/* * Board setup routines for the Radstone PPC7D boards. * * Author: James Chapman <jchapman@katalix.com> * * Based on code done by Rabeeh Khoury - rabeeh@galileo.co.il * Based on code done by - Mark A. Greer <mgreer@mvista.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ /* Radstone PPC7D boards are rugged VME boards with PPC 7447A CPUs, * Discovery-II, dual gigabit ethernet, dual PMC, USB, keyboard/mouse, * 4 serial ports, 2 high speed serial ports (MPSCs) and optional * SCSI / VGA. */ #include <linux/config.h> #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/reboot.h> #include <linux/pci.h> #include <linux/kdev_t.h> #include <linux/major.h> #include <linux/initrd.h> #include <linux/console.h> #include <linux/delay.h> #include <linux/ide.h> #include <linux/seq_file.h> #include <linux/root_dev.h> #include <linux/serial.h> #include <linux/tty.h> /* for linux/serial_core.h */ #include <linux/serial_core.h> #include <linux/mv643xx.h> #include <linux/netdevice.h> #include <linux/platform_device.h> #include <asm/system.h> #include <asm/pgtable.h> #include <asm/page.h> #include <asm/time.h> #include <asm/dma.h> #include <asm/io.h> #include <asm/machdep.h> #include <asm/prom.h> #include <asm/smp.h> #include <asm/vga.h> #include <asm/open_pic.h> #include <asm/i8259.h> #include <asm/todc.h> #include <asm/bootinfo.h> #include <asm/mpc10x.h> #include <asm/pci-bridge.h> #include <asm/mv64x60.h> #include "radstone_ppc7d.h" #undef DEBUG #define PPC7D_RST_PIN 17 /* GPP17 */ extern u32 mv64360_irq_base; extern spinlock_t rtc_lock; static struct mv64x60_handle bh; static int ppc7d_has_alma; extern void gen550_progress(char *, unsigned short); extern void gen550_init(int, struct uart_port *); /* FIXME - move to h file */ extern int ds1337_do_command(int id, int cmd, void *arg); #define DS1337_GET_DATE 0 #define DS1337_SET_DATE 1 /* residual data */ unsigned char __res[sizeof(bd_t)]; /***************************************************************************** * Serial port code *****************************************************************************/ #if defined(CONFIG_KGDB) || defined(CONFIG_SERIAL_TEXT_DEBUG) static void __init ppc7d_early_serial_map(void) { #if defined(CONFIG_SERIAL_MPSC_CONSOLE) mv64x60_progress_init(CONFIG_MV64X60_NEW_BASE); #elif defined(CONFIG_SERIAL_8250) struct uart_port serial_req; /* Setup serial port access */ memset(&serial_req, 0, sizeof(serial_req)); serial_req.uartclk = UART_CLK; serial_req.irq = 4; serial_req.flags = STD_COM_FLAGS; serial_req.iotype = UPIO_MEM; serial_req.membase = (u_char *) PPC7D_SERIAL_0; gen550_init(0, &serial_req); if (early_serial_setup(&serial_req) != 0) printk(KERN_ERR "Early serial init of port 0 failed\n"); /* Assume early_serial_setup() doesn't modify serial_req */ serial_req.line = 1; serial_req.irq = 3; serial_req.membase = (u_char *) PPC7D_SERIAL_1; gen550_init(1, &serial_req); if (early_serial_setup(&serial_req) != 0) printk(KERN_ERR "Early serial init of port 1 failed\n"); #else #error CONFIG_KGDB || CONFIG_SERIAL_TEXT_DEBUG has no supported CONFIG_SERIAL_XXX #endif } #endif /* CONFIG_KGDB || CONFIG_SERIAL_TEXT_DEBUG */ /***************************************************************************** * Low-level board support code *****************************************************************************/ static unsigned long __init ppc7d_find_end_of_memory(void) { bd_t *bp = (bd_t *) __res; if (bp->bi_memsize) return bp->bi_memsize; return (256 * 1024 * 1024); } static void __init ppc7d_map_io(void) { /* remove temporary mapping */ mtspr(SPRN_DBAT3U, 0x00000000); mtspr(SPRN_DBAT3L, 0x00000000); io_block_mapping(0xe8000000, 0xe8000000, 0x08000000, _PAGE_IO); io_block_mapping(0xfe000000, 0xfe000000, 0x02000000, _PAGE_IO); } static void ppc7d_restart(char *cmd) { u32 data; /* Disable GPP17 interrupt */ data = mv64x60_read(&bh, MV64x60_GPP_INTR_MASK); data &= ~(1 << PPC7D_RST_PIN); mv64x60_write(&bh, MV64x60_GPP_INTR_MASK, data); /* Configure MPP17 as GPP */ data = mv64x60_read(&bh, MV64x60_MPP_CNTL_2); data &= ~(0x0000000f << 4); mv64x60_write(&bh, MV64x60_MPP_CNTL_2, data); /* Enable pin GPP17 for output */ data = mv64x60_read(&bh, MV64x60_GPP_IO_CNTL); data |= (1 << PPC7D_RST_PIN); mv64x60_write(&bh, MV64x60_GPP_IO_CNTL, data); /* Toggle GPP9 pin to reset the board */ mv64x60_write(&bh, MV64x60_GPP_VALUE_CLR, 1 << PPC7D_RST_PIN); mv64x60_write(&bh, MV64x60_GPP_VALUE_SET, 1 << PPC7D_RST_PIN); for (;;) ; /* Spin until reset happens */ /* NOTREACHED */ } static void ppc7d_power_off(void) { u32 data; local_irq_disable(); /* Ensure that internal MV643XX watchdog is disabled. * The Disco watchdog uses MPP17 on this hardware. */ data = mv64x60_read(&bh, MV64x60_MPP_CNTL_2); data &= ~(0x0000000f << 4); mv64x60_write(&bh, MV64x60_MPP_CNTL_2, data); data = mv64x60_read(&bh, MV64x60_WDT_WDC); if (data & 0x80000000) { mv64x60_write(&bh, MV64x60_WDT_WDC, 1 << 24); mv64x60_write(&bh, MV64x60_WDT_WDC, 2 << 24); } for (;;) ; /* No way to shut power off with software */ /* NOTREACHED */ } static void ppc7d_halt(void) { ppc7d_power_off(); /* NOTREACHED */ } static unsigned long ppc7d_led_no_pulse; static int __init ppc7d_led_pulse_disable(char *str) { ppc7d_led_no_pulse = 1; return 1; } /* This kernel option disables the heartbeat pulsing of a board LED */ __setup("ledoff", ppc7d_led_pulse_disable); static void ppc7d_heartbeat(void) { u32 data32; u8 data8; static int max706_wdog = 0; /* Unfortunately we can't access the LED control registers * during early init because they're on the CPLD which is the * other side of a PCI bridge which goes unreachable during * PCI scan. So write the LEDs only if the MV64360 watchdog is * enabled (i.e. userspace apps are running so kernel is up).. */ data32 = mv64x60_read(&bh, MV64x60_WDT_WDC); if (data32 & 0x80000000) { /* Enable MAX706 watchdog if not done already */ if (!max706_wdog) { outb(3, PPC7D_CPLD_RESET); max706_wdog = 1; } /* Hit the MAX706 watchdog */ outb(0, PPC7D_CPLD_WATCHDOG_TRIG); /* Pulse LED DS219 if not disabled */ if (!ppc7d_led_no_pulse) { static int led_on = 0; data8 = inb(PPC7D_CPLD_LEDS); if (led_on) data8 &= ~PPC7D_CPLD_LEDS_DS219_MASK; else data8 |= PPC7D_CPLD_LEDS_DS219_MASK; outb(data8, PPC7D_CPLD_LEDS); led_on = !led_on; } } ppc_md.heartbeat_count = ppc_md.heartbeat_reset; } static int ppc7d_show_cpuinfo(struct seq_file *m) { u8 val; u8 val1, val2; static int flash_sizes[4] = { 64, 32, 0, 16 }; static int flash_banks[4] = { 4, 3, 2, 1 }; static int sdram_bank_sizes[4] = { 128, 256, 512, 1 }; int sdram_num_banks = 2; static char *pci_modes[] = { "PCI33", "PCI66", "Unknown", "Unknown", "PCIX33", "PCIX66", "PCIX100", "PCIX133" }; seq_printf(m, "vendor\t\t: Radstone Technology\n"); seq_printf(m, "machine\t\t: PPC7D\n"); val = inb(PPC7D_CPLD_BOARD_REVISION); val1 = (val & PPC7D_CPLD_BOARD_REVISION_NUMBER_MASK) >> 5; val2 = (val & PPC7D_CPLD_BOARD_REVISION_LETTER_MASK); seq_printf(m, "revision\t: %hd%c%c\n", val1, (val2 <= 0x18) ? 'A' + val2 : 'Y', (val2 > 0x18) ? 'A' + (val2 - 0x19) : ' '); val = inb(PPC7D_CPLD_MOTHERBOARD_TYPE); val1 = val & PPC7D_CPLD_MB_TYPE_PLL_MASK; val2 = val & (PPC7D_CPLD_MB_TYPE_ECC_FITTED_MASK | PPC7D_CPLD_MB_TYPE_ECC_ENABLE_MASK); seq_printf(m, "bus speed\t: %dMHz\n", (val1 == PPC7D_CPLD_MB_TYPE_PLL_133) ? 133 : (val1 == PPC7D_CPLD_MB_TYPE_PLL_100) ? 100 : (val1 == PPC7D_CPLD_MB_TYPE_PLL_64) ? 64 : 0); val = inb(PPC7D_CPLD_MEM_CONFIG); if (val & PPC7D_CPLD_SDRAM_BANK_NUM_MASK) sdram_num_banks--; val = inb(PPC7D_CPLD_MEM_CONFIG_EXTEND); val1 = (val & PPC7D_CPLD_SDRAM_BANK_SIZE_MASK) >> 6; seq_printf(m, "SDRAM\t\t: %d banks of %d%c, total %d%c", sdram_num_banks, sdram_bank_sizes[val1], (sdram_bank_sizes[val1] < 128) ? 'G' : 'M', sdram_num_banks * sdram_bank_sizes[val1], (sdram_bank_sizes[val1] < 128) ? 'G' : 'M'); if (val2 & PPC7D_CPLD_MB_TYPE_ECC_FITTED_MASK) { seq_printf(m, " [ECC %sabled]", (val2 & PPC7D_CPLD_MB_TYPE_ECC_ENABLE_MASK) ? "en" : "dis"); } seq_printf(m, "\n"); val1 = (val & PPC7D_CPLD_FLASH_DEV_SIZE_MASK); val2 = (val & PPC7D_CPLD_FLASH_BANK_NUM_MASK) >> 2; seq_printf(m, "FLASH\t\t: %d banks of %dM, total %dM\n", flash_banks[val2], flash_sizes[val1], flash_banks[val2] * flash_sizes[val1]); val = inb(PPC7D_CPLD_FLASH_WRITE_CNTL); val1 = inb(PPC7D_CPLD_SW_FLASH_WRITE_PROTECT); seq_printf(m, " write links\t: %s%s%s%s\n", (val & PPD7D_CPLD_FLASH_CNTL_WR_LINK_MASK) ? "WRITE " : "", (val & PPD7D_CPLD_FLASH_CNTL_BOOT_LINK_MASK) ? "BOOT " : "", (val & PPD7D_CPLD_FLASH_CNTL_USER_LINK_MASK) ? "USER " : "", (val & (PPD7D_CPLD_FLASH_CNTL_WR_LINK_MASK | PPD7D_CPLD_FLASH_CNTL_BOOT_LINK_MASK | PPD7D_CPLD_FLASH_CNTL_USER_LINK_MASK)) == 0 ? "NONE" : ""); seq_printf(m, " write sector h/w enables: %s%s%s%s%s\n", (val & PPD7D_CPLD_FLASH_CNTL_RECO_WR_MASK) ? "RECOVERY " : "", (val & PPD7D_CPLD_FLASH_CNTL_BOOT_WR_MASK) ? "BOOT " : "", (val & PPD7D_CPLD_FLASH_CNTL_USER_WR_MASK) ? "USER " : "", (val1 & PPC7D_CPLD_FLASH_CNTL_NVRAM_PROT_MASK) ? "NVRAM " : "", (((val & (PPD7D_CPLD_FLASH_CNTL_RECO_WR_MASK | PPD7D_CPLD_FLASH_CNTL_BOOT_WR_MASK | PPD7D_CPLD_FLASH_CNTL_BOOT_WR_MASK)) == 0) && ((val1 & PPC7D_CPLD_FLASH_CNTL_NVRAM_PROT_MASK) == 0)) ? "NONE" : ""); val1 = inb(PPC7D_CPLD_SW_FLASH_WRITE_PROTECT) & (PPC7D_CPLD_SW_FLASH_WRPROT_SYSBOOT_MASK | PPC7D_CPLD_SW_FLASH_WRPROT_USER_MASK); seq_printf(m, " software sector enables: %s%s%s\n", (val1 & PPC7D_CPLD_SW_FLASH_WRPROT_SYSBOOT_MASK) ? "SYSBOOT " : "", (val1 & PPC7D_CPLD_SW_FLASH_WRPROT_USER_MASK) ? "USER " : "", (val1 == 0) ? "NONE " : ""); seq_printf(m, "Boot options\t: %s%s%s%s\n", (val & PPC7D_CPLD_FLASH_CNTL_ALTBOOT_LINK_MASK) ? "ALTERNATE " : "", (val & PPC7D_CPLD_FLASH_CNTL_VMEBOOT_LINK_MASK) ? "VME " : "", (val & PPC7D_CPLD_FLASH_CNTL_RECBOOT_LINK_MASK) ? "RECOVERY " : "", ((val & (PPC7D_CPLD_FLASH_CNTL_ALTBOOT_LINK_MASK | PPC7D_CPLD_FLASH_CNTL_VMEBOOT_LINK_MASK | PPC7D_CPLD_FLASH_CNTL_RECBOOT_LINK_MASK)) == 0) ? "NONE" : ""); val = inb(PPC7D_CPLD_EQUIPMENT_PRESENT_1); seq_printf(m, "Fitted modules\t: %s%s%s%s\n", (val & PPC7D_CPLD_EQPT_PRES_1_PMC1_MASK) ? "" : "PMC1 ", (val & PPC7D_CPLD_EQPT_PRES_1_PMC2_MASK) ? "" : "PMC2 ", (val & PPC7D_CPLD_EQPT_PRES_1_AFIX_MASK) ? "AFIX " : "", ((val & (PPC7D_CPLD_EQPT_PRES_1_PMC1_MASK | PPC7D_CPLD_EQPT_PRES_1_PMC2_MASK | PPC7D_CPLD_EQPT_PRES_1_AFIX_MASK)) == (PPC7D_CPLD_EQPT_PRES_1_PMC1_MASK | PPC7D_CPLD_EQPT_PRES_1_PMC2_MASK)) ? "NONE" : ""); if (val & PPC7D_CPLD_EQPT_PRES_1_AFIX_MASK) { static const char *ids[] = { "unknown", "1553 (Dual Channel)", "1553 (Single Channel)", "8-bit SCSI + VGA", "16-bit SCSI + VGA", "1553 (Single Channel with sideband)", "1553 (Dual Channel with sideband)", NULL }; u8 id = __raw_readb((void *)PPC7D_AFIX_REG_BASE + 0x03); seq_printf(m, "AFIX module\t: 0x%hx [%s]\n", id, id < 7 ? ids[id] : "unknown"); } val = inb(PPC7D_CPLD_PCI_CONFIG); val1 = (val & PPC7D_CPLD_PCI_CONFIG_PCI0_MASK) >> 4; val2 = (val & PPC7D_CPLD_PCI_CONFIG_PCI1_MASK); seq_printf(m, "PCI#0\t\t: %s\nPCI#1\t\t: %s\n", pci_modes[val1], pci_modes[val2]); val = inb(PPC7D_CPLD_EQUIPMENT_PRESENT_2); seq_printf(m, "PMC1\t\t: %s\nPMC2\t\t: %s\n", (val & PPC7D_CPLD_EQPT_PRES_3_PMC1_V_MASK) ? "3.3v" : "5v", (val & PPC7D_CPLD_EQPT_PRES_3_PMC2_V_MASK) ? "3.3v" : "5v"); seq_printf(m, "PMC power source: %s\n", (val & PPC7D_CPLD_EQPT_PRES_3_PMC_POWER_MASK) ? "VME" : "internal"); val = inb(PPC7D_CPLD_EQUIPMENT_PRESENT_4); val2 = inb(PPC7D_CPLD_EQUIPMENT_PRESENT_2); seq_printf(m, "Fit options\t: %s%s%s%s%s%s%s\n", (val & PPC7D_CPLD_EQPT_PRES_4_LPT_MASK) ? "LPT " : "", (val & PPC7D_CPLD_EQPT_PRES_4_PS2_FITTED) ? "PS2 " : "", (val & PPC7D_CPLD_EQPT_PRES_4_USB2_FITTED) ? "USB2 " : "", (val2 & PPC7D_CPLD_EQPT_PRES_2_UNIVERSE_MASK) ? "VME " : "", (val2 & PPC7D_CPLD_EQPT_PRES_2_COM36_MASK) ? "COM3-6 " : "", (val2 & PPC7D_CPLD_EQPT_PRES_2_GIGE_MASK) ? "eth0 " : "", (val2 & PPC7D_CPLD_EQPT_PRES_2_DUALGIGE_MASK) ? "eth1 " : ""); val = inb(PPC7D_CPLD_ID_LINK); val1 = val & (PPC7D_CPLD_ID_LINK_E6_MASK | PPC7D_CPLD_ID_LINK_E7_MASK | PPC7D_CPLD_ID_LINK_E12_MASK | PPC7D_CPLD_ID_LINK_E13_MASK); val = inb(PPC7D_CPLD_FLASH_WRITE_CNTL) & (PPD7D_CPLD_FLASH_CNTL_WR_LINK_MASK | PPD7D_CPLD_FLASH_CNTL_BOOT_LINK_MASK | PPD7D_CPLD_FLASH_CNTL_USER_LINK_MASK); seq_printf(m, "Board links present: %s%s%s%s%s%s%s%s\n", (val1 & PPC7D_CPLD_ID_LINK_E6_MASK) ? "E6 " : "", (val1 & PPC7D_CPLD_ID_LINK_E7_MASK) ? "E7 " : "", (val & PPD7D_CPLD_FLASH_CNTL_WR_LINK_MASK) ? "E9 " : "", (val & PPD7D_CPLD_FLASH_CNTL_BOOT_LINK_MASK) ? "E10 " : "", (val & PPD7D_CPLD_FLASH_CNTL_USER_LINK_MASK) ? "E11 " : "", (val1 & PPC7D_CPLD_ID_LINK_E12_MASK) ? "E12 " : "", (val1 & PPC7D_CPLD_ID_LINK_E13_MASK) ? "E13 " : "", ((val == 0) && (val1 == 0)) ? "NONE" : ""); val = inb(PPC7D_CPLD_WDOG_RESETSW_MASK); seq_printf(m, "Front panel reset switch: %sabled\n", (val & PPC7D_CPLD_WDOG_RESETSW_MASK) ? "dis" : "en"); return 0; } static void __init ppc7d_calibrate_decr(void) { ulong freq; freq = 100000000 / 4; pr_debug("time_init: decrementer frequency = %lu.%.6lu MHz\n", freq / 1000000, freq % 1000000); tb_ticks_per_jiffy = freq / HZ; tb_to_us = mulhwu_scale_factor(freq, 1000000); } /***************************************************************************** * Interrupt stuff *****************************************************************************/ static irqreturn_t ppc7d_i8259_intr(int irq, void *dev_id, struct pt_regs *regs) { u32 temp = mv64x60_read(&bh, MV64x60_GPP_INTR_CAUSE); if (temp & (1 << 28)) { i8259_irq(regs); mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, temp & (~(1 << 28))); return IRQ_HANDLED; } return IRQ_NONE; } /* * Each interrupt cause is assigned an IRQ number. * Southbridge has 16*2 (two 8259's) interrupts. * Discovery-II has 96 interrupts (cause-hi, cause-lo, gpp x 32). * If multiple interrupts are pending, get_irq() returns the * lowest pending irq number first. * * * IRQ # Source Trig Active * ============================================================= * * Southbridge * ----------- * IRQ # Source Trig * ============================================================= * 0 ISA High Resolution Counter Edge * 1 Keyboard Edge * 2 Cascade From (IRQ 8-15) Edge * 3 Com 2 (Uart 2) Edge * 4 Com 1 (Uart 1) Edge * 5 PCI Int D/AFIX IRQZ ID4 (2,7) Level * 6 GPIO Level * 7 LPT Edge * 8 RTC Alarm Edge * 9 PCI Int A/PMC 2/AFIX IRQW ID1 (2,0) Level * 10 PCI Int B/PMC 1/AFIX IRQX ID2 (2,1) Level * 11 USB2 Level * 12 Mouse Edge * 13 Reserved internally by Ali M1535+ * 14 PCI Int C/VME/AFIX IRQY ID3 (2,6) Level * 15 COM 5/6 Level * * 16..112 Discovery-II... * * MPP28 Southbridge Edge High * * * Interrupts are cascaded through to the Discovery-II. * * PCI --- * \ * CPLD --> ALI1535 -------> DISCOVERY-II * INTF MPP28 */ static void __init ppc7d_init_irq(void) { int irq; pr_debug("%s\n", __FUNCTION__); i8259_init(0, 0); mv64360_init_irq(); /* IRQs 5,6,9,10,11,14,15 are level sensitive */ irq_desc[5].status |= IRQ_LEVEL; irq_desc[6].status |= IRQ_LEVEL; irq_desc[9].status |= IRQ_LEVEL; irq_desc[10].status |= IRQ_LEVEL; irq_desc[11].status |= IRQ_LEVEL; irq_desc[14].status |= IRQ_LEVEL; irq_desc[15].status |= IRQ_LEVEL; /* GPP28 is edge triggered */ irq_desc[mv64360_irq_base + MV64x60_IRQ_GPP28].status &= ~IRQ_LEVEL; } static u32 ppc7d_irq_canonicalize(u32 irq) { if ((irq >= 16) && (irq < (16 + 96))) irq -= 16; return irq; } static int ppc7d_get_irq(struct pt_regs *regs) { int irq; irq = mv64360_get_irq(regs); if (irq == (mv64360_irq_base + MV64x60_IRQ_GPP28)) irq = i8259_irq(regs); return irq; } /* * 9 PCI Int A/PMC 2/AFIX