/* * Fast Ethernet Controller (FCC) driver for Motorola MPC8260. * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net) * * This version of the driver is a combination of the 8xx fec and * 8260 SCC Ethernet drivers. This version has some additional * configuration options, which should probably be moved out of * here. This driver currently works for the EST SBC8260, * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others. * * Right now, I am very watseful with the buffers. I allocate memory * pages and then divide them into 2K frame buffers. This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. Since this is a cache coherent processor and CPM, * I could also preallocate SKB's and use them directly on the interface. * * 2004-12 Leo Li (leoli@freescale.com) * - Rework the FCC clock configuration part, make it easier to configure. * */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/mii.h> #include <linux/workqueue.h> #include <linux/bitops.h> #include <asm/immap_cpm2.h> #include <asm/pgtable.h> #include <asm/mpc8260.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <asm/signal.h> /* We can't use the PHY interrupt if we aren't using MDIO. */ #if !defined(CONFIG_USE_MDIO) #undef PHY_INTERRUPT #endif /* If we have a PHY interrupt, we will advertise both full-duplex and half- * duplex capabilities. If we don't have a PHY interrupt, then we will only * advertise half-duplex capabilities. */ #define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \ ADVERTISE_CSMA) #define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \ MII_ADVERTISE_HALF) #ifdef PHY_INTERRUPT #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL #else #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF #endif #include <asm/cpm2.h> /* The transmitter timeout */ #define TX_TIMEOUT (2*HZ) #ifdef CONFIG_USE_MDIO /* Forward declarations of some structures to support different PHYs */ typedef struct { uint mii_data; void (*funct)(uint mii_reg, struct net_device *dev); } phy_cmd_t; typedef struct { uint id; char *name; const phy_cmd_t *config; const phy_cmd_t *startup; const phy_cmd_t *ack_int; const phy_cmd_t *shutdown; } phy_info_t; /* values for phy_status */ #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ #endif /* CONFIG_USE_MDIO */ /* The number of Tx and Rx buffers. These are allocated from the page * pool. The code may assume these are power of two, so it is best * to keep them that size. * We don't need to allocate pages for the transmitter. We just use * the skbuffer directly. */ #define FCC_ENET_RX_PAGES 16 #define FCC_ENET_RX_FRSIZE 2048 #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE) #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES) #define TX_RING_SIZE 16 /* Must be power of two */ #define TX_RING_MOD_MASK 15 /* for this to work */ /* The FCC stores dest/src/type, data, and checksum for receive packets. * size includes support for VLAN */ #define PKT_MAXBUF_SIZE 1522 #define PKT_MINBUF_SIZE 64 /* Maximum input DMA size. Must be a should(?) be a multiple of 4. * size includes support for VLAN */ #define PKT_MAXDMA_SIZE 1524 /* Maximum input buffer size. Must be a multiple of 32. */ #define PKT_MAXBLR_SIZE 1536 static int fcc_enet_open(struct net_device *dev); static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); static int fcc_enet_rx(struct net_device *dev); static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id); static int fcc_enet_close(struct net_device *dev); static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev); /* static void set_multicast_list(struct net_device *dev); */ static void fcc_restart(struct net_device *dev, int duplex); static void fcc_stop(struct net_device *dev); static int fcc_enet_set_mac_address(struct net_device *dev, void *addr); /* These will be configurable for the FCC choice. * Multiple ports can be configured. There is little choice among the * I/O pins to the PHY, except the clocks. We will need some board * dependent clock selection. * Why in the hell did I put these inside #ifdef's? I dunno, maybe to * help show what pins are used for each device. */ /* Since the CLK setting changes greatly from board to board, I changed * it to a easy way. You just need to specify which CLK number to use. * Note that only limited choices can be make on each port. */ /* FCC1 Clock Source Configuration. There are board specific. Can only choose from CLK9-12 */ #ifdef CONFIG_SBC82xx #define F1_RXCLK 9 #define F1_TXCLK 10 #elif defined(CONFIG_ADS8272) #define F1_RXCLK 11 #define F1_TXCLK 10 #else #define F1_RXCLK 12 #define F1_TXCLK 11 #endif /* FCC2 Clock Source Configuration. There are board specific. Can only choose from CLK13-16 */ #ifdef CONFIG_ADS8272 #define F2_RXCLK 15 #define F2_TXCLK 16 #else #define F2_RXCLK 13 #define F2_TXCLK 14 #endif /* FCC3 Clock Source Configuration. There are board specific. Can only choose from CLK13-16 */ #define F3_RXCLK 15 #define F3_TXCLK 16 /* Automatically generates register configurations */ #define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */ #define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */ #define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */ #define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */ #define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */ #define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */ #define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */ #define PC_F1RXCLK PC_CLK(F1_RXCLK) #define PC_F1TXCLK PC_CLK(F1_TXCLK) #define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK)) #define CMX1_CLK_MASK ((uint)0xff000000) #define PC_F2RXCLK PC_CLK(F2_RXCLK) #define PC_F2TXCLK PC_CLK(F2_TXCLK) #define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK)) #define CMX2_CLK_MASK ((uint)0x00ff0000) #define PC_F3RXCLK PC_CLK(F3_RXCLK) #define PC_F3TXCLK PC_CLK(F3_TXCLK) #define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK)) #define CMX3_CLK_MASK ((uint)0x0000ff00) /* I/O Pin assignment for FCC1. I don't yet know the best way to do this, * but there is little variation among the choices. */ #define PA1_COL ((uint)0x00000001) #define PA1_CRS ((uint)0x00000002) #define PA1_TXER ((uint)0x00000004) #define PA1_TXEN ((uint)0x00000008) #define PA1_RXDV ((uint)0x00000010) #define PA1_RXER ((uint)0x00000020) #define PA1_TXDAT ((uint)0x00003c00) #define PA1_RXDAT ((uint)0x0003c000) #define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT) #define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \ PA1_RXDV | PA1_RXER) #define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV) #define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER) /* I/O Pin assignment for FCC2. I don't yet know the best way to do this, * but there is little variation among the choices. */ #define PB2_TXER ((uint)0x00000001) #define PB2_RXDV ((uint)0x00000002) #define PB2_TXEN ((uint)0x00000004) #define PB2_RXER ((uint)0x00000008) #define PB2_COL ((uint)0x00000010) #define PB2_CRS ((uint)0x00000020) #define PB2_TXDAT ((uint)0x000003c0) #define PB2_RXDAT ((uint)0x00003c00) #define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \ PB2_RXER | PB2_RXDV | PB2_TXER) #define