/* * Low-level SPU handling * * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 * * Author: Arnd Bergmann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include const struct spu_management_ops *spu_management_ops; const struct spu_priv1_ops *spu_priv1_ops; static struct list_head spu_list[MAX_NUMNODES]; static LIST_HEAD(spu_full_list); static DEFINE_MUTEX(spu_mutex); static spinlock_t spu_list_lock = SPIN_LOCK_UNLOCKED; EXPORT_SYMBOL_GPL(spu_priv1_ops); void spu_invalidate_slbs(struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) out_be64(&priv2->slb_invalidate_all_W, 0UL); } EXPORT_SYMBOL_GPL(spu_invalidate_slbs); /* This is called by the MM core when a segment size is changed, to * request a flush of all the SPEs using a given mm */ void spu_flush_all_slbs(struct mm_struct *mm) { struct spu *spu; unsigned long flags; spin_lock_irqsave(&spu_list_lock, flags); list_for_each_entry(spu, &spu_full_list, full_list) { if (spu->mm == mm) spu_invalidate_slbs(spu); } spin_unlock_irqrestore(&spu_list_lock, flags); } /* The hack below stinks... try to do something better one of * these days... Does it even work properly with NR_CPUS == 1 ? */ static inline void mm_needs_global_tlbie(struct mm_struct *mm) { int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1; /* Global TLBIE broadcast required with SPEs. */ __cpus_setall(&mm->cpu_vm_mask, nr); } void spu_associate_mm(struct spu *spu, struct mm_struct *mm) { unsigned long flags; spin_lock_irqsave(&spu_list_lock, flags); spu->mm = mm; spin_unlock_irqrestore(&spu_list_lock, flags); if (mm) mm_needs_global_tlbie(mm); } EXPORT_SYMBOL_GPL(spu_associate_mm); static int __spu_trap_invalid_dma(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); spu->dma_callback(spu, SPE_EVENT_INVALID_DMA); return 0; } static int __spu_trap_dma_align(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); spu->dma_callback(spu, SPE_EVENT_DMA_ALIGNMENT); return 0; } static int __spu_trap_error(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); spu->dma_callback(spu, SPE_EVENT_SPE_ERROR); return 0; } static void spu_restart_dma(struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags)) out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); } static int __spu_trap_data_seg(struct spu *spu, unsigned long ea) { struct spu_priv2 __iomem *priv2 = spu->priv2; struct mm_struct *mm = spu->mm; u64 esid, vsid, llp; int psize; pr_debug("%s\n", __FUNCTION__); if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) { /* SLBs are pre-loaded for context switch, so * we should never get here! */ printk("%s: invalid access during switch!\n", __func__); return 1; } esid = (ea & ESID_MASK) | SLB_ESID_V; switch(REGION_ID(ea)) { case USER_REGION_ID: #ifdef CONFIG_HUGETLB_PAGE if (in_hugepage_area(mm->context, ea)) psize = mmu_huge_psize; else #endif psize = mm->context.user_psize; vsid = (get_vsid(mm->context.id, ea) << SLB_VSID_SHIFT) | SLB_VSID_USER; break; case VMALLOC_REGION_ID: if (ea < VMALLOC_END) psize = mmu_vmalloc_psize; else psize = mmu_io_psize; vsid = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL; break; case KERNEL_REGION_ID: psize = mmu_linear_psize; vsid = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL; break; default: /* Future: support kernel segments so that drivers * can use SPUs. */ pr_debug("invalid region access at %016lx\n", ea); return 1; } llp = mmu_psize_defs[psize].sllp; out_be64(&priv2->slb_index_W, spu->slb_replace); out_be64(&priv2->slb_vsid_RW, vsid | llp); out_be64(&priv2->slb_esid_RW, esid); spu->slb_replace++; if (spu->slb_replace >= 8) spu->slb_replace = 0; spu_restart_dma(spu); return 0; } extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr) { pr_debug("%s, %lx, %lx\n", __FUNCTION__, dsisr, ea); /* Handle kernel space hash faults immediately. User hash faults need to be deferred to process context. */ if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) && REGION_ID(ea) != USER_REGION_ID && hash_page(ea, _PAGE_PRESENT, 0x300) == 0) { spu_restart_dma(spu); return 0; } if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) { printk("%s: invalid access during switch!