IRQW ID1 (2,0) Level * 10 PCI Int B/PMC 1/AFIX IRQX ID2 (2,1) Level * 14 PCI Int C/VME/AFIX IRQY ID3 (2,6) Level * 5 PCI Int D/AFIX IRQZ ID4 (2,7) Level */ static int __init ppc7d_map_irq(struct pci_dev *dev, unsigned char idsel, unsigned char pin) { static const char pci_irq_table[][4] = /* * PCI IDSEL/INTPIN->INTLINE * A B C D */ { {10, 14, 5, 9}, /* IDSEL 10 - PMC2 / AFIX IRQW */ {9, 10, 14, 5}, /* IDSEL 11 - PMC1 / AFIX IRQX */ {5, 9, 10, 14}, /* IDSEL 12 - AFIX IRQY */ {14, 5, 9, 10}, /* IDSEL 13 - AFIX IRQZ */ }; const long min_idsel = 10, max_idsel = 14, irqs_per_slot = 4; pr_debug("%s: %04x/%04x/%x: idsel=%hx pin=%hu\n", __FUNCTION__, dev->vendor, dev->device, PCI_FUNC(dev->devfn), idsel, pin); return PCI_IRQ_TABLE_LOOKUP; } void __init ppc7d_intr_setup(void) { u32 data; /* * Define GPP 28 interrupt polarity as active high * input signal and level triggered */ data = mv64x60_read(&bh, MV64x60_GPP_LEVEL_CNTL); data &= ~(1 << 28); mv64x60_write(&bh, MV64x60_GPP_LEVEL_CNTL, data); data = mv64x60_read(&bh, MV64x60_GPP_IO_CNTL); data &= ~(1 << 28); mv64x60_write(&bh, MV64x60_GPP_IO_CNTL, data); /* Config GPP intr ctlr to respond to level trigger */ data = mv64x60_read(&bh, MV64x60_COMM_ARBITER_CNTL); data |= (1 << 10); mv64x60_write(&bh, MV64x60_COMM_ARBITER_CNTL, data); /* XXXX Erranum FEr PCI-#8 */ data = mv64x60_read(&bh, MV64x60_PCI0_CMD); data &= ~((1 << 5) | (1 << 9)); mv64x60_write(&bh, MV64x60_PCI0_CMD, data); data = mv64x60_read(&bh, MV64x60_PCI1_CMD); data &= ~((1 << 5) | (1 << 9)); mv64x60_write(&bh, MV64x60_PCI1_CMD, data); /* * Dismiss and then enable interrupt on GPP interrupt cause * for CPU #0 */ mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, ~(1 << 28)); data = mv64x60_read(&bh, MV64x60_GPP_INTR_MASK); data |= (1 << 28); mv64x60_write(&bh, MV64x60_GPP_INTR_MASK, data); /* * Dismiss and then enable interrupt on CPU #0 high cause reg * BIT27 summarizes GPP interrupts 23-31 */ mv64x60_write(&bh, MV64360_IC_MAIN_CAUSE_HI, ~(1 << 27)); data = mv64x60_read(&bh, MV64360_IC_CPU0_INTR_MASK_HI); data |= (1 << 27); mv64x60_write(&bh, MV64360_IC_CPU0_INTR_MASK_HI, data); } /***************************************************************************** * Platform device data fixup routines. *****************************************************************************/ #if defined(CONFIG_SERIAL_MPSC) static void __init ppc7d_fixup_mpsc_pdata(struct platform_device *pdev) { struct mpsc_pdata *pdata; pdata = (struct mpsc_pdata *)pdev->dev.platform_data; pdata->max_idle = 40; pdata->default_baud = PPC7D_DEFAULT_BAUD; pdata->brg_clk_src = PPC7D_MPSC_CLK_SRC; pdata->brg_clk_freq = PPC7D_MPSC_CLK_FREQ; return; } #endif #if defined(CONFIG_MV643XX_ETH) static void __init ppc7d_fixup_eth_pdata(struct platform_device *pdev) { struct mv643xx_eth_platform_data *eth_pd; static u16 phy_addr[] = { PPC7D_ETH0_PHY_ADDR, PPC7D_ETH1_PHY_ADDR, PPC7D_ETH2_PHY_ADDR, }; int i; eth_pd = pdev->dev.platform_data; eth_pd->force_phy_addr = 1; eth_pd->phy_addr = phy_addr[pdev->id]; eth_pd->tx_queue_size = PPC7D_ETH_TX_QUEUE_SIZE; eth_pd->rx_queue_size = PPC7D_ETH_RX_QUEUE_SIZE; /* Adjust IRQ by mv64360_irq_base */ for (i = 0; i < pdev->num_resources; i++) { struct resource *r = &pdev->resource[i]; if (r->flags & IORESOURCE_IRQ) { r->start += mv64360_irq_base; r->end += mv64360_irq_base; pr_debug("%s, uses IRQ %d\n", pdev->name, (int)r->start); } } } #endif #if defined(CONFIG_I2C_MV64XXX) static void __init ppc7d_fixup_i2c_pdata(struct platform_device *pdev) { struct mv64xxx_i2c_pdata *pdata; int i; pdata = pdev->dev.platform_data; if (pdata == NULL) { pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); if (pdata == NULL) return; pdev->dev.platform_data = pdata; } /* divisors M=8, N=3 for 100kHz I2C from 133MHz system clock */ pdata->freq_m = 8; pdata->freq_n = 3; pdata->timeout = 500; pdata->retries = 3; /* Adjust IRQ by mv64360_irq_base */ for (i = 0; i < pdev->num_resources; i++) { struct resource *r = &pdev->resource[i]; if (r->flags & IORESOURCE_IRQ) { r->start += mv64360_irq_base; r->end += mv64360_irq_base; pr_debug("%s, uses IRQ %d\n", pdev->name, (int) r->start); } } } #endif static int ppc7d_platform_notify(struct device *dev) { static struct { char *bus_id; void ((*rtn) (struct platform_device * pdev)); } dev_map[] = { #if defined(CONFIG_SERIAL_MPSC) { MPSC_CTLR_NAME ".0", ppc7d_fixup_mpsc_pdata }, { MPSC_CTLR_NAME ".1", ppc7d_fixup_mpsc_pdata }, #endif #if defined(CONFIG_MV643XX_ETH) { MV643XX_ETH_NAME ".0", ppc7d_fixup_eth_pdata }, { MV643XX_ETH_NAME ".1", ppc7d_fixup_eth_pdata }, { MV643XX_ETH_NAME ".2", ppc7d_fixup_eth_pdata }, #endif #if defined(CONFIG_I2C_MV64XXX) { MV64XXX_I2C_CTLR_NAME ".0", ppc7d_fixup_i2c_pdata }, #endif }; struct platform_device *pdev; int i; if (dev && dev->bus_id) for (i = 0; i < ARRAY_SIZE(dev_map); i++) if (!strncmp(dev->bus_id, dev_map[i].bus_id, BUS_ID_SIZE)) { pdev = container_of(dev, struct platform_device, dev); dev_map[i].rtn(pdev); } return 0; } /***************************************************************************** * PCI device fixups. * These aren't really fixups per se. They are used to init devices as they * are found during PCI scan. * * The PPC7D has an HB8 PCI-X bridge which must be set up during a PCI * scan in order to find other devices on its secondary side. *****************************************************************************/ static void __init ppc7d_fixup_hb8(struct pci_dev *dev) { u16 val16; if (dev->bus->number == 0) { pr_debug("PCI: HB8 init\n"); pci_write_config_byte(dev, 0x1c, ((PPC7D_PCI0_IO_START_PCI_ADDR & 0xf000) >> 8) | 0x01); pci_write_config_byte(dev, 0x1d, (((PPC7D_PCI0_IO_START_PCI_ADDR + PPC7D_PCI0_IO_SIZE - 1) & 0xf000) >> 8) | 0x01); pci_write_config_word(dev, 0x30, PPC7D_PCI0_IO_START_PCI_ADDR >> 16); pci_write_config_word(dev, 0x32, ((PPC7D_PCI0_IO_START_PCI_ADDR + PPC7D_PCI0_IO_SIZE - 1) >> 16) & 0xffff); pci_write_config_word(dev, 0x20, PPC7D_PCI0_MEM0_START_PCI_LO_ADDR >> 16); pci_write_config_word(dev, 0x22, ((PPC7D_PCI0_MEM0_START_PCI_LO_ADDR + PPC7D_PCI0_MEM0_SIZE - 1) >> 16) & 0xffff); pci_write_config_word(dev, 0x24, 0); pci_write_config_word(dev, 0x26, 0); pci_write_config_dword(dev, 0x28, 0); pci_write_config_dword(dev, 0x2c, 0); pci_read_config_word(dev, 0x3e, &val16); val16 |= ((1 << 5) | (1 << 1)); /* signal master aborts and * SERR to primary */ val16 &= ~(1 << 2); /* ISA disable, so all ISA * ports forwarded to secondary */ pci_write_config_word(dev, 0x3e, val16); } } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HINT, 0x0028, ppc7d_fixup_hb8); /* This should perhaps be a separate driver as we're actually initializing * the chip for this board here. It's hardly a fixup... */ static void __init ppc7d_fixup_ali1535(struct pci_dev *dev) { pr_debug("PCI: ALI1535 init\n"); if (dev->bus->number == 1) { /* Configure the ISA Port Settings */ pci_write_config_byte(dev, 0x43, 0x00); /* Disable PCI Interrupt polling mode */ pci_write_config_byte(dev, 0x45, 0x00); /* Multifunction pin select INTFJ -> INTF */ pci_write_config_byte(dev, 0x78, 0x00); /* Set PCI INT -> IRQ Routing control in for external * pins south bridge. */ pci_write_config_byte(dev, 0x48, 0x31); /* [7-4] INT B -> IRQ10 * [3-0] INT A -> IRQ9 */ pci_write_config_byte(dev, 0x49, 0x5D); /* [7-4] INT D -> IRQ5 * [3-0] INT C -> IRQ14 */ /* PPC7D setup */ /* NEC USB device on IRQ 11 (INTE) - INTF disabled */ pci_write_config_byte(dev, 0x4A, 0x09); /* GPIO on IRQ 6 */ pci_write_config_byte(dev, 0x76, 0x07); /* SIRQ I (COMS 5/6) use IRQ line 15. * Positive (not subtractive) address decode. */ pci_write_config_byte(dev, 0x44, 0x0f); /* SIRQ II disabled */ pci_write_config_byte(dev, 0x75, 0x0); /* On board USB and RTC disabled */ pci_write_config_word(dev, 0x52, (1 << 14)); pci_write_config_byte(dev, 0x74, 0x00); /* On board IDE disabled */ pci_write_config_byte(dev, 0x58, 0x00); /* Decode 32-bit addresses */ pci_write_config_byte(dev, 0x5b, 0); /* Disable docking IO */ pci_write_config_word(dev, 0x5c, 0x0000); /* Disable modem, enable sound */ pci_write_config_byte(dev, 0x77, (1 << 6)); /* Disable hot-docking mode */ pci_write_config_byte(dev, 0x7d, 0x00); } } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AL, 0x1533, ppc7d_fixup_ali1535); static int ppc7d_pci_exclude_device(u8 bus, u8 devfn) { /* Early versions of this board were fitted with IBM ALMA * PCI-VME bridge chips. The PCI config space of these devices * was not set up correctly and causes PCI scan problems. */ if ((bus == 1) && (PCI_SLOT(devfn) == 4) && ppc7d_has_alma) return PCIBIOS_DEVICE_NOT_FOUND; return mv64x60_pci_exclude_device(bus, devfn); } /* This hook is called when each PCI bus is probed. */ static void ppc7d_pci_fixup_bus(struct pci_bus *bus) { pr_debug("PCI BUS %hu: %lx/%lx %lx/%lx %lx/%lx %lx/%lx\n", bus->number, bus->resource[0] ? bus->resource[0]->start : 0, bus->resource[0] ? bus->resource[0]->end : 0, bus->resource[1] ? bus->resource[1]->start : 0, bus->resource[1] ? bus->resource[1]->end : 0, bus->resource[2] ? bus->resource[2]->start : 0, bus->resource[2] ? bus->resource[2]->end : 0, bus->resource[3] ? bus->resource[3]->start : 0, bus->resource[3] ? bus->resource[3]->end : 0); if ((bus->number == 1) && (bus->resource[2] != NULL)) { /* Hide PCI window 2 of Bus 1 which is used only to * map legacy ISA memory space. */ bus->resource[2]->start = 0; bus->resource[2]->end = 0; bus->resource[2]->flags = 0; } } /***************************************************************************** * Board device setup code *****************************************************************************/ void __init ppc7d_setup_peripherals(void) { u32 val32; /* Set up windows for boot CS */ mv64x60_set_32bit_window(&bh, MV64x60_CPU2BOOT_WIN, PPC7D_BOOT_WINDOW_BASE, PPC7D_BOOT_WINDOW_SIZE, 0); bh.ci->enable_window_32bit(&bh, MV64x60_CPU2BOOT_WIN); /* Boot firmware configures the following DevCS addresses. * DevCS0 - board control/status * DevCS1 - test registers * DevCS2 - AFIX port/address registers (for identifying) * DevCS3 - FLASH * * We don't use DevCS0, DevCS1. */ val32 = mv64x60_read(&bh, MV64360_CPU_BAR_ENABLE); val32 |= ((1 << 4) | (1 << 5)); mv64x60_write(&bh, MV64360_CPU_BAR_ENABLE, val32); mv64x60_write(&bh, MV64x60_CPU2DEV_0_BASE, 0); mv64x60_write(&bh, MV64x60_CPU2DEV_0_SIZE, 