PB2_PSORB_BIN (PB2_TXEN) #define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV) #define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER) /* I/O Pin assignment for FCC3. I don't yet know the best way to do this, * but there is little variation among the choices. */ #define PB3_RXDV ((uint)0x00004000) #define PB3_RXER ((uint)0x00008000) #define PB3_TXER ((uint)0x00010000) #define PB3_TXEN ((uint)0x00020000) #define PB3_COL ((uint)0x00040000) #define PB3_CRS ((uint)0x00080000) #ifndef CONFIG_RPX8260 #define PB3_TXDAT ((uint)0x0f000000) #define PC3_TXDAT ((uint)0x00000000) #else #define PB3_TXDAT ((uint)0x0f000000) #define PC3_TXDAT 0 #endif #define PB3_RXDAT ((uint)0x00f00000) #define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \ PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN) #define PB3_PSORB_BIN (0) #define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV) #define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER) #define PC3_PSORC_BOUT (PC3_TXDAT) #define PC3_PSORC_BIN (0) #define PC3_DIRC_BOUT (0) #define PC3_DIRC_BIN (PC3_TXDAT) /* MII status/control serial interface. */ #if defined(CONFIG_RPX8260) /* The EP8260 doesn't use Port C for MDIO */ #define PC_MDIO ((uint)0x00000000) #define PC_MDCK ((uint)0x00000000) #elif defined(CONFIG_TQM8260) /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */ #define PC_MDIO ((uint)0x00000002) #define PC_MDCK ((uint)0x00000001) #elif defined(CONFIG_ADS8272) #define PC_MDIO ((uint)0x00002000) #define PC_MDCK ((uint)0x00001000) #elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS) #define PC_MDIO ((uint)0x00400000) #define PC_MDCK ((uint)0x00200000) #else #define PC_MDIO ((uint)0x00000004) #define PC_MDCK ((uint)0x00000020) #endif #if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK)) #error "Must define PC_MDIO and PC_MDCK if using MDIO" #endif /* PHY addresses */ /* default to dynamic config of phy addresses */ #define FCC1_PHY_ADDR 0 #ifdef CONFIG_PQ2FADS #define FCC2_PHY_ADDR 0 #else #define FCC2_PHY_ADDR 2 #endif #define FCC3_PHY_ADDR 3 /* A table of information for supporting FCCs. This does two things. * First, we know how many FCCs we have and they are always externally * numbered from zero. Second, it holds control register and I/O * information that could be different among board designs. */ typedef struct fcc_info { uint fc_fccnum; uint fc_phyaddr; uint fc_cpmblock; uint fc_cpmpage; uint fc_proff; uint fc_interrupt; uint fc_trxclocks; uint fc_clockroute; uint fc_clockmask; uint fc_mdio; uint fc_mdck; } fcc_info_t; static fcc_info_t fcc_ports[] = { #ifdef CONFIG_FCC1_ENET { 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1, (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK, PC_MDIO, PC_MDCK }, #endif #ifdef CONFIG_FCC2_ENET { 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2, (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK, PC_MDIO, PC_MDCK }, #endif #ifdef CONFIG_FCC3_ENET { 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3, (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK, PC_MDIO, PC_MDCK }, #endif }; /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors. The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller. The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions. The empty/ready indicator in * the buffer descriptor determines the actual condition. */ struct fcc_enet_private { /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; ushort skb_cur; ushort skb_dirty; /* CPM dual port RAM relative addresses. */ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ cbd_t *tx_bd_base; cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ cbd_t *dirty_tx; /* The ring entries to be free()ed. */ volatile fcc_t *fccp; volatile fcc_enet_t *ep; struct net_device_stats stats; uint tx_free; spinlock_t lock; #ifdef CONFIG_USE_MDIO uint phy_id; uint phy_id_done; uint phy_status; phy_info_t *phy; struct work_struct phy_relink; struct work_struct phy_display_config; struct net_device *dev; uint sequence_done; uint phy_addr; #endif /* CONFIG_USE_MDIO */ int link; int old_link; int full_duplex; fcc_info_t *fip; }; static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep, volatile cpm2_map_t *immap); static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev); static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io, volatile cpm2_map_t *immap); static void init_fcc_param(fcc_info_t *fip, struct net_device *dev, volatile cpm2_map_t *immap); #ifdef CONFIG_USE_MDIO static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *)); static uint mii_send_receive(fcc_info_t *fip, uint cmd); static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c); /* Make MII read/write commands for the FCC. */ #define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18)) #define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \ ((VAL) & 0xffff)) #define mk_mii_end 0 #endif /* CONFIG_USE_MDIO */ static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; volatile cbd_t *bdp; /* Fill in a Tx ring entry */ bdp = cep->cur_tx; #ifndef final_version if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) { /* Ooops. All transmit buffers are full. Bail out. * This should not happen, since the tx queue should be stopped. */ printk("%s: tx queue full!.\n", dev->name); return 1; } #endif /* Clear all of the status flags. */ bdp->cbd_sc &= ~BD_ENET_TX_STATS; /* If the frame is short, tell CPM to pad it. */ if (skb->len <= ETH_ZLEN) bdp->cbd_sc |= BD_ENET_TX_PAD; else bdp->cbd_sc &= ~BD_ENET_TX_PAD; /* Set buffer length and buffer pointer. */ bdp->cbd_datlen = skb->len; bdp->cbd_bufaddr = __pa(skb->data); spin_lock_irq(&cep->lock); /* Save skb pointer. */ cep->tx_skbuff[cep->skb_cur] = skb; cep->stats.tx_bytes += skb->len; cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; /* Send it on its way. Tell CPM its ready, interrupt when done, * its the last BD of the frame, and to put the CRC on the end. */ bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); #if 0 /* Errata says don't do this. */ cep->fccp->fcc_ftodr = 0x8000; #endif dev->trans_start = jiffies; /* If this was the last BD in the ring, start at the beginning again. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = cep->tx_bd_base; else bdp++; if (!--cep->tx_free) netif_stop_queue(dev); cep->cur_tx = (cbd_t *)bdp; spin_unlock_irq(&cep->lock); return 0; } static void fcc_enet_timeout(struct net_device *dev) { struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; printk("%s: transmit timed out.