/* * arch/ppc64/kernel/pSeries_iommu.c * * Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation * * Rewrite, cleanup: * * Copyright (C) 2004 Olof Johansson <olof@austin.ibm.com>, IBM Corporation * * Dynamic DMA mapping support, pSeries-specific parts, both SMP and LPAR. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/config.h> #include <linux/init.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <asm/io.h> #include <asm/prom.h> #include <asm/rtas.h> #include <asm/ppcdebug.h> #include <asm/iommu.h> #include <asm/pci-bridge.h> #include <asm/machdep.h> #include <asm/abs_addr.h> #include <asm/plpar_wrappers.h> #include <asm/pSeries_reconfig.h> #include <asm/systemcfg.h> #include <asm/firmware.h> #include <asm/tce.h> #include <asm/ppc-pci.h> #define DBG(fmt...) extern int is_python(struct device_node *); static void tce_build_pSeries(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction) { union tce_entry t; union tce_entry *tp; index <<= TCE_PAGE_FACTOR; npages <<= TCE_PAGE_FACTOR; t.te_word = 0; t.te_rdwr = 1; // Read allowed if (direction != DMA_TO_DEVICE) t.te_pciwr = 1; tp = ((union tce_entry *)tbl->it_base) + index; while (npages--) { /* can't move this out since we might cross LMB boundary */ t.te_rpn = (virt_to_abs(uaddr)) >> TCE_SHIFT; tp->te_word = t.te_word; uaddr += TCE_PAGE_SIZE; tp++; } } static void tce_free_pSeries(struct iommu_table *tbl, long index, long npages) { union tce_entry t; union tce_entry *tp; npages <<= TCE_PAGE_FACTOR; index <<= TCE_PAGE_FACTOR; t.te_word = 0; tp = ((union tce_entry *)tbl->it_base) + index; while (npages--) { tp->te_word = t.te_word; tp++; } } static void tce_build_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages, unsigned long uaddr, enum dma_data_direction direction) { u64 rc; union tce_entry tce; tce.te_word = 0; tce.te_rpn = (virt_to_abs(uaddr)) >> TCE_SHIFT; tce.te_rdwr = 1; if (direction != DMA_TO_DEVICE) tce.te_pciwr = 1; while (npages--) { rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, tce.te_word ); if (rc && printk_ratelimit()) { printk("tce_build_pSeriesLP: plpar_tce_put failed. rc=%ld\n", rc); printk("\tindex = 0x%lx\n", (u64)tbl->it_index); printk("\ttcenum = 0x%lx\n", (u64)tcenum); printk("\ttce val = 0x%lx\n", tce.te_word ); show_stack(current, (unsigned long *)__get_SP()); } tcenum++; tce.te_rpn++; } } static DEFINE_PER_CPU(void *, tce_page) = NULL; static void tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages, unsigned long uaddr, enum dma_data_direction direction) { u64 rc; union tce_entry tce, *tcep; long l, limit; tcenum <<= TCE_PAGE_FACTOR; npages <<= TCE_PAGE_FACTOR; if (npages == 1) return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr, direction); tcep = __get_cpu_var(tce_page); /* This is safe to do since interrupts are off when we're called * from iommu_alloc{,_sg}() */ if (!tcep) { tcep = (void *)__get_free_page(GFP_ATOMIC); /* If allocation fails, fall back to the loop implementation */ if (!tcep) return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr, direction); __get_cpu_var(tce_page) = tcep; } tce.te_word = 0; tce.te_rpn = (virt_to_abs(uaddr)) >> TCE_SHIFT; tce.te_rdwr = 1; if (direction != DMA_TO_DEVICE) tce.te_pciwr = 1; /* We can map max one pageful of TCEs at a time */ do { /* * Set up the page with TCE data, looping through and setting * the values. */ limit = min_t(long, npages, 4096/sizeof(union tce_entry)); for (l = 0; l < limit; l++) { tcep[l] = tce; tce.te_rpn++; } rc = plpar_tce_put_indirect((u64)tbl->it_index, (u64)tcenum << 12, (u64)virt_to_abs(tcep), limit); npages -= limit; tcenum += limit; } while (npages > 0 && !rc); if (rc && printk_ratelimit()) { printk("tce_buildmulti_pSeriesLP: plpar_tce_put failed. rc=%ld\n", rc); printk("\tindex = 0x%lx\n", (u64)tbl->it_index); printk("\tnpages = 0x%lx\n", (u64)npages); printk("\ttce[0] val = 0x%lx\n", tcep[0].te_word); show_stack(current, (unsigned long *)__get_SP()); } } static void tce_free_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages) { u64 rc; union tce_entry tce; tcenum <<= TCE_PAGE_FACTOR; npages <<= TCE_PAGE_FACTOR; tce.te_word = 0; while (npages--) { rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, tce.te_word); if (rc && printk_ratelimit()) { printk("tce_free_pSeriesLP: plpar_tce_put failed. rc=%ld\n", rc); printk("\tindex = 0x%lx\n", (u64)tbl->it_index); printk("\ttcenum = 0x%lx\n", (u64)tcenum); printk("\ttce val = 0x%lx\n", tce.te_word ); show_stack(current, (unsigned long *)__get_SP()); } tcenum++; } } static void tce_freemulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages) { u64 rc; union tce_entry tce; tcenum <<= TCE_PAGE_FACTOR; npages <<= TCE_PAGE_FACTOR; tce.te_word = 0; rc = plpar_tce_stuff((u64)tbl->it_index, (u64)tcenum << 12, tce.te_word, npages); if (rc && printk_ratelimit()) { printk("tce_freemulti_pSeriesLP: plpar_tce_stuff failed\n"); printk("\trc = %ld\n", rc); printk("\tindex = 0x%lx\n", (u64)tbl->it_index); printk("\tnpages = 0x%lx\n", (u64)npages); printk("\ttce val = 0x%lx\n", tce.te_word ); show_stack(current, (unsigned long *)__get_SP()); } } static void iommu_table_setparms(struct pci_controller *phb, struct device_node *dn, struct iommu_table *tbl) { struct device_node *node; unsigned long *basep; unsigned int *sizep; node = (struct device_node *)phb->arch_data; basep = (unsigned long *)get_property(node, "linux,tce-base", NULL); sizep = (unsigned int *)get_property(node, "linux,tce-size", NULL); if (basep == NULL || sizep == NULL) { printk(KERN_ERR "PCI_DMA: iommu_table_setparms: %s has " "missing tce entries !\n", dn->full_name); return; } tbl->it_base = (unsigned long)__va(*basep); memset((void *)tbl->it_base, 0, *sizep); tbl->it_busno = phb->bus->number; /* Units of tce entries */ tbl->it_offset = phb->dma_window_base_cur >> PAGE_SHIFT; /* Test if we are going over 2GB of DMA space */ if (phb->dma_window_base_cur + phb->dma_window_size > 0x80000000ul) { udbg_printf("PCI_DMA: Unexpected number of IOAs under this PHB.\n"); panic("PCI_DMA: Unexpected number of IOAs under this PHB.\n"); } phb->dma_window_base_cur += phb->dma_window_size; /* Set the tce table size - measured in entries */ tbl->it_size = phb->dma_window_size >> PAGE_SHIFT; tbl->it_index = 0; tbl->it_blocksize = 16; tbl->it_type = TCE_PCI; } /* * iommu_table_setparms_lpar * * Function: On pSeries LPAR systems, return TCE table info, given a pci bus. * * ToDo: properly interpret the ibm,dma-window property. The definition is: * logical-bus-number (1 word) * phys-address (#address-cells words) * size (#cell-size words) * * Currently we hard code these sizes (more or less). */ static void iommu_table_setparms_lpar(struct pci_controller *phb, struct device_node *dn, struct iommu_table *tbl, unsigned int *dma_window) { tbl->it_busno = PCI_DN(dn)->bussubno; /* TODO: Parse field size properties properly. */ tbl->it_size = (((unsigned long)dma_window[4] << 32) | (unsigned long)dma_window[5]) >> PAGE_SHIFT; tbl->it_offset = (((unsigned long)dma_window[2] << 32) | (unsigned long)dma_window[3]) >> PAGE_SHIFT; tbl->it_base = 0; tbl->it_index = dma_window[0]; tbl->it_blocksize = 