0); mv64x60_write(&bh, MV64x60_CPU2DEV_1_BASE, 0); mv64x60_write(&bh, MV64x60_CPU2DEV_1_SIZE, 0); mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_2_WIN, PPC7D_AFIX_REG_BASE, PPC7D_AFIX_REG_SIZE, 0); bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_2_WIN); mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_3_WIN, PPC7D_FLASH_BASE, PPC7D_FLASH_SIZE_ACTUAL, 0); bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_3_WIN); mv64x60_set_32bit_window(&bh, MV64x60_CPU2SRAM_WIN, PPC7D_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE, 0); bh.ci->enable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN); /* Set up Enet->SRAM window */ mv64x60_set_32bit_window(&bh, MV64x60_ENET2MEM_4_WIN, PPC7D_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE, 0x2); bh.ci->enable_window_32bit(&bh, MV64x60_ENET2MEM_4_WIN); /* Give enet r/w access to memory region */ val32 = mv64x60_read(&bh, MV64360_ENET2MEM_ACC_PROT_0); val32 |= (0x3 << (4 << 1)); mv64x60_write(&bh, MV64360_ENET2MEM_ACC_PROT_0, val32); val32 = mv64x60_read(&bh, MV64360_ENET2MEM_ACC_PROT_1); val32 |= (0x3 << (4 << 1)); mv64x60_write(&bh, MV64360_ENET2MEM_ACC_PROT_1, val32); val32 = mv64x60_read(&bh, MV64360_ENET2MEM_ACC_PROT_2); val32 |= (0x3 << (4 << 1)); mv64x60_write(&bh, MV64360_ENET2MEM_ACC_PROT_2, val32); val32 = mv64x60_read(&bh, MV64x60_TIMR_CNTR_0_3_CNTL); val32 &= ~((1 << 0) | (1 << 8) | (1 << 16) | (1 << 24)); mv64x60_write(&bh, MV64x60_TIMR_CNTR_0_3_CNTL, val32); /* Enumerate pci bus. * * We scan PCI#0 first (the bus with the HB8 and other * on-board peripherals). We must configure the 64360 before * each scan, according to the bus number assignments. Busses * are assigned incrementally, starting at 0. PCI#0 is * usually assigned bus#0, the secondary side of the HB8 gets * bus#1 and PCI#1 (second PMC site) gets bus#2. However, if * any PMC card has a PCI bridge, these bus assignments will * change. */ /* Turn off PCI retries */ val32 = mv64x60_read(&bh, MV64x60_CPU_CONFIG); val32 |= (1 << 17); mv64x60_write(&bh, MV64x60_CPU_CONFIG, val32); /* Scan PCI#0 */ mv64x60_set_bus(&bh, 0, 0); bh.hose_a->first_busno = 0; bh.hose_a->last_busno = 0xff; bh.hose_a->last_busno = pciauto_bus_scan(bh.hose_a, 0); printk(KERN_INFO "PCI#0: first=%d last=%d\n", bh.hose_a->first_busno, bh.hose_a->last_busno); /* Scan PCI#1 */ bh.hose_b->first_busno = bh.hose_a->last_busno + 1; mv64x60_set_bus(&bh, 1, bh.hose_b->first_busno); bh.hose_b->last_busno = 0xff; bh.hose_b->last_busno = pciauto_bus_scan(bh.hose_b, bh.hose_b->first_busno); printk(KERN_INFO "PCI#1: first=%d last=%d\n", bh.hose_b->first_busno, bh.hose_b->last_busno); /* Turn on PCI retries */ val32 = mv64x60_read(&bh, MV64x60_CPU_CONFIG); val32 &= ~(1 << 17); mv64x60_write(&bh, MV64x60_CPU_CONFIG, val32); /* Setup interrupts */ ppc7d_intr_setup(); } static void __init ppc7d_setup_bridge(void) { struct mv64x60_setup_info si; int i; u32 temp; mv64360_irq_base = 16; /* first 16 intrs are 2 x 8259's */ memset(&si, 0, sizeof(si)); si.phys_reg_base = CONFIG_MV64X60_NEW_BASE; si.pci_0.enable_bus = 1; si.pci_0.pci_io.cpu_base = PPC7D_PCI0_IO_START_PROC_ADDR; si.pci_0.pci_io.pci_base_hi = 0; si.pci_0.pci_io.pci_base_lo = PPC7D_PCI0_IO_START_PCI_ADDR; si.pci_0.pci_io.size = PPC7D_PCI0_IO_SIZE; si.pci_0.pci_io.swap = MV64x60_CPU2PCI_SWAP_NONE; si.pci_0.pci_mem[0].cpu_base = PPC7D_PCI0_MEM0_START_PROC_ADDR; si.pci_0.pci_mem[0].pci_base_hi = PPC7D_PCI0_MEM0_START_PCI_HI_ADDR; si.pci_0.pci_mem[0].pci_base_lo = PPC7D_PCI0_MEM0_START_PCI_LO_ADDR; si.pci_0.pci_mem[0].size = PPC7D_PCI0_MEM0_SIZE; si.pci_0.pci_mem[0].swap = MV64x60_CPU2PCI_SWAP_NONE; si.pci_0.pci_mem[1].cpu_base = PPC7D_PCI0_MEM1_START_PROC_ADDR; si.pci_0.pci_mem[1].pci_base_hi = PPC7D_PCI0_MEM1_START_PCI_HI_ADDR; si.pci_0.pci_mem[1].pci_base_lo = PPC7D_PCI0_MEM1_START_PCI_LO_ADDR; si.pci_0.pci_mem[1].size = PPC7D_PCI0_MEM1_SIZE; si.pci_0.pci_mem[1].swap = MV64x60_CPU2PCI_SWAP_NONE; si.pci_0.pci_cmd_bits = 0; si.pci_0.latency_timer = 0x80; si.pci_1.enable_bus = 1; si.pci_1.pci_io.cpu_base = PPC7D_PCI1_IO_START_PROC_ADDR; si.pci_1.pci_io.pci_base_hi = 0; si.pci_1.pci_io.pci_base_lo = PPC7D_PCI1_IO_START_PCI_ADDR; si.pci_1.pci_io.size = PPC7D_PCI1_IO_SIZE; si.pci_1.pci_io.swap = MV64x60_CPU2PCI_SWAP_NONE; si.pci_1.pci_mem[0].cpu_base = PPC7D_PCI1_MEM0_START_PROC_ADDR; si.pci_1.pci_mem[0].pci_base_hi = PPC7D_PCI1_MEM0_START_PCI_HI_ADDR; si.pci_1.pci_mem[0].pci_base_lo = PPC7D_PCI1_MEM0_START_PCI_LO_ADDR; si.pci_1.pci_mem[0].size = PPC7D_PCI1_MEM0_SIZE; si.pci_1.pci_mem[0].swap = MV64x60_CPU2PCI_SWAP_NONE; si.pci_1.pci_mem[1].cpu_base = PPC7D_PCI1_MEM1_START_PROC_ADDR; si.pci_1.pci_mem[1].pci_base_hi = PPC7D_PCI1_MEM1_START_PCI_HI_ADDR; si.pci_1.pci_mem[1].pci_base_lo = PPC7D_PCI1_MEM1_START_PCI_LO_ADDR; si.pci_1.pci_mem[1].size = PPC7D_PCI1_MEM1_SIZE; si.pci_1.pci_mem[1].swap = MV64x60_CPU2PCI_SWAP_NONE; si.pci_1.pci_cmd_bits = 0; si.pci_1.latency_timer = 0x80; /* Don't clear the SRAM window since we use it for debug */ si.window_preserve_mask_32_lo = (1 << MV64x60_CPU2SRAM_WIN); printk(KERN_INFO "PCI: MV64360 PCI#0 IO at %x, size %x\n", si.pci_0.pci_io.cpu_base, si.pci_0.pci_io.size); printk(KERN_INFO "PCI: MV64360 PCI#1 IO at %x, size %x\n", si.pci_1.pci_io.cpu_base, si.pci_1.pci_io.size); for (i = 0; i < MV64x60_CPU2MEM_WINDOWS; i++) { #if defined(CONFIG_NOT_COHERENT_CACHE) si.cpu_prot_options[i] = 0; si.enet_options[i] = MV64360_ENET2MEM_SNOOP_NONE; si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_NONE; si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_NONE; si.pci_0.acc_cntl_options[i] = MV64360_PCI_ACC_CNTL_SNOOP_NONE | MV64360_PCI_ACC_CNTL_SWAP_NONE | MV64360_PCI_ACC_CNTL_MBURST_128_BYTES | MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES; si.pci_1.acc_cntl_options[i] = MV64360_PCI_ACC_CNTL_SNOOP_NONE | MV64360_PCI_ACC_CNTL_SWAP_NONE | MV64360_PCI_ACC_CNTL_MBURST_128_BYTES | MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES; #else si.cpu_prot_options[i] = 0; /* All PPC7D hardware uses B0 or newer MV64360 silicon which * does not have snoop bugs. */ si.enet_options[i] = MV64360_ENET2MEM_SNOOP_WB; si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_WB; si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_WB; si.pci_0.acc_cntl_options[i] = MV64360_PCI_ACC_CNTL_SNOOP_WB | MV64360_PCI_ACC_CNTL_SWAP_NONE | MV64360_PCI_ACC_CNTL_MBURST_32_BYTES | MV64360_PCI_ACC_CNTL_RDSIZE_32_BYTES; si.pci_1.acc_cntl_options[i] = MV64360_PCI_ACC_CNTL_SNOOP_WB | MV64360_PCI_ACC_CNTL_SWAP_NONE | MV64360_PCI_ACC_CNTL_MBURST_32_BYTES | MV64360_PCI_ACC_CNTL_RDSIZE_32_BYTES; #endif } /* Lookup PCI host bridges */ if (mv64x60_init(&bh, &si)) printk(KERN_ERR "MV64360 initialization failed.\n"); pr_debug("MV64360 regs @ %lx/%p\n", bh.p_base, bh.v_base); /* Enable WB Cache coherency on SRAM */ temp = mv64x60_read(&bh, MV64360_SRAM_CONFIG); pr_debug("SRAM_CONFIG: %x\n", temp); #if defined(CONFIG_NOT_COHERENT_CACHE) mv64x60_write(&bh, MV64360_SRAM_CONFIG, temp & ~0x2); #else mv64x60_write(&bh, MV64360_SRAM_CONFIG, temp | 0x2); #endif /* If system operates with internal bus arbiter (CPU master * control bit8) clear AACK Delay bit [25] in CPU * configuration register. */ temp = mv64x60_read(&bh, MV64x60_CPU_MASTER_CNTL); if (temp & (1 << 8)) { temp = mv64x60_read(&bh, MV64x60_CPU_CONFIG); mv64x60_write(&bh, MV64x60_CPU_CONFIG, (temp & ~(1 << 25))); } /* Data and address parity is enabled */ temp = mv64x60_read(&bh, MV64x60_CPU_CONFIG); mv64x60_write(&bh, MV64x60_CPU_CONFIG, (temp | (1 << 26) | (1 << 19))); pci_dram_offset = 0; /* sys mem at same addr on PCI & cpu bus */ ppc_md.pci_swizzle = common_swizzle; ppc_md.pci_map_irq = ppc7d_map_irq; ppc_md.pci_exclude_device = ppc7d_pci_exclude_device; mv64x60_set_bus(&bh, 0, 0); bh.hose_a->first_busno = 0; bh.hose_a->last_busno = 0xff; bh.hose_a->mem_space.start = PPC7D_PCI0_MEM0_START_PCI_LO_ADDR; bh.hose_a->mem_space.end = PPC7D_PCI0_MEM0_START_PCI_LO_ADDR + PPC7D_PCI0_MEM0_SIZE; /* These will be set later, as a result of PCI0 scan */ bh.hose_b->first_busno = 0; bh.hose_b->last_busno = 0xff; bh.hose_b->mem_space.start = PPC7D_PCI1_MEM0_START_PCI_LO_ADDR; bh.hose_b->mem_space.end = PPC7D_PCI1_MEM0_START_PCI_LO_ADDR + PPC7D_PCI1_MEM0_SIZE; pr_debug("MV64360: PCI#0 IO decode %08x/%08x IO remap %08x\n", mv64x60_read(&bh, 0x48), mv64x60_read(&bh, 0x50), mv64x60_read(&bh, 0xf0)); } static void __init ppc7d_setup_arch(void) { int port; loops_per_jiffy = 100000000 / HZ; #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start) ROOT_DEV = Root_RAM0; else #endif #ifdef CONFIG_ROOT_NFS ROOT_DEV = Root_NFS; #else ROOT_DEV = Root_HDA1; #endif if ((cur_cpu_spec->cpu_features & CPU_FTR_SPEC7450) || (cur_cpu_spec->cpu_features & CPU_FTR_L3CR)) /* 745x is different. We only want to pass along enable. */ _set_L2CR(L2CR_L2E); else if (cur_cpu_spec->cpu_features & CPU_FTR_L2CR) /* All modules have 1MB of L2. We also assume that an * L2 divisor of 3 will work. */ _set_L2CR(L2CR_L2E | L2CR_L2SIZ_1MB | L2CR_L2CLK_DIV3 | L2CR_L2RAM_PIPE | L2CR_L2OH_1_0 | L2CR_L2DF); if (cur_cpu_spec->cpu_features & CPU_FTR_L3CR) /* No L3 cache */ _set_L3CR(0); #ifdef CONFIG_DUMMY_CONSOLE conswitchp = &dummy_con; #endif /* Lookup PCI host bridges */ if (ppc_md.progress) ppc_md.progress("ppc7d_setup_arch: calling setup_bridge", 0); ppc7d_setup_bridge(); ppc7d_setup_peripherals(); /* Disable ethernet. It might have been setup by the bootrom */ for (port = 0; port < 3; port++) mv64x60_write(&bh, MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port), 0x0000ff00); /* Clear queue pointers to ensure they are all initialized, * otherwise since queues 1-7 are unused, they have random * pointers which look strange in register dumps. Don't bother * with queue 0 since it will be initialized later. */ for (port = 0; port < 3; port++) { mv64x60_write(&bh, MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_1(port), 0x00000000); mv64x60_write(&bh, MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_2(port), 0x00000000); mv64x60_write(&bh, MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_3(port), 0x00000000); mv64x60_write(&bh, MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_4(port), 0x00000000); mv64x60_write(&bh, MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_5(port), 0x00000000); mv64x60_write(&bh, MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_6(port), 