\n", dev->name); cep->stats.tx_errors++; #ifndef final_version { int i; cbd_t *bdp; printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n", cep->cur_tx, cep->tx_free, cep->cur_rx); bdp = cep->tx_bd_base; printk(" Tx @base %p :\n", bdp); for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) printk("%04x %04x %08x\n", bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); bdp = cep->rx_bd_base; printk(" Rx @base %p :\n", bdp); for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) printk("%04x %04x %08x\n", bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); } #endif if (cep->tx_free) netif_wake_queue(dev); } /* The interrupt handler. */ static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; volatile struct fcc_enet_private *cep; volatile cbd_t *bdp; ushort int_events; int must_restart; cep = dev->priv; /* Get the interrupt events that caused us to be here. */ int_events = cep->fccp->fcc_fcce; cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm); must_restart = 0; #ifdef PHY_INTERRUPT /* We have to be careful here to make sure that we aren't * interrupted by a PHY interrupt. */ disable_irq_nosync(PHY_INTERRUPT); #endif /* Handle receive event in its own function. */ if (int_events & FCC_ENET_RXF) fcc_enet_rx(dev_id); /* Check for a transmit error. The manual is a little unclear * about this, so the debug code until I get it figured out. It * appears that if TXE is set, then TXB is not set. However, * if carrier sense is lost during frame transmission, the TXE * bit is set, "and continues the buffer transmission normally." * I don't know if "normally" implies TXB is set when the buffer * descriptor is closed.....trial and error :-). */ /* Transmit OK, or non-fatal error. Update the buffer descriptors. */ if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) { spin_lock(&cep->lock); bdp = cep->dirty_tx; while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { if (cep->tx_free == TX_RING_SIZE) break; if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ cep->stats.tx_heartbeat_errors++; if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ cep->stats.tx_window_errors++; if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ cep->stats.tx_aborted_errors++; if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ cep->stats.tx_fifo_errors++; if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ cep->stats.tx_carrier_errors++; /* No heartbeat or Lost carrier are not really bad errors. * The others require a restart transmit command. */ if (bdp->cbd_sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { must_restart = 1; cep->stats.tx_errors++; } cep->stats.tx_packets++; /* Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (bdp->cbd_sc & BD_ENET_TX_DEF) cep->stats.collisions++; /* Free the sk buffer associated with this last transmit. */ dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); cep->tx_skbuff[cep->skb_dirty] = NULL; cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; /* Update pointer to next buffer descriptor to be transmitted. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = cep->tx_bd_base; else bdp++; /* I don't know if we can be held off from processing these * interrupts for more than one frame time. I really hope * not. In such a case, we would now want to check the * currently available BD (cur_tx) and determine if any * buffers between the dirty_tx and cur_tx have also been * sent. We would want to process anything in between that * does not have BD_ENET_TX_READY set. */ /* Since we have freed up a buffer, the ring is no longer * full. */ if (!cep->tx_free++) { if (netif_queue_stopped(dev)) { netif_wake_queue(dev); } } cep->dirty_tx = (cbd_t *)bdp; } if (must_restart) { volatile cpm_cpm2_t *cp; /* Some transmit errors cause the transmitter to shut * down. We now issue a restart transmit. Since the * errors close the BD and update the pointers, the restart * _should_ pick up without having to reset any of our * pointers either. Also, To workaround 8260 device erratum * CPM37, we must disable and then re-enable the transmitter * following a Late Collision, Underrun, or Retry Limit error. */ cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT; udelay(10); /* wait a few microseconds just on principle */ cep->fccp->fcc_gfmr |= FCC_GFMR_ENT; cp = cpmp; cp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock, 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); } spin_unlock(&cep->lock); } /* Check for receive busy, i.e. packets coming but no place to * put them. */ if (int_events & FCC_ENET_BSY) { cep->fccp->fcc_fcce = FCC_ENET_BSY; cep->stats.rx_dropped++; } #ifdef PHY_INTERRUPT enable_irq(PHY_INTERRUPT); #endif return IRQ_HANDLED; } /* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static int fcc_enet_rx(struct net_device *dev) { struct fcc_enet_private *cep; volatile cbd_t *bdp; struct sk_buff *skb; ushort pkt_len; cep = dev->priv; /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = cep->cur_rx; for (;;) { if (bdp->cbd_sc & BD_ENET_RX_EMPTY) break; #ifndef final_version /* Since we have allocated space to hold a complete frame, both * the first and last indicators should be set. */ if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) printk("CPM ENET: rcv is not first+last\n"); #endif /* Frame too long or too short. */ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) cep->stats.rx_length_errors++; if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ cep->stats.rx_frame_errors++; if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ cep->stats.rx_crc_errors++; if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ cep->stats.rx_crc_errors++; if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */ cep->stats.rx_frame_errors++; if (!(bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_CL))) { /* Process the incoming frame. */ cep->stats.rx_packets++; /* Remove the FCS from the packet length. */ pkt_len = bdp->cbd_datlen - 4; cep->stats.rx_bytes += pkt_len; /* This does 16 byte alignment, much more than we need. */ skb = dev_alloc_skb(pkt_len); if (skb == NULL) { printk("%s: Memory squeeze, dropping packet.\n", dev->name); cep->stats.rx_dropped++; } else { skb_put(skb,pkt_len); /* Make room */ skb_copy_to_linear_data(skb, (unsigned char *)__va(bdp->cbd_bufaddr), pkt_len); skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); } } /* Clear the status flags for this buffer. */ bdp->cbd_sc &= ~BD_ENET_RX_STATS; /* Mark the buffer empty. */ bdp->cbd_sc |= BD_ENET_RX_EMPTY; /* Update BD pointer to next entry. */ if (bdp->cbd_sc & BD_ENET_RX_WRAP) bdp = cep->rx_bd_base; else bdp++; } cep->cur_rx = (cbd_t *)bdp; return 0; } static int fcc_enet_close(struct net_device *dev) { #ifdef CONFIG_USE_MDIO struct fcc_enet_private *fep = dev->priv; #endif netif_stop_queue(dev); fcc_stop(dev); #ifdef CONFIG_USE_MDIO if (fep->phy) mii_do_cmd(dev, fep->phy->shutdown); #endif return 0; } static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev) { struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; return &cep->stats; } #ifdef CONFIG_USE_MDIO /* NOTE: Most of the following comes from the FEC driver for 860. The * overall structure of MII code has been retained (as it's proved stable * and well-tested), but actual transfer requests are processed "at once" * instead of being queued (there's no interrupt-driven MII transfer * mechanism, one has to toggle the data/clock bits manually). */ static int mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) { struct fcc_enet_private *fep; int retval, tmp; /* Add PHY address to register command. */ fep = dev->priv; regval |= fep->phy_addr << 23; retval = 0; tmp = mii_send_receive(fep->fip, regval); if (func) func(tmp, dev); return retval; } static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) { int k; if(!c) return; for(k = 