return stat ? IRQ_HANDLED : IRQ_NONE; } static int spu_request_irqs(struct spu *spu) { int ret = 0; if (spu->irqs[0] != NO_IRQ) { snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", spu->number); ret = request_irq(spu->irqs[0], spu_irq_class_0, IRQF_DISABLED, spu->irq_c0, spu); if (ret) goto bail0; } if (spu->irqs[1] != NO_IRQ) { snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", spu->number); ret = request_irq(spu->irqs[1], spu_irq_class_1, IRQF_DISABLED, spu->irq_c1, spu); if (ret) goto bail1; } if (spu->irqs[2] != NO_IRQ) { snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", spu->number); ret = request_irq(spu->irqs[2], spu_irq_class_2, IRQF_DISABLED, spu->irq_c2, spu); if (ret) goto bail2; } return 0; bail2: if (spu->irqs[1] != NO_IRQ) free_irq(spu->irqs[1], spu); bail1: if (spu->irqs[0] != NO_IRQ) free_irq(spu->irqs[0], spu); bail0: return ret; } static void spu_free_irqs(struct spu *spu) { if (spu->irqs[0] != NO_IRQ) free_irq(spu->irqs[0], spu); if (spu->irqs[1] != NO_IRQ) free_irq(spu->irqs[1], spu); if (spu->irqs[2] != NO_IRQ) free_irq(spu->irqs[2], spu); } static struct list_head spu_list[MAX_NUMNODES]; static LIST_HEAD(spu_full_list); static DEFINE_MUTEX(spu_mutex); static void spu_init_channels(struct spu *spu) { static const struct { unsigned channel; unsigned count; } zero_list[] = { { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, }, { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, }, }, count_list[] = { { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, }, { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, }, { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, }, }; struct spu_priv2 __iomem *priv2; int i; priv2 = spu->priv2; /* initialize all channel data to zero */ for (i = 0; i < ARRAY_SIZE(zero_list); i++) { int count; out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel); for (count = 0; count < zero_list[i].count; count++) out_be64(&priv2->spu_chnldata_RW, 0); } /* initialize channel counts to meaningful values */ for (i = 0; i < ARRAY_SIZE(count_list); i++) { out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel); out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count); } } struct spu *spu_alloc_node(int node) { struct spu *spu = NULL; mutex_lock(&spu_mutex); if (!list_empty(&spu_list[node])) { spu = list_entry(spu_list[node].next, struct spu, list); list_del_init(&spu->list); pr_debug("Got SPU %d %d\n", spu->number, spu->node); spu_init_channels(spu); } mutex_unlock(&spu_mutex); return spu; } EXPORT_SYMBOL_GPL(spu_alloc_node); struct spu *spu_alloc(void) { struct spu *spu = NULL; int node; for (node = 0; node < MAX_NUMNODES; node++) { spu = spu_alloc_node(node); if (spu) break; } return spu; } void spu_free(struct spu *spu) { mutex_lock(&spu_mutex); list_add_tail(&spu->list, &spu_list[spu->node]); mutex_unlock(&spu_mutex); } EXPORT_SYMBOL_GPL(spu_free); static int spu_handle_mm_fault(struct spu *spu) { struct mm_struct *mm = spu->mm; struct vm_area_struct *vma; u64 ea, dsisr, is_write; int ret; ea = spu->dar; dsisr = spu->dsisr; #if 0 if (!IS_VALID_EA(ea)) { return -EFAULT; } #endif /* XXX */ if (mm == NULL) { return -EFAULT; } if (mm->pgd == NULL) { return -EFAULT; } down_read(&mm->mmap_sem); vma = find_vma(mm, ea); if (!vma) goto bad_area; if (vma->vm_start <= ea) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; #if 0 if (expand_stack(vma, ea)) goto bad_area; #endif /* XXX */ good_area: is_write = dsisr & MFC_DSISR_ACCESS_PUT; if (is_write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (dsisr & MFC_DSISR_ACCESS_DENIED) goto bad_area; if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } ret = 0; switch (handle_mm_fault(mm, vma, ea, is_write)) { case VM_FAULT_MINOR: current->min_flt++; break; case VM_FAULT_MAJOR: current->maj_flt++; break; case VM_FAULT_SIGBUS: ret = -EFAULT; goto bad_area; case VM_FAULT_OOM: ret = -ENOMEM; goto bad_area; default: BUG(); } up_read(&mm->mmap_sem); return ret; bad_area: up_read(&mm->mmap_sem); return -EFAULT; } int spu_irq_class_1_bottom(struct spu *spu) { u64 ea, dsisr, access, error = 0UL; int ret = 0; ea = spu->dar; dsisr = spu->dsisr; if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)) { u64 flags; access = (_PAGE_PRESENT | _PAGE_USER); access |= (dsisr & MFC_DSISR_ACCESS_PUT) ? _PAGE_RW : 0UL; local_irq_save(flags); if (hash_page(ea, access, 0x300) != 0) error |= CLASS1_ENABLE_STORAGE_FAULT_INTR; local_irq_restore(flags); } if (error & CLASS1_ENABLE_STORAGE_FAULT_INTR) { if ((ret = spu_handle_mm_fault(spu)) != 0) error |= CLASS1_ENABLE_STORAGE_FAULT_INTR; else error &= ~CLASS1_ENABLE_STORAGE_FAULT_INTR; } spu->dar = 0UL; spu->dsisr = 0UL; if (!error) { spu_restart_dma(spu); } else { __spu_trap_invalid_dma(spu); } return ret; } static int __init find_spu_node_id(struct device_node *spe) { const unsigned int *id; struct device_node *cpu; cpu = spe->parent->parent; id = get_property(cpu, "node-id", NULL); return id ? *id : 0; } static int __init cell_spuprop_present(struct spu *spu, struct device_node *spe, const char *prop) { static DEFINE_MUTEX(add_spumem_mutex); const struct address_prop { unsigned long address; unsigned int len; } __attribute__((packed)) *p; int proplen; unsigned long start_pfn, nr_pages; struct pglist_data *pgdata; struct zone *zone; int ret; p = get_property(spe, prop, &proplen); WARN_ON(proplen != sizeof (*p)); start_pfn = p->address >> PAGE_SHIFT; nr_pages = ((unsigned long)p->len + PAGE_SIZE - 1) >> PAGE_SHIFT; pgdata = NODE_DATA(spu->nid); zone = pgdata->node_zones; /* XXX rethink locking here */ mutex_lock(&add_spumem_mutex); ret = __add_pages(zone, start_pfn, nr_pages); mutex_unlock(&add_spumem_mutex); return ret; } static void __iomem * __init map_spe_prop(struct spu *spu, struct device_node *n, const char *name) { const struct address_prop { unsigned long address; unsigned int len; } __attribute__((packed)) *prop; const void *p; int proplen; void __iomem *ret = NULL; int err = 0; p = get_property(n, name, &proplen); if (proplen != sizeof (struct address_prop)) return NULL; prop = p; err = cell_spuprop_present(spu, n, name); if (err && (err != -EEXIST)) goto out; ret = ioremap(prop->address, prop->len); out: return ret; } static void spu_unmap(struct spu *spu) { iounmap(spu->priv2); iounmap(spu->priv1); iounmap(spu->problem); iounmap((__force u8 __iomem *)spu->local_store); } /* This function shall be abstracted for HV platforms */ static int __init spu_map_interrupts_old(struct spu *spu, struct device_node *np) { unsigned int isrc; const u32 *tmp; /* Get the interrupt source unit from the device-tree */ tmp = get_property(np, "isrc", NULL); if (!tmp) return -ENODEV; isrc = tmp[0]; /* Add the node number */ isrc |= spu->node << IIC_IRQ_NODE_SHIFT; /* Now map interrupts of all 3 classes */ spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc); spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc); spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc); /* Right now, we only fail if class 2 failed */ return spu->irqs[2] == NO_IRQ ? -EINVAL : 0; } static int __init spu_map_device_old(struct spu *spu, struct device_node *node) { const char *prop; int ret; ret = -ENODEV; spu->name = get_property(node, "name", NULL); if (!spu->name) goto out; prop = get_property(node, "local-store", NULL); if (!prop) goto out; spu->local_store_phys = *(unsigned long *)prop; /* we use local store as ram, not io memory */ spu->local_store = (void __force *) map_spe_prop(spu, node, "local-store"); if (!spu->local_store) goto out; prop = get_property(node, "problem", NULL); if (!prop) goto out_unmap; spu->problem_phys = *(unsigned long *)prop; spu->problem= map_spe_prop(spu, node, "problem"); if (!spu->problem) goto out_unmap; spu->priv1= map_spe_prop(spu, node, "priv1"); /* priv1 is not available on a hypervisor */ spu->priv2= map_spe_prop(spu, node, "priv2"); if (!spu->priv2) goto out_unmap; ret = 0; goto out; out_unmap: spu_unmap(spu); out: return ret; } static int __init spu_map_interrupts(struct spu *spu, struct device_node *np) { struct of_irq oirq; int ret; int i; for (i=0; i < 3; i++) { ret = of_irq_map_one(np, i, &oirq); if (ret) { pr_debug("spu_new: failed to get irq %d\n", i); goto err; } ret = -EINVAL; pr_debug(" irq %d no 0x%x on %s\n", i, oirq.specifier[0], oirq.controller->full_name); spu->irqs[i] = irq_create_of_mapping(oirq.controller, oirq.specifier, oirq.size); if (spu->irqs[i] == NO_IRQ) { pr_debug("spu_new: failed to map it !\n"); goto err; } } return 0; err: pr_debug("failed to map irq %x for spu %s\n", *oirq.specifier, spu->name); for (; i >= 0; i--) { if (spu->irqs[i] != NO_IRQ) irq_dispose_mapping(spu->irqs[i]); } return ret; } static int spu_map_resource(struct device_node *node, int nr, void __iomem** virt, unsigned long *phys) { struct resource resource = { }; int ret; ret = of_address_to_resource(node, nr, &resource); if (ret) goto out; if (phys) *phys = resource.start; *virt = ioremap(resource.start, resource.end - resource.start); if (!*virt) ret = -EINVAL; out: return ret; } static int __init spu_map_device(struct spu *spu, struct device_node *node) { int ret = -ENODEV; spu->name = get_property(node, "name", NULL); if (!spu->name) goto out; ret = spu_map_resource(node, 0, (void __iomem**)&spu->local_store, &spu->local_store_phys); if (ret) { pr_debug("spu_new: failed to map %s resource 0\n", node->full_name); goto out; } ret = spu_map_resource(node, 1, (void __iomem**)&spu->problem, &spu->problem_phys); if (ret) { pr_debug("spu_new: failed to map %s resource 1\n", node->full_name); goto out_unmap; } ret = spu_map_resource(node, 2, (void __iomem**)&spu->priv2, NULL); if (ret) { pr_debug("spu_new: failed to map %s resource 2\n", node->full_name); goto out_unmap; } if (!firmware_has_feature(FW_FEATURE_LPAR)) ret = spu_map_resource(node, 3, (void __iomem**)&spu->priv1, NULL); if (ret) { pr_debug("spu_new: failed to map %s resource 3\n", node->full_name); goto out_unmap; } pr_debug("spu_new: %s maps:\n", node->full_name); pr_debug(" local store : 0x%016lx -> 0x%p\n", spu->local_store_phys, spu->local_store); pr_debug(" problem state : 0x%016lx -> 0x%p\n", spu->problem_phys, spu->problem); pr_debug(" priv2 : 0x%p\n", spu->priv2); pr_debug(" priv1 : 0x%p\n", spu->priv1); return 0; out_unmap: spu_unmap(spu); out: pr_debug("failed to map spe %s: %d\n", spu->name, ret); return ret; } struct sysdev_class spu_sysdev_class = { set_kset_name("spu") }; int spu_add_sysdev_attr(struct sysdev_attribute *attr) { struct spu *spu; mutex_lock(&spu_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysdev_create_file(&spu->sysdev, attr); mutex_unlock(&spu_mutex); return 0; } EXPORT_SYMBOL_GPL(spu_add_sysdev_attr); int spu_add_sysdev_attr_group(struct attribute_group *attrs) { struct spu *spu; mutex_lock(&spu_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysfs_create_group(&spu->sysdev.kobj, attrs); mutex_unlock(&spu_mutex); return 