\n", __func__); return 1; } spu->dar = ea; spu->dsisr = dsisr; mb(); spu->stop_callback(spu); return 0; } static irqreturn_t spu_irq_class_0(int irq, void *data) { struct spu *spu; spu = data; spu->class_0_pending = 1; spu->stop_callback(spu); return IRQ_HANDLED; } int spu_irq_class_0_bottom(struct spu *spu) { unsigned long stat, mask; unsigned long flags; spu->class_0_pending = 0; spin_lock_irqsave(&spu->register_lock, flags); mask = spu_int_mask_get(spu, 0); stat = spu_int_stat_get(spu, 0); stat &= mask; if (stat & 1) /* invalid DMA alignment */ __spu_trap_dma_align(spu); if (stat & 2) /* invalid MFC DMA */ __spu_trap_invalid_dma(spu); if (stat & 4) /* error on SPU */ __spu_trap_error(spu); spu_int_stat_clear(spu, 0, stat); spin_unlock_irqrestore(&spu->register_lock, flags); return (stat & 0x7) ? -EIO : 0; } EXPORT_SYMBOL_GPL(spu_irq_class_0_bottom); static irqreturn_t spu_irq_class_1(int irq, void *data) { struct spu *spu; unsigned long stat, mask, dar, dsisr; spu = data; /* atomically read & clear class1 status. */ spin_lock(&spu->register_lock); mask = spu_int_mask_get(spu, 1); stat = spu_int_stat_get(spu, 1) & mask; dar = spu_mfc_dar_get(spu); dsisr = spu_mfc_dsisr_get(spu); if (stat & 2) /* mapping fault */ spu_mfc_dsisr_set(spu, 0ul); spu_int_stat_clear(spu, 1, stat); spin_unlock(&spu->register_lock); pr_debug("%s: %lx %lx %lx %lx\n", __FUNCTION__, mask, stat, dar, dsisr); if (stat & 1) /* segment fault */ __spu_trap_data_seg(spu, dar); if (stat & 2) { /* mapping fault */ __spu_trap_data_map(spu, dar, dsisr); } if (stat & 4) /* ls compare & suspend on get */ ; if (stat & 8) /* ls compare & suspend on put */ ; return stat ? IRQ_HANDLED : IRQ_NONE; } static irqreturn_t spu_irq_class_2(int irq, void *data) { struct spu *spu; unsigned long stat; unsigned long mask; spu = data; spin_lock(&spu->register_lock); stat = spu_int_stat_get(spu, 2); mask = spu_int_mask_get(spu, 2); /* ignore interrupts we're not waiting for */ stat &= mask; /* * mailbox interrupts (0x1 and 0x10) are level triggered. * mask them now before acknowledging. */ if (stat & 0x11) spu_int_mask_and(spu, 2, ~(stat & 0x11)); /* acknowledge all interrupts before the callbacks */ spu_int_stat_clear(spu, 2, stat); spin_unlock(&spu->register_lock); pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask); if (stat & 1) /* PPC core mailbox */ spu->ibox_callback(spu); if (stat & 2) /* SPU stop-and-signal */ spu->stop_callback(spu); if (stat & 4) /* SPU halted */ spu->stop_callback(spu); if (stat & 8) /* DMA tag group complete */ spu->mfc_callback(spu); if (stat & 0x10) /* SPU mailbox threshold */ spu->wbox_callback(spu); return stat ? IRQ_HANDLED : IRQ_NONE; } static int spu_request_irqs(struct spu *spu) { int ret = 0; if (spu->irqs[0] != NO_IRQ) { snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", spu->number); ret = request_irq(spu->irqs[0], spu_irq_class_0, IRQF_DISABLED, spu->irq_c0, spu); if (ret) goto bail0; } if (spu->irqs[1] != NO_IRQ) { snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", spu->number); ret = request_irq(spu->irqs[1], spu_irq_class_1, IRQF_DISABLED, spu->irq_c1, spu); if (ret) goto bail1; } if (spu->irqs[2] != NO_IRQ) { snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", spu->number); ret = request_irq(spu->irqs[2], spu_irq_class_2, IRQF_DISABLED, spu->irq_c2, spu); if (ret) goto bail2; } return 0; bail2: if (spu->irqs[1] != NO_IRQ) free_irq(spu->irqs[1], spu); bail1: if (spu->irqs[0] != NO_IRQ) free_irq(spu->irqs[0], spu); bail0: return ret; } static void spu_free_irqs(struct spu *spu) { if (spu->irqs[0] != NO_IRQ) free_irq(spu->irqs[0], spu); if (spu->irqs[1] != NO_IRQ) free_irq(spu->irqs[1], spu); if (spu->irqs[2] != NO_IRQ) free_irq(spu->irqs[2], spu); } static void spu_init_channels(struct spu *spu) { static const struct { unsigned channel; unsigned count; } zero_list[] = { { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, }, { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, }, }, count_list[] = { { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, }, { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, }, { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, }, }; struct spu_priv2 __iomem *priv2; int i; priv2 = spu->priv2; /* initialize all channel data to zero */ for (i = 0; i < ARRAY_SIZE(zero_list); i++) { int count; out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel); for (count = 0; count < zero_list[i].count; count++) out_be64(&priv2->spu_chnldata_RW, 0); } /* initialize channel counts to meaningful values */ for (i = 0; i < ARRAY_SIZE(count_list); i++) { out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel); out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count); } } struct spu *spu_alloc_node(int node) { struct spu *spu = NULL; mutex_lock(&spu_mutex); if (!list_empty(&spu_list[node])) { spu = list_entry(spu_list[node].next, struct spu, list); list_del_init(&spu->list); pr_debug("Got SPU %d %d\n", spu->number, spu->node); } mutex_unlock(&spu_mutex); if (spu) spu_init_channels(spu); return spu; } EXPORT_SYMBOL_GPL(spu_alloc_node); struct spu *spu_alloc(void) { struct spu *spu = NULL; int node; for (node = 0; node < MAX_NUMNODES; node++) { spu = spu_alloc_node(node); if (spu) break; } return spu; } void spu_free(struct spu *spu) { mutex_lock(&spu_mutex); list_add_tail(&spu->list, &spu_list[spu->node]); mutex_unlock(&spu_mutex); } EXPORT_SYMBOL_GPL(spu_free); struct sysdev_class spu_sysdev_class = { set_kset_name("spu") }; int spu_add_sysdev_attr(struct sysdev_attribute *attr) { struct spu *spu; mutex_lock(&spu_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysdev_create_file(&spu->sysdev, attr); mutex_unlock(&spu_mutex); return 0; } EXPORT_SYMBOL_GPL(spu_add_sysdev_attr); int spu_add_sysdev_attr_group(struct attribute_group *attrs) { struct spu *spu; mutex_lock(&spu_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysfs_create_group(&spu->sysdev.kobj, attrs); mutex_unlock(&spu_mutex); return 0; } EXPORT_SYMBOL_GPL(spu_add_sysdev_attr_group); void spu_remove_sysdev_attr(struct sysdev_attribute *attr) { struct spu *spu; mutex_lock(&spu_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysdev_remove_file(&spu->sysdev, attr); mutex_unlock(&spu_mutex); } EXPORT_SYMBOL_GPL(spu_remove_sysdev_attr); void spu_remove_sysdev_attr_group(struct attribute_group *attrs) { struct spu *spu; mutex_lock(&spu_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysfs_remove_group(&spu->sysdev.kobj, attrs); mutex_unlock(&spu_mutex); } EXPORT_SYMBOL_GPL(spu_remove_sysdev_attr_group); static int spu_create_sysdev(struct spu *spu) { int ret; spu->sysdev.id = spu->number; spu->sysdev.cls = &spu_sysdev_class; ret = sysdev_register(&spu->sysdev); if (ret) { printk(KERN_ERR "Can't register SPU %d with sysfs\n", spu->number); return ret; } sysfs_add_device_to_node(&spu->sysdev, spu->node); return 0; } static void spu_destroy_sysdev(struct spu *spu) { sysfs_remove_device_from_node(&spu->sysdev, spu->node); sysdev_unregister(&spu->sysdev); } static int __init create_spu(void *data) { struct spu *spu; int ret; static int number; unsigned long flags; ret = -ENOMEM; spu = kzalloc(sizeof (*spu), GFP_KERNEL); if (!spu) goto out; spin_lock_init(&spu->register_lock); mutex_lock(&spu_mutex); spu->number = number++; mutex_unlock(&spu_mutex); ret = spu_create_spu(spu, data); if (ret) goto out_free; spu_mfc_sdr_setup(spu); spu_mfc_sr1_set(spu, 0x33); ret = spu_request_irqs(spu); if (ret) goto out_destroy; ret = spu_create_sysdev(spu); if (ret) goto out_free_irqs; mutex_lock(&spu_mutex); spin_lock_irqsave(&spu_list_lock, flags); list_add(&spu->list, &spu_list[spu->node]); list_add(&spu->full_list, &spu_full_list); spin_unlock_irqrestore(&spu_list_lock, flags); mutex_unlock(&spu_mutex); goto out; out_free_irqs: spu_free_irqs(spu); out_destroy: spu_destroy_spu(spu); out_free: kfree(spu); out: return ret; } static void destroy_spu(struct spu *spu) { list_del_init(&spu->list); list_del_init(&spu->full_list); spu_destroy_sysdev(spu); spu_free_irqs(spu); spu_destroy_spu(spu); kfree(spu); } static void cleanup_spu_base(void) { struct spu *spu, *tmp; int node; mutex_lock(&spu_mutex); for (node = 0; node < MAX_NUMNODES; node++) { list_for_each_entry_safe(spu, tmp, &spu_list[node], list) destroy_spu(spu); } mutex_unlock(&spu_mutex); sysdev_class_unregister(&spu_sysdev_class); } module_exit(cleanup_spu_base); static int __init init_spu_base(void) { int i, ret; if (!spu_management_ops) return 0; /* create sysdev class for spus */ ret = sysdev_class_register(&spu_sysdev_class); if (ret) return ret; for (i = 0; i < MAX_NUMNODES; i++) INIT_LIST_HEAD(&spu_list[i]); ret = spu_enumerate_spus(create_spu); if (ret) { printk(KERN_WARNING "%s: Error initializing spus\n", __FUNCTION__); cleanup_spu_base(); return ret; } xmon_register_spus(&spu_full_list); return ret; } module_init(init_spu_base); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arnd Bergmann ");