16; tbl->it_type = TCE_PCI; } static void iommu_bus_setup_pSeries(struct pci_bus *bus) { struct device_node *dn; struct iommu_table *tbl; struct device_node *isa_dn, *isa_dn_orig; struct device_node *tmp; struct pci_dn *pci; int children; DBG("iommu_bus_setup_pSeries, bus %p, bus->self %p\n", bus, bus->self); dn = pci_bus_to_OF_node(bus); pci = PCI_DN(dn); if (bus->self) { /* This is not a root bus, any setup will be done for the * device-side of the bridge in iommu_dev_setup_pSeries(). */ return; } /* Check if the ISA bus on the system is under * this PHB. */ isa_dn = isa_dn_orig = of_find_node_by_type(NULL, "isa"); while (isa_dn && isa_dn != dn) isa_dn = isa_dn->parent; if (isa_dn_orig) of_node_put(isa_dn_orig); /* Count number of direct PCI children of the PHB. * All PCI device nodes have class-code property, so it's * an easy way to find them. */ for (children = 0, tmp = dn->child; tmp; tmp = tmp->sibling) if (get_property(tmp, "class-code", NULL)) children++; DBG("Children: %d\n", children); /* Calculate amount of DMA window per slot. Each window must be * a power of two (due to pci_alloc_consistent requirements). * * Keep 256MB aside for PHBs with ISA. */ if (!isa_dn) { /* No ISA/IDE - just set window size and return */ pci->phb->dma_window_size = 0x80000000ul; /* To be divided */ while (pci->phb->dma_window_size * children > 0x80000000ul) pci->phb->dma_window_size >>= 1; DBG("No ISA/IDE, window size is 0x%lx\n", pci->phb->dma_window_size); pci->phb->dma_window_base_cur = 0; return; } /* If we have ISA, then we probably have an IDE * controller too. Allocate a 128MB table but * skip the first 128MB to avoid stepping on ISA * space. */ pci->phb->dma_window_size = 0x8000000ul; pci->phb->dma_window_base_cur = 0x8000000ul; tbl = kmalloc(sizeof(struct iommu_table), GFP_KERNEL); iommu_table_setparms(pci->phb, dn, tbl); pci->iommu_table = iommu_init_table(tbl); /* Divide the rest (1.75GB) among the children */ pci->phb->dma_window_size = 0x80000000ul; while (pci->phb->dma_window_size * children > 0x70000000ul) pci->phb->dma_window_size >>= 1; DBG("ISA/IDE, window size is 0x%lx\n", pci->phb->dma_window_size); } static void iommu_bus_setup_pSeriesLP(struct pci_bus *bus) { struct iommu_table *tbl; struct device_node *dn, *pdn; struct pci_dn *ppci; unsigned int *dma_window = NULL; DBG("iommu_bus_setup_pSeriesLP, bus %p, bus->self %p\n", bus, bus->self); dn = pci_bus_to_OF_node(bus); /* Find nearest ibm,dma-window, walking up the device tree */ for (pdn = dn; pdn != NULL; pdn = pdn->parent) { dma_window = (unsigned int *)get_property(pdn, "ibm,dma-window", NULL); if (dma_window != NULL) break; } if (dma_window == NULL) { DBG("iommu_bus_setup_pSeriesLP: bus %s seems to have no ibm,dma-window property\n", dn->full_name); return; } ppci = pdn->data; if (!ppci->iommu_table) { /* Bussubno hasn't been copied yet. * Do it now because iommu_table_setparms_lpar needs it. */ ppci->bussubno = bus->number; tbl = (struct iommu_table *)kmalloc(sizeof(struct iommu_table), GFP_KERNEL); iommu_table_setparms_lpar(ppci->phb, pdn, tbl, dma_window); ppci->iommu_table = iommu_init_table(tbl); } if (pdn != dn) PCI_DN(dn)->iommu_table = ppci->iommu_table; } static void iommu_dev_setup_pSeries(struct pci_dev *dev) { struct device_node *dn, *mydn; struct iommu_table *tbl; DBG("iommu_dev_setup_pSeries, dev %p (%s)\n", dev, pci_name(dev)); mydn = dn = pci_device_to_OF_node(dev); /* If we're the direct child of a root bus, then we need to allocate * an iommu table ourselves. The bus setup code should have setup * the window sizes already. */ if (!dev->bus->self) { DBG(" --> first child, no bridge. Allocating iommu table.