0; (c+k)->mii_data != mk_mii_end; k++) mii_queue(dev, (c+k)->mii_data, (c+k)->funct); } static void mii_parse_sr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); if (mii_reg & BMSR_LSTATUS) s |= PHY_STAT_LINK; if (mii_reg & BMSR_RFAULT) s |= PHY_STAT_FAULT; if (mii_reg & BMSR_ANEGCOMPLETE) s |= PHY_STAT_ANC; fep->phy_status = s; } static void mii_parse_cr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); if (mii_reg & BMCR_ANENABLE) s |= PHY_CONF_ANE; if (mii_reg & BMCR_LOOPBACK) s |= PHY_CONF_LOOP; fep->phy_status = s; } static void mii_parse_anar(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_CONF_SPMASK); if (mii_reg & ADVERTISE_10HALF) s |= PHY_CONF_10HDX; if (mii_reg & ADVERTISE_10FULL) s |= PHY_CONF_10FDX; if (mii_reg & ADVERTISE_100HALF) s |= PHY_CONF_100HDX; if (mii_reg & ADVERTISE_100FULL) s |= PHY_CONF_100FDX; fep->phy_status = s; } /* ------------------------------------------------------------------------- */ /* Generic PHY support. Should work for all PHYs, but does not support link * change interrupts. */ #ifdef CONFIG_FCC_GENERIC_PHY static phy_info_t phy_info_generic = { 0x00000000, /* 0-->match any PHY */ "GENERIC", (const phy_cmd_t []) { /* config */ /* advertise only half-duplex capabilities */ { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF), mii_parse_anar }, /* enable auto-negotiation */ { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup */ /* restart auto-negotiation */ { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART), NULL }, { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* We don't actually use the ack_int table with a generic * PHY, but putting a reference to mii_parse_sr here keeps * us from getting a compiler warning about unused static * functions in the case where we only compile in generic * PHY support. */ { mk_mii_read(MII_BMSR), mii_parse_sr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown */ { mk_mii_end, } }, }; #endif /* ifdef CONFIG_FCC_GENERIC_PHY */ /* ------------------------------------------------------------------------- */ /* The Level one LXT970 is used by many boards */ #ifdef CONFIG_FCC_LXT970 #define MII_LXT970_MIRROR 16 /* Mirror register */ #define MII_LXT970_IER 17 /* Interrupt Enable Register */ #define MII_LXT970_ISR 18 /* Interrupt Status Register */ #define MII_LXT970_CONFIG 19 /* Configuration Register */ #define MII_LXT970_CSR 20 /* Chip Status Register */ static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); if (mii_reg & 0x0800) { if (mii_reg & 0x1000) s |= PHY_STAT_100FDX; else s |= PHY_STAT_100HDX; } else { if (mii_reg & 0x1000) s |= PHY_STAT_10FDX; else s |= PHY_STAT_10HDX; } fep->phy_status = s; } static phy_info_t phy_info_lxt970 = { 0x07810000, "LXT970", (const phy_cmd_t []) { /* config */ #if 0 // { mk_mii_write(MII_ADVERTISE, 0x0021), NULL }, /* Set default operation of 100-TX....for some reason * some of these bits are set on power up, which is wrong. */ { mk_mii_write(MII_LXT970_CONFIG, 0), NULL }, #endif { mk_mii_read(MII_BMCR), mii_parse_cr }, { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* read SR and ISR to acknowledge */ { mk_mii_read(MII_BMSR), mii_parse_sr }, { mk_mii_read(MII_LXT970_ISR), NULL }, /* find out the current status */ { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_LXT970 */ /* ------------------------------------------------------------------------- */ /* The Level one LXT971 is used on some of my custom boards */ #ifdef CONFIG_FCC_LXT971 /* register definitions for the 971 */ #define MII_LXT971_PCR 16 /* Port Control Register */ #define MII_LXT971_SR2 17 /* Status Register 2 */ #define MII_LXT971_IER 18 /* Interrupt Enable Register */ #define MII_LXT971_ISR 19 /* Interrupt Status Register */ #define MII_LXT971_LCR 20 /* LED Control Register */ #define MII_LXT971_TCR 30 /* Transmit Control Register */ /* * I had some nice ideas of running the MDIO faster... * The 971 should support 8MHz and I tried it, but things acted really * weird, so 2.5 MHz ought to be enough for anyone... */ static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); if (mii_reg & 0x4000) { if (mii_reg & 0x0200) s |= PHY_STAT_100FDX; else s |= PHY_STAT_100HDX; } else { if (mii_reg & 0x0200) s |= PHY_STAT_10FDX; else s |= PHY_STAT_10HDX; } if (mii_reg & 0x0008) s |= PHY_STAT_FAULT; fep->phy_status = s; } static phy_info_t phy_info_lxt971 = { 0x0001378e, "LXT971", (const phy_cmd_t []) { /* config */ /* configure link capabilities to advertise */ { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT), mii_parse_anar }, /* enable auto-negotiation */ { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, /* restart auto-negotiation */ { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART), NULL }, { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* find out the current status */ { mk_mii_read(MII_BMSR), NULL }, { mk_mii_read(MII_BMSR), mii_parse_sr }, { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, /* we only need to read ISR to acknowledge */ { mk_mii_read(MII_LXT971_ISR), NULL }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FCC_LXT971 */ /* ------------------------------------------------------------------------- */ /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ #ifdef CONFIG_FCC_QS6612 /* register definitions */ #define MII_QS6612_MCR 17 /* Mode Control Register */ #define MII_QS6612_FTR 27 /* Factory Test Register */ #define MII_QS6612_MCO 28 /* Misc. Control Register */ #define MII_QS6612_ISR 29 /* Interrupt Source Register */ #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); switch((mii_reg >> 2) & 7) { case 1: s |= PHY_STAT_10HDX; break; case 2: s |= PHY_STAT_100HDX; break; case 5: s |= PHY_STAT_10FDX; break; case 6: s |= PHY_STAT_100FDX; break; } fep->phy_status = s; } static phy_info_t phy_info_qs6612 = { 0x00181440, "QS6612", (const phy_cmd_t []) { /* config */ // { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */ /* The PHY powers up isolated on the RPX, * so send a command to allow operation. */ { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, /* parse cr and anar to get some info */ { mk_mii_read(MII_BMCR), mii_parse_cr }, { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* we need to read ISR, SR and ANER to acknowledge */ { mk_mii_read(MII_QS6612_ISR), NULL }, { mk_mii_read(MII_BMSR), mii_parse_sr }, { mk_mii_read(MII_EXPANSION), NULL }, /* read pcr to get info */ { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_QS6612 */ /* ------------------------------------------------------------------------- */ /* The Davicom DM9131 is used on the HYMOD board */ #ifdef CONFIG_FCC_DM9131 /* register definitions */ #define MII_DM9131_ACR 16 /* Aux. Config Register */ #define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */ #define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */ #define MII_DM9131_INTR 21 /* Interrupt Register */ #define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */ #define MII_DM9131_DISCR 23 /* Disconnect Counter Register */ static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); switch ((mii_reg >> 12) & 0xf) { case 1: s |= PHY_STAT_10HDX; break; case 2: s |= PHY_STAT_10FDX; break; case 