0; } EXPORT_SYMBOL_GPL(spu_add_sysdev_attr_group); void spu_remove_sysdev_attr(struct sysdev_attribute *attr) { struct spu *spu; mutex_lock(&spu_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysdev_remove_file(&spu->sysdev, attr); mutex_unlock(&spu_mutex); } EXPORT_SYMBOL_GPL(spu_remove_sysdev_attr); void spu_remove_sysdev_attr_group(struct attribute_group *attrs) { struct spu *spu; mutex_lock(&spu_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysfs_remove_group(&spu->sysdev.kobj, attrs); mutex_unlock(&spu_mutex); } EXPORT_SYMBOL_GPL(spu_remove_sysdev_attr_group); static int spu_create_sysdev(struct spu *spu) { int ret; spu->sysdev.id = spu->number; spu->sysdev.cls = &spu_sysdev_class; ret = sysdev_register(&spu->sysdev); if (ret) { printk(KERN_ERR "Can't register SPU %d with sysfs\n", spu->number); return ret; } sysfs_add_device_to_node(&spu->sysdev, spu->nid); return 0; } static void spu_destroy_sysdev(struct spu *spu) { sysfs_remove_device_from_node(&spu->sysdev, spu->nid); sysdev_unregister(&spu->sysdev); } static int __init create_spu(struct device_node *spe) { struct spu *spu; int ret; static int number; ret = -ENOMEM; spu = kzalloc(sizeof (*spu), GFP_KERNEL); if (!spu) goto out; spu->node = find_spu_node_id(spe); if (spu->node >= MAX_NUMNODES) { printk(KERN_WARNING "SPE %s on node %d ignored," " node number too big\n", spe->full_name, spu->node); printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n"); return -ENODEV; } spu->nid = of_node_to_nid(spe); if (spu->nid == -1) spu->nid = 0; ret = spu_map_device(spu, spe); /* try old method */ if (ret) ret = spu_map_device_old(spu, spe); if (ret) goto out_free; ret = spu_map_interrupts(spu, spe); if (ret) ret = spu_map_interrupts_old(spu, spe); if (ret) goto out_unmap; spin_lock_init(&spu->register_lock); spu_mfc_sdr_setup(spu); spu_mfc_sr1_set(spu, 0x33); mutex_lock(&spu_mutex); spu->number = number++; ret = spu_request_irqs(spu); if (ret) goto out_unlock; ret = spu_create_sysdev(spu); if (ret) goto out_free_irqs; list_add(&spu->list, &spu_list[spu->node]); list_add(&spu->full_list, &spu_full_list); spu->devnode = of_node_get(spe); mutex_unlock(&spu_mutex); pr_debug(KERN_DEBUG "Using SPE %s %p %p %p %p %d\n", spu->name, spu->local_store, spu->problem, spu->priv1, spu->priv2, spu->number); goto out; out_free_irqs: spu_free_irqs(spu); out_unlock: mutex_unlock(&spu_mutex); out_unmap: spu_unmap(spu); out_free: kfree(spu); out: return ret; } static void destroy_spu(struct spu *spu) { list_del_init(&spu->list); list_del_init(&spu->full_list); of_node_put(spu->devnode); spu_destroy_sysdev(spu); spu_free_irqs(spu); spu_unmap(spu); kfree(spu); } static void cleanup_spu_base(void) { struct spu *spu, *tmp; int node; mutex_lock(&spu_mutex); for (node = 0; node < MAX_NUMNODES; node++) { list_for_each_entry_safe(spu, tmp, &spu_list[node], list) destroy_spu(spu); } mutex_unlock(&spu_mutex); sysdev_class_unregister(&spu_sysdev_class); } module_exit(cleanup_spu_base); static int __init init_spu_base(void) { struct device_node *node; int i, ret; /* create sysdev class for spus */ ret = sysdev_class_register(&spu_sysdev_class); if (ret) return ret; for (i = 0; i < MAX_NUMNODES; i++) INIT_LIST_HEAD(&spu_list[i]); ret = -ENODEV; for (node = of_find_node_by_type(NULL, "spe"); node; node = of_find_node_by_type(node, "spe")) { ret = create_spu(node); if (ret) { printk(KERN_WARNING "%s: Error initializing %s\n", __FUNCTION__, node->name); cleanup_spu_base(); break; } } xmon_register_spus(&spu_full_list); return ret; } module_init(init_spu_base); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arnd Bergmann ");