\n"); tbl = kmalloc(sizeof(struct iommu_table), GFP_KERNEL); iommu_table_setparms(PCI_DN(dn)->phb, dn, tbl); PCI_DN(mydn)->iommu_table = iommu_init_table(tbl); return; } /* If this device is further down the bus tree, search upwards until * an already allocated iommu table is found and use that. */ while (dn && dn->data && PCI_DN(dn)->iommu_table == NULL) dn = dn->parent; if (dn && dn->data) { PCI_DN(mydn)->iommu_table = PCI_DN(dn)->iommu_table; } else { DBG("iommu_dev_setup_pSeries, dev %p (%s) has no iommu table\n", dev, pci_name(dev)); } } static int iommu_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node) { int err = NOTIFY_OK; struct device_node *np = node; struct pci_dn *pci = np->data; switch (action) { case PSERIES_RECONFIG_REMOVE: if (pci->iommu_table && get_property(np, "ibm,dma-window", NULL)) iommu_free_table(np); break; default: err = NOTIFY_DONE; break; } return err; } static struct notifier_block iommu_reconfig_nb = { .notifier_call = iommu_reconfig_notifier, }; static void iommu_dev_setup_pSeriesLP(struct pci_dev *dev) { struct device_node *pdn, *dn; struct iommu_table *tbl; int *dma_window = NULL; struct pci_dn *pci; DBG("iommu_dev_setup_pSeriesLP, dev %p (%s)\n", dev, pci_name(dev)); /* dev setup for LPAR is a little tricky, since the device tree might * contain the dma-window properties per-device and not neccesarily * for the bus. So we need to search upwards in the tree until we * either hit a dma-window property, OR find a parent with a table * already allocated. */ dn = pci_device_to_OF_node(dev); for (pdn = dn; pdn && pdn->data && !PCI_DN(pdn)->iommu_table; pdn = pdn->parent) { dma_window = (unsigned int *) get_property(pdn, "ibm,dma-window", NULL); if (dma_window) break; } /* Check for parent == NULL so we don't try to setup the empty EADS * slots on POWER4 machines. */ if (dma_window == NULL || pdn->parent == NULL) { DBG("No dma window for device, linking to parent\n"); PCI_DN(dn)->iommu_table = PCI_DN(pdn)->iommu_table; return; } else { DBG("Found DMA window, allocating table\n"); } pci = pdn->data; if (!pci->iommu_table) { /* iommu_table_setparms_lpar needs bussubno. */ pci->bussubno = pci->phb->bus->number; tbl = (struct iommu_table *)kmalloc(sizeof(struct iommu_table), GFP_KERNEL); iommu_table_setparms_lpar(pci->phb, pdn, tbl, dma_window); pci->iommu_table = iommu_init_table(tbl); } if (pdn != dn) PCI_DN(dn)->iommu_table = pci->iommu_table; } static void iommu_bus_setup_null(struct pci_bus *b) { } static void iommu_dev_setup_null(struct pci_dev *d) { } /* These are called very early. */ void iommu_init_early_pSeries(void) { if (of_chosen && get_property(of_chosen, "linux,iommu-off", NULL)) { /* Direct I/O, IOMMU off */ ppc_md.iommu_dev_setup = iommu_dev_setup_null; ppc_md.iommu_bus_setup = iommu_bus_setup_null; pci_direct_iommu_init(); return; } if (systemcfg->platform & PLATFORM_LPAR) { if (firmware_has_feature(FW_FEATURE_MULTITCE)) { ppc_md.tce_build = tce_buildmulti_pSeriesLP; ppc_md.tce_free = tce_freemulti_pSeriesLP; } else { ppc_md.tce_build = tce_build_pSeriesLP; ppc_md.tce_free = tce_free_pSeriesLP; } ppc_md.iommu_bus_setup = iommu_bus_setup_pSeriesLP; ppc_md.iommu_dev_setup = iommu_dev_setup_pSeriesLP; } else { ppc_md.tce_build = tce_build_pSeries; ppc_md.tce_free = tce_free_pSeries; ppc_md.iommu_bus_setup = iommu_bus_setup_pSeries; ppc_md.iommu_dev_setup = iommu_dev_setup_pSeries; } pSeries_reconfig_notifier_register(&iommu_reconfig_nb); pci_iommu_init(); }