4: s |= PHY_STAT_100HDX; break; case 8: s |= PHY_STAT_100FDX; break; } fep->phy_status = s; } static phy_info_t phy_info_dm9131 = { 0x00181b80, "DM9131", (const phy_cmd_t []) { /* config */ /* parse cr and anar to get some info */ { mk_mii_read(MII_BMCR), mii_parse_cr }, { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_DM9131_INTR, 0x0002), NULL }, { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* we need to read INTR, SR and ANER to acknowledge */ { mk_mii_read(MII_DM9131_INTR), NULL }, { mk_mii_read(MII_BMSR), mii_parse_sr }, { mk_mii_read(MII_EXPANSION), NULL }, /* read acsr to get info */ { mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_DM9131 */ #ifdef CONFIG_FCC_DM9161 /* ------------------------------------------------------------------------- */ /* DM9161 Control register values */ #define MIIM_DM9161_CR_STOP 0x0400 #define MIIM_DM9161_CR_RSTAN 0x1200 #define MIIM_DM9161_SCR 0x10 #define MIIM_DM9161_SCR_INIT 0x0610 /* DM9161 Specified Configuration and Status Register */ #define MIIM_DM9161_SCSR 0x11 #define MIIM_DM9161_SCSR_100F 0x8000 #define MIIM_DM9161_SCSR_100H 0x4000 #define MIIM_DM9161_SCSR_10F 0x2000 #define MIIM_DM9161_SCSR_10H 0x1000 /* DM9161 10BT register */ #define MIIM_DM9161_10BTCSR 0x12 #define MIIM_DM9161_10BTCSR_INIT 0x7800 /* DM9161 Interrupt Register */ #define MIIM_DM9161_INTR 0x15 #define MIIM_DM9161_INTR_PEND 0x8000 #define MIIM_DM9161_INTR_DPLX_MASK 0x0800 #define MIIM_DM9161_INTR_SPD_MASK 0x0400 #define MIIM_DM9161_INTR_LINK_MASK 0x0200 #define MIIM_DM9161_INTR_MASK 0x0100 #define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010 #define MIIM_DM9161_INTR_SPD_CHANGE 0x0008 #define MIIM_DM9161_INTR_LINK_CHANGE 0x0004 #define MIIM_DM9161_INTR_INIT 0x0000 #define MIIM_DM9161_INTR_STOP \ (MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \ | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK) static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev) { volatile struct fcc_enet_private *fep = dev->priv; uint regstat, timeout=0xffff; while(!(mii_reg & 0x0020) && timeout--) { regstat=mk_mii_read(MII_BMSR); regstat |= fep->phy_addr <<23; mii_reg = mii_send_receive(fep->fip,regstat); } mii_parse_sr(mii_reg, dev); } static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); switch((mii_reg >>12) & 0xf) { case 1: { s |= PHY_STAT_10HDX; printk("10BaseT Half Duplex\n"); break; } case 2: { s |= PHY_STAT_10FDX; printk("10BaseT Full Duplex\n"); break; } case 4: { s |= PHY_STAT_100HDX; printk("100BaseT Half Duplex\n"); break; } case 8: { s |= PHY_STAT_100FDX; printk("100BaseT Full Duplex\n"); break; } } fep->phy_status = s; } static void mii_dm9161_wait(uint mii_reg, struct net_device *dev) { int timeout = HZ; /* Davicom takes a bit to come up after a reset, * so wait here for a bit */ schedule_timeout_uninterruptible(timeout); } static phy_info_t phy_info_dm9161 = { 0x00181b88, "Davicom DM9161E", (const phy_cmd_t[]) { /* config */ { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL}, /* Do not bypass the scrambler/descrambler */ { mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL}, /* Configure 10BTCSR register */ { mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL}, /* Configure some basic stuff */ { mk_mii_write(MII_BMCR, 0x1000), NULL}, { mk_mii_read(MII_BMCR), mii_parse_cr }, { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, { mk_mii_end,} }, (const phy_cmd_t[]) { /* startup */ /* Restart Auto Negotiation */ { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL}, /* Status is read once to clear old link state */ { mk_mii_read(MII_BMSR), mii_dm9161_wait}, /* Auto-negotiate */ { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr}, /* Read the status */ { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr}, /* Clear any pending interrupts */ { mk_mii_read(MIIM_DM9161_INTR), NULL}, /* Enable Interrupts */ { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL}, { mk_mii_end,} }, (const phy_cmd_t[]) { /* ack_int */ { mk_mii_read(MIIM_DM9161_INTR), NULL}, #if 0 { mk_mii_read(MII_BMSR), NULL}, { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr}, { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr}, #endif { mk_mii_end,} }, (const phy_cmd_t[]) { /* shutdown */ { mk_mii_read(MIIM_DM9161_INTR),NULL}, { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL}, { mk_mii_end,} }, }; #endif /* CONFIG_FCC_DM9161 */ static phy_info_t *phy_info[] = { #ifdef CONFIG_FCC_LXT970 &phy_info_lxt970, #endif /* CONFIG_FEC_LXT970 */ #ifdef CONFIG_FCC_LXT971 &phy_info_lxt971, #endif /* CONFIG_FEC_LXT971 */ #ifdef CONFIG_FCC_QS6612 &phy_info_qs6612, #endif /* CONFIG_FEC_QS6612 */ #ifdef CONFIG_FCC_DM9131 &phy_info_dm9131, #endif /* CONFIG_FEC_DM9131 */ #ifdef CONFIG_FCC_DM9161 &phy_info_dm9161, #endif /* CONFIG_FCC_DM9161 */ #ifdef CONFIG_FCC_GENERIC_PHY /* Generic PHY support. This must be the last PHY in the table. * It will be used to support any PHY that doesn't match a previous * entry in the table. */ &phy_info_generic, #endif /* CONFIG_FCC_GENERIC_PHY */ NULL }; static void mii_display_status(struct work_struct *work) { volatile struct fcc_enet_private *fep = container_of(work, struct fcc_enet_private, phy_relink); struct net_device *dev = fep->dev; uint s = fep->phy_status; if (!fep->link && !fep->old_link) { /* Link is still down - don't print anything */ return; } printk("%s: status: ", dev->name); if (!fep->link) { printk("link down"); } else { printk("link up"); switch(s & PHY_STAT_SPMASK) { case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break; case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break; case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break; case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break; default: printk(", Unknown speed/duplex"); } if (s & PHY_STAT_ANC) printk(", auto-negotiation complete"); } if (s & PHY_STAT_FAULT) printk(", remote fault"); printk(".\n"); } static void mii_display_config(struct work_struct *work) { volatile struct fcc_enet_private *fep = container_of(work, struct fcc_enet_private, phy_display_config); struct net_device *dev = fep->dev; uint s = fep->phy_status; printk("%s: config: auto-negotiation ", dev->name); if (s & PHY_CONF_ANE) printk("on"); else printk("off"); if (s & PHY_CONF_100FDX) printk(", 100FDX"); if (s & PHY_CONF_100HDX) printk(", 100HDX"); if (s & PHY_CONF_10FDX) printk(", 10FDX"); if (s & PHY_CONF_10HDX) printk(", 10HDX"); if (!(s & PHY_CONF_SPMASK)) printk(", No speed/duplex selected?"); if (s & PHY_CONF_LOOP) printk(", loopback enabled"); printk(".\n"); fep->sequence_done = 1; } static void mii_relink(struct net_device *dev) { struct fcc_enet_private *fep = dev->priv; int duplex = 0; fep->old_link = fep->link; fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; #ifdef MDIO_DEBUG printk(" mii_relink: link=%d\n", fep->link); #endif if (fep->link) { if (fep->phy_status & (PHY_STAT_100FDX | PHY_STAT_10FDX)) duplex = 1; fcc_restart(dev, duplex); #ifdef MDIO_DEBUG printk(" mii_relink: duplex=%d\n", duplex); #endif } } static void mii_queue_relink(uint mii_reg, struct net_device *dev) { struct fcc_enet_private *fep = dev->priv; mii_relink(dev); schedule_work(&fep->phy_relink); } static void mii_queue_config(uint mii_reg, struct net_device *dev) { struct fcc_enet_private *fep = dev->priv; schedule_work(&fep->phy_display_config); } phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink }, { mk_mii_end, } }; phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config }, { mk_mii_end, } }; /* Read remainder of PHY ID. */ static void mii_discover_phy3(uint mii_reg, struct net_device *dev) { struct fcc_enet_private *fep; int i; fep = dev->priv; printk("mii_reg: %08x\n", mii_reg); fep->phy_id |= (mii_reg & 0xffff); for(i = 0; phy_info[i]; i++) if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id) break; if(!phy_info[i]) panic("%s: PHY id 0x%08x is not supported!\n", dev->name, fep->phy_id); fep->phy = phy_info[i]; fep->phy_id_done = 1; printk("%s: Phy @ 0x%x, type %s (0x%08x)\n", dev->name, fep->phy_addr, fep->phy->name, fep->phy_id); } /* Scan all of the MII PHY addresses looking for someone to respond * with a valid ID. This usually happens quickly. */ static void mii_discover_phy(uint mii_reg, struct net_device *dev) { struct fcc_enet_private *fep; uint phytype; fep = dev->priv; if ((phytype = (mii_reg & 0xffff)) != 0xffff) { /* Got first part of ID, now get remainder. */ fep->phy_id = phytype << 16; mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3); } else { fep->phy_addr++; if (fep->phy_addr < 32) { mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy); } else { printk("fec: No PHY device found.\n"); } } } #endif /* CONFIG_USE_MDIO */ #ifdef PHY_INTERRUPT /* This interrupt occurs when the PHY detects a link change. */ static irqreturn_t mii_link_interrupt(int irq, void * dev_id) { struct net_device *dev = dev_id; struct fcc_enet_private *fep = dev->priv; fcc_info_t *fip = fep->fip; if (fep->phy) { /* We don't want to be interrupted by an FCC * interrupt here. */ disable_irq_nosync(fip->fc_interrupt); mii_do_cmd(dev, fep->phy->ack_int); /* restart and display status */ mii_do_cmd(dev, phy_cmd_relink); enable_irq(fip->fc_interrupt); } return IRQ_HANDLED; } #endif /* ifdef PHY_INTERRUPT */ #if 0 /* This should be fixed someday */ /* Set or clear the multicast filter for this adaptor. * Skeleton taken from sunlance driver. * The CPM Ethernet implementation allows Multicast as well as individual * MAC address filtering. Some of the drivers check to make sure it is * a group multicast address, and discard those that are not. I guess I * will do the same for now, but just remove the test if you want * individual filtering as well (do the upper net layers want or support * this kind of feature?). */ static void set_multicast_list(struct net_device *dev) { struct fcc_enet_private *cep; struct dev_mc_list *dmi; u_char *mcptr, *tdptr; volatile fcc_enet_t *ep; int i, j; cep = (struct fcc_enet_private *)dev->priv; return; /* Get pointer to FCC area in parameter RAM. */ ep = (fcc_enet_t *)dev->base_addr; if (dev->flags&IFF_PROMISC) { /* Log any net taps. */ printk("%s: Promiscuous mode enabled.\n", dev->name); cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO; } else { cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO; if (dev->flags & IFF_ALLMULTI) { /* Catch all multicast addresses, so set the * filter to all 1's. */ ep->fen_gaddrh = 0xffffffff; ep->fen_gaddrl = 0xffffffff; } else { /* Clear filter and add the addresses in the list. */ ep->fen_gaddrh = 0; ep->fen_gaddrl = 0; dmi = dev->mc_list; for (i=0; i<dev->mc_count; i++, dmi = dmi->next) { /* Only support group multicast for now. */ if (!(dmi->dmi_addr[0] & 1)) continue; /* The address in dmi_addr is LSB first, * and taddr is MSB first. We have to * copy bytes MSB first from dmi_addr. */ mcptr = (u_char *)dmi->dmi_addr + 5; tdptr = (u_char *)&ep->fen_taddrh; for (j=0; j<6; j++) *tdptr++ = *mcptr--; /* Ask CPM to run CRC and set bit in * filter mask. */ cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock, 0x0c, CPM_CR_SET_GADDR) | CPM_CR_FLG; udelay(10); while (cpmp->cp_cpcr & CPM_CR_FLG); } } } } #endif /* if 0 */ /* Set the individual MAC address. */ int fcc_enet_set_mac_address(struct net_device *dev, void *p) { struct sockaddr *addr= (struct sockaddr *) p; struct fcc_enet_private *cep; volatile fcc_enet_t *ep; unsigned char *eap; int i; cep = (struct fcc_enet_private *)(dev->priv); ep = cep->ep; if (netif_running(dev)) return -EBUSY; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); eap = (unsigned char *) &(ep->fen_paddrh); for (i=5; i>=0; i--) *eap++ = addr->sa_data[i]; return 0; } /* Initialize the CPM Ethernet on FCC. */ static int __init fec_enet_init(void) { struct net_device *dev; struct fcc_enet_private *cep; fcc_info_t *fip; int i, np, err; volatile cpm2_map_t *immap; volatile iop_cpm2_t *io; immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */ io = &immap->im_ioport; np = sizeof(fcc_ports) / sizeof(fcc_info_t); fip = fcc_ports; while (np-- > 0) { /* Create an Ethernet device instance. */ dev = alloc_etherdev(sizeof(*cep)); if (!dev) return -ENOMEM; cep = dev->priv; spin_lock_init(&cep->lock); cep->fip = fip; init_fcc_shutdown(fip, cep, immap); init_fcc_ioports(fip, io, immap); init_fcc_param(fip, dev, immap); dev->base_addr = (unsigned long)(cep->ep); /* The CPM Ethernet specific entries in the device * structure. */ dev->open = fcc_enet_open; dev->hard_start_xmit = fcc_enet_start_xmit; dev->tx_timeout = fcc_enet_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->stop = fcc_enet_close; dev->get_stats = fcc_enet_get_stats; /* dev->set_multicast_list = set_multicast_list; */ dev->set_mac_address = fcc_enet_set_mac_address; init_fcc_startup(fip, dev); err = register_netdev(dev); if (err) { free_netdev(dev); return err; } printk("%s: FCC ENET Version 0.3, ", dev->name); for (i=0; i<5; i++) printk("%02x:", dev->dev_addr[i]); printk("%02x\n", dev->dev_addr[5]); #ifdef CONFIG_USE_MDIO /* Queue up command to detect the PHY and initialize the * remainder of the interface. */ cep->phy_id_done = 0; cep->phy_addr = fip->fc_phyaddr; mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy); INIT_WORK(&cep->phy_relink, mii_display_status); INIT_WORK(&cep->phy_display_config, mii_display_config); cep->dev = dev; #endif /* CONFIG_USE_MDIO */ fip++; } return 0; } module_init(fec_enet_init); /* Make sure the device is shut down during initialization. */ static void __init init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep, volatile cpm2_map_t *immap) { volatile fcc_enet_t *ep; volatile fcc_t *fccp; /* Get pointer to FCC area in parameter RAM. */ ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]); /* And another to the FCC register area. */ fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]); cep->fccp = fccp; /* Keep the pointers handy */ cep->ep = ep; /* Disable receive and transmit in case someone left it running. */ fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT); } /* Initialize the I/O pins for the FCC Ethernet. */ static void __init init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io, volatile cpm2_map_t *immap) { /* FCC1 pins are on port A/C. FCC2/3 are port B/C. */ if (fip->fc_proff == PROFF_FCC1) { /* Configure port A and C pins for FCC1 Ethernet. */ io->iop_pdira &= ~PA1_DIRA_BOUT; io->iop_pdira |= PA1_DIRA_BIN; io->iop_psora &= ~PA1_PSORA_BOUT; io->iop_psora |= PA1_PSORA_BIN; io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN); } if (fip->fc_proff == PROFF_FCC2) { /* Configure port B and C pins for FCC Ethernet. */ io->iop_pdirb &= ~PB2_DIRB_BOUT; io->iop_pdirb |= PB2_DIRB_BIN; io->iop_psorb &= ~PB2_PSORB_BOUT; io->iop_psorb |= PB2_PSORB_BIN; io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN); } if (fip->fc_proff == PROFF_FCC3) { /* Configure port B and C pins for FCC Ethernet. */ io->iop_pdirb &= ~PB3_DIRB_BOUT; io->iop_pdirb |= PB3_DIRB_BIN; io->iop_psorb &= ~PB3_PSORB_BOUT; io->iop_psorb |= PB3_PSORB_BIN; io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN); io->iop_pdirc &= ~PC3_DIRC_BOUT; io->iop_pdirc |= PC3_DIRC_BIN; io->iop_psorc &= ~PC3_PSORC_BOUT; io->iop_psorc |= PC3_PSORC_BIN; io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN); } /* Port C has clocks...... */ io->iop_psorc &= ~(fip->fc_trxclocks); io->iop_pdirc &= ~(fip->fc_trxclocks); io->iop_pparc |= fip->fc_trxclocks; #ifdef CONFIG_USE_MDIO /* ....and the MII serial clock/data. */ io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck); io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck); io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck); io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck); #endif /* CONFIG_USE_MDIO */ /* Configure Serial Interface clock routing. * First, clear all FCC bits to zero, * then set the ones we want. */ immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask); immap->im_cpmux.cmx_fcr |= fip->fc_clockroute; } static void __init init_fcc_param(fcc_info_t *fip, struct net_device *dev, volatile cpm2_map_t *immap) { unsigned char *eap; unsigned long mem_addr; bd_t *bd; int i, j; struct fcc_enet_private *cep; volatile fcc_enet_t *ep; volatile cbd_t *bdp; volatile cpm_cpm2_t *cp; cep = (struct fcc_enet_private *)(dev->priv); ep = cep->ep; cp = cpmp; bd = (bd_t *)__res; /* Zero the whole thing.....I must have missed some individually. * It works when I do this. */ memset((char *)ep, 0, sizeof(fcc_enet_t)); /* Allocate space for the buffer descriptors from regular memory. * Initialize base addresses for the buffer descriptors. */ cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE, GFP_KERNEL | GFP_DMA); ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base); cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE, GFP_KERNEL | GFP_DMA); ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base); cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; cep->cur_rx = cep->rx_bd_base; ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24; ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24; /* Set maximum bytes per receive buffer. * It must be a multiple of 32. */ ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE; /* Allocate space in the reserved FCC area of DPRAM for the * internal buffers. No one uses this space (yet), so we * can do this. Later, we will add resource management for * this area. */ mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128); ep->fen_genfcc.fcc_riptr = mem_addr; ep->fen_genfcc.fcc_tiptr = mem_addr+32; ep->fen_padptr = mem_addr+64; memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32); ep->fen_genfcc.fcc_rbptr = 0; ep->fen_genfcc.fcc_tbptr = 0; ep->fen_genfcc.fcc_rcrc = 0; ep->fen_genfcc.fcc_tcrc = 0; ep->fen_genfcc.fcc_res1 = 0; ep->fen_genfcc.fcc_res2 = 0; ep->fen_camptr = 0; /* CAM isn't used in this driver */ /* Set CRC preset and mask. */ ep->fen_cmask = 0xdebb20e3; ep->fen_cpres = 0xffffffff; ep->fen_crcec = 0; /* CRC Error counter */ ep->fen_alec = 0; /* alignment error counter */ ep->fen_disfc = 0; /* discard frame counter */ ep->fen_retlim = 15; /* Retry limit threshold */ ep->fen_pper = 0; /* Normal persistence */ /* Clear hash filter tables. */ ep->fen_gaddrh = 0; ep->fen_gaddrl = 0; ep->fen_iaddrh = 0; ep->fen_iaddrl = 0; /* Clear the Out-of-sequence TxBD. */ ep->fen_tfcstat = 0; ep->fen_tfclen = 0; ep->fen_tfcptr = 0; ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ /* Set Ethernet station address. * * This is supplied in the board information structure, so we * copy that into the controller. * So, far we have only been given one Ethernet address. We make * it unique by setting a few bits in the upper byte of the * non-static part of the address. */ eap = (unsigned char *)&(ep->fen_paddrh); for (i=5; i>=0; i--) { /* * The EP8260 only uses FCC3, so we can safely give it the real * MAC address. */ #ifdef CONFIG_SBC82xx if (i == 5) { /* bd->bi_enetaddr holds the SCC0 address; the FCC devices count up from there */ dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3; dev->dev_addr[i] += 1 + fip->fc_fccnum; *eap++ = dev->dev_addr[i]; } #else #ifndef CONFIG_RPX8260 if (i == 3) { dev->dev_addr[i] = bd->bi_enetaddr[i]; dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum)); *eap++ = dev->dev_addr[i]; } else #endif { *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; } #endif } ep->fen_taddrh = 0; ep->fen_taddrm = 0; ep->fen_taddrl = 0; ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */ ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */ /* Clear stat counters, in case we ever enable RMON. */ ep->fen_octc = 0; ep->fen_colc = 0; ep->fen_broc = 0; ep->fen_mulc = 0; ep->fen_uspc = 0; ep->fen_frgc = 0; ep->fen_ospc = 0; ep->fen_jbrc = 0; ep->fen_p64c = 0; ep->fen_p65c = 0; ep->fen_p128c = 0; ep->fen_p256c = 0; ep->fen_p512c = 0; ep->fen_p1024c = 0; ep->fen_rfthr = 0; /* Suggested by manual */ ep->fen_rfcnt = 0; ep->fen_cftype = 0; /* Now allocate the host memory pages and initialize the * buffer descriptors. */ bdp = cep->tx_bd_base; for (i=0; i<TX_RING_SIZE; i++) { /* Initialize the BD for every fragment in the page. */ bdp->cbd_sc = 0; bdp->cbd_datlen = 0; bdp->cbd_bufaddr = 0; bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; bdp = cep->rx_bd_base; for (i=0; i<FCC_ENET_RX_PAGES; i++) { /* Allocate a page. */ mem_addr = __get_free_page(GFP_KERNEL); /* Initialize the BD for every fragment in the page. */ for (j=0; j<FCC_ENET_RX_FRPPG; j++) { bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; bdp->cbd_datlen = 0; bdp->cbd_bufaddr = __pa(mem_addr); mem_addr += FCC_ENET_RX_FRSIZE; bdp++; } } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; /* Let's re-initialize the channel now. We have to do it later * than the manual describes because we have just now finished * the BD initialization. */ cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); cep->skb_cur = cep->skb_dirty = 0; } /* Let 'er rip. */ static void __init init_fcc_startup(fcc_info_t *fip, struct net_device *dev) { volatile fcc_t *fccp; struct fcc_enet_private *cep; cep = (struct fcc_enet_private *)(dev->priv); fccp = cep->fccp; #ifdef CONFIG_RPX8260 #ifdef PHY_INTERRUPT /* Route PHY interrupt to IRQ. The following code only works for * IRQ1 - IRQ7. It does not work for Port C interrupts. */ *((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK; *((volatile u_char *) (RPX_CSR_ADDR + 13)) |= ((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4); #endif /* Initialize MDIO pins. */ *((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC; *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_MII_READ | BCSR4_MII_MDIO; /* Enable external LXT971 PHY. */ *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY; udelay(1000); *((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII; udelay(1000); #endif /* ifdef CONFIG_RPX8260 */ fccp->fcc_fcce = 0xffff; /* Clear any pending events */ /* Leave FCC interrupts masked for now. Will be unmasked by * fcc_restart(). */ fccp->fcc_fccm = 0; /* Install our interrupt handler. */ if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet", dev) < 0) printk("Can't get FCC IRQ %d\n", fip->fc_interrupt); #ifdef PHY_INTERRUPT #ifdef CONFIG_ADS8272 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, IRQF_SHARED, "mii", dev) < 0) printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT); #else /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is * on Port C. */ ((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |= (1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1))); if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) < 0) printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT); #endif #endif /* PHY_INTERRUPT */ /* Set GFMR to enable Ethernet operating mode. */ fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET); /* Set sync/delimiters. */ fccp->fcc_fdsr = 0xd555; /* Set protocol specific processing mode for Ethernet. * This has to be adjusted for Full Duplex operation after we can * determine how to detect that. */ fccp->fcc_fpsmr = FCC_PSMR_ENCRC; #ifdef CONFIG_PQ2ADS /* Enable the PHY. */ *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN; *(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST; #endif #if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS) /* Enable the 2nd PHY. */ *(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2; *(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST; #endif #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260) /* start in full duplex mode, and negotiate speed */ fcc_restart (dev, 1); #else /* start in half duplex mode */ fcc_restart (dev, 0); #endif } #ifdef CONFIG_USE_MDIO /* MII command/status interface. * I'm not going to describe all of the details. You can find the * protocol definition in many other places, including the data sheet * of most PHY parts. * I wonder what "they" were thinking (maybe weren't) when they leave * the I2C in the CPM but I have to toggle these bits...... */ #ifdef CONFIG_RPX8260 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C * like most other boards. */ #define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4)) #define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ #define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO #define OUT_MDIO(bit) \ if (bit) \ *MDIO_ADDR |= BCSR4_MII_MDIO; \ else \ *MDIO_ADDR &= ~BCSR4_MII_MDIO; #define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO) #define OUT_MDC(bit) \ if (bit) \ *MDIO_ADDR |= BCSR4_MII_MDC; \ else \ *MDIO_ADDR &= ~BCSR4_MII_MDC; #else /* ifdef CONFIG_RPX8260 */ /* This is for the usual case where the MDIO pins are on Port C. */ #define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport) #define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio #define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio #define OUT_MDIO(bit) \ if (bit) \ MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \ else \ MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio; #define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio) #define OUT_MDC(bit) \ if (bit) \ MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \ else \ MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck; #endif /* ifdef CONFIG_RPX8260 */ static uint mii_send_receive(fcc_info_t *fip, uint cmd) { uint retval; int read_op, i, off; const int us = 1; read_op = ((cmd & 0xf0000000) == 0x60000000); /* Write preamble */ OUT_MDIO(1); MAKE_MDIO_OUTPUT; OUT_MDIO(1); for (i = 0; i < 32; i++) { udelay(us); OUT_MDC(1); udelay(us); OUT_MDC(0); } /* Write data */ for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off) { OUT_MDIO((cmd >> off) & 0x00000001); udelay(us); OUT_MDC(1); udelay(us); OUT_MDC(0); } retval = cmd; if (read_op) { retval >>= 16; MAKE_MDIO_INPUT; udelay(us); OUT_MDC(1); udelay(us); OUT_MDC(0); for (i = 0; i < 16; i++) { udelay(us); OUT_MDC(1); udelay(us); retval <<= 1; if (IN_MDIO) retval++; OUT_MDC(0); } } MAKE_MDIO_INPUT; udelay(us); OUT_MDC(1); udelay(us); OUT_MDC(0); return retval; } #endif /* CONFIG_USE_MDIO */ static void fcc_stop(struct net_device *dev) { struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv); volatile fcc_t *fccp = fep->fccp; fcc_info_t *fip = fep->fip; volatile fcc_enet_t *ep = fep->ep; volatile cpm_cpm2_t *cp = cpmp; volatile cbd_t *bdp; int i; if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0) return; /* already down */ fccp->fcc_fccm = 0; /* issue the graceful stop tx command */ while (cp->cp_cpcr & CPM_CR_FLG); cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); /* Disable transmit/receive */ fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT); /* issue the restart tx command */ fccp->fcc_fcce = FCC_ENET_GRA; while (cp->cp_cpcr & CPM_CR_FLG); cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); /* free tx buffers */ fep->skb_cur = fep->skb_dirty = 0; for (i=0; i<=TX_RING_MOD_MASK; i++) { if (fep->tx_skbuff[i] != NULL) { dev_kfree_skb(fep->tx_skbuff[i]); fep->tx_skbuff[i] = NULL; } } fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; fep->tx_free = TX_RING_SIZE; ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase; /* Initialize the tx buffer descriptors. */ bdp = fep->tx_bd_base; for (i=0; i<TX_RING_SIZE; i++) { bdp->cbd_sc = 0; bdp->cbd_datlen = 0; bdp->cbd_bufaddr = 0; bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; } static void fcc_restart(struct net_device *dev, int duplex) { struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv); volatile fcc_t *fccp = fep->fccp; /* stop any transmissions in progress */ fcc_stop(dev); if (duplex) fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB; else fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB); /* Enable interrupts for transmit error, complete frame * received, and any transmit buffer we have also set the * interrupt flag. */ fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB); /* Enable transmit/receive */ fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT; } static int fcc_enet_open(struct net_device *dev) { struct fcc_enet_private *fep = dev->priv; #ifdef CONFIG_USE_MDIO fep->sequence_done = 0; fep->link = 0; if (fep->phy) { fcc_restart(dev, 0); /* always start in half-duplex */ mii_do_cmd(dev, fep->phy->ack_int); mii_do_cmd(dev, fep->phy->config); mii_do_cmd(dev, phy_cmd_config); /* display configuration */ while(!fep->sequence_done) schedule(); mii_do_cmd(dev, fep->phy->startup); netif_start_queue(dev); return 0; /* Success */ } return -ENODEV; /* No PHY we understand */ #else fep->link = 1; fcc_restart(dev, 0); /* always start in half-duplex */ netif_start_queue(dev); return 0; /* Always succeed */ #endif /* CONFIG_USE_MDIO */ }