0x00000000); mv64x60_write(&bh, MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_7(port), 0x00000000); } printk(KERN_INFO "Radstone Technology PPC7D\n"); if (ppc_md.progress) ppc_md.progress("ppc7d_setup_arch: exit", 0); } /* Real Time Clock support. * PPC7D has a DS1337 accessed by I2C. */ static ulong ppc7d_get_rtc_time(void) { struct rtc_time tm; int result; spin_lock(&rtc_lock); result = ds1337_do_command(0, DS1337_GET_DATE, &tm); spin_unlock(&rtc_lock); if (result == 0) result = mktime(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); return result; } static int ppc7d_set_rtc_time(unsigned long nowtime) { struct rtc_time tm; int result; spin_lock(&rtc_lock); to_tm(nowtime, &tm); result = ds1337_do_command(0, DS1337_SET_DATE, &tm); spin_unlock(&rtc_lock); return result; } /* This kernel command line parameter can be used to have the target * wait for a JTAG debugger to attach. Of course, a JTAG debugger * with hardware breakpoint support can have the target stop at any * location during init, but this is a convenience feature that makes * it easier in the common case of loading the code using the ppcboot * bootloader.. */ static unsigned long ppc7d_wait_debugger; static int __init ppc7d_waitdbg(char *str) { ppc7d_wait_debugger = 1; return 1; } __setup("waitdbg", ppc7d_waitdbg); /* Second phase board init, called after other (architecture common) * low-level services have been initialized. */ static void ppc7d_init2(void) { unsigned long flags; u32 data; u8 data8; pr_debug("%s: enter\n", __FUNCTION__); /* Wait for debugger? */ if (ppc7d_wait_debugger) { printk("Waiting for debugger...\n"); while (readl(&ppc7d_wait_debugger)) ; } /* Hook up i8259 interrupt which is connected to GPP28 */ request_irq(mv64360_irq_base + MV64x60_IRQ_GPP28, ppc7d_i8259_intr, SA_INTERRUPT, "I8259 (GPP28) interrupt", (void *)0); /* Configure MPP16 as watchdog NMI, MPP17 as watchdog WDE */ spin_lock_irqsave(&mv64x60_lock, flags); data = mv64x60_read(&bh, MV64x60_MPP_CNTL_2); data &= ~(0x0000000f << 0); data |= (0x00000004 << 0); data &= ~(0x0000000f << 4); data |= (0x00000004 << 4); mv64x60_write(&bh, MV64x60_MPP_CNTL_2, data); spin_unlock_irqrestore(&mv64x60_lock, flags); /* All LEDs off */ data8 = inb(PPC7D_CPLD_LEDS); data8 &= ~0x08; data8 |= 0x07; outb(data8, PPC7D_CPLD_LEDS); /* Hook up RTC. We couldn't do this earlier because we need the I2C subsystem */ ppc_md.set_rtc_time = ppc7d_set_rtc_time; ppc_md.get_rtc_time = ppc7d_get_rtc_time; pr_debug("%s: exit\n", __FUNCTION__); } /* Called from machine_init(), early, before any of the __init functions * have run. We must init software-configurable pins before other functions * such as interrupt controllers are initialised. */ void __init platform_init(unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7) { u8 val8; u8 rev_num; /* Map 0xe0000000-0xffffffff early because we need access to SRAM * and the ISA memory space (for serial port) here. This mapping * is redone properly in ppc7d_map_io() later. */ mtspr(SPRN_DBAT3U, 0xe0003fff); mtspr(SPRN_DBAT3L, 0xe000002a); /* * Zero SRAM. Note that this generates parity errors on * internal data path in SRAM if it's first time accessing it * after reset. * * We do this ASAP to avoid parity errors when reading * uninitialized SRAM. */ memset((void *)PPC7D_INTERNAL_SRAM_BASE, 0, MV64360_SRAM_SIZE); pr_debug("platform_init: r3-r7: %lx %lx %lx %lx %lx\n", r3, r4, r5, r6, r7); parse_bootinfo(find_bootinfo()); /* ASSUMPTION: If both r3 (bd_t pointer) and r6 (cmdline pointer) * are non-zero, then we should use the board info from the bd_t * structure and the cmdline pointed to by r6 instead of the * information from birecs, if any. Otherwise, use the information * from birecs as discovered by the preceeding call to * parse_bootinfo(). This rule should work with both PPCBoot, which * uses a bd_t board info structure, and the kernel boot wrapper, * which uses birecs. */ if (r3 && r6) { bd_t *bp = (bd_t *) __res; /* copy board info structure */ memcpy((void *)__res, (void *)(r3 + KERNELBASE), sizeof(bd_t)); /* copy command line */ *(char *)(r7 + KERNELBASE) = 0; strcpy(cmd_line, (char *)(r6 + KERNELBASE)); printk(KERN_INFO "Board info data:-\n"); printk(KERN_INFO " Internal freq: %lu MHz, bus freq: %lu MHz\n", bp->bi_intfreq, bp->bi_busfreq); printk(KERN_INFO " Memory: %lx, size %lx\n", bp->bi_memstart, bp->bi_memsize); printk(KERN_INFO " Console baudrate: %lu\n", bp->bi_baudrate); printk(KERN_INFO " Ethernet address: " "%02x:%02x:%02x:%02x:%02x:%02x\n", bp->bi_enetaddr[0], bp->bi_enetaddr[1], bp->bi_enetaddr[2], bp->bi_enetaddr[3], bp->bi_enetaddr[4], bp->bi_enetaddr[5]); } #ifdef CONFIG_BLK_DEV_INITRD /* take care of initrd if we have one */ if (r4) { initrd_start = r4 + KERNELBASE; initrd_end = r5 + KERNELBASE; printk(KERN_INFO "INITRD @ %lx/%lx\n", initrd_start, initrd_end); } #endif /* CONFIG_BLK_DEV_INITRD */ /* Map in board regs, etc. */ isa_io_base = 0xe8000000; isa_mem_base = 0xe8000000; pci_dram_offset = 0x00000000; ISA_DMA_THRESHOLD = 0x00ffffff; DMA_MODE_READ = 0x44; DMA_MODE_WRITE = 0x48; ppc_md.setup_arch = ppc7d_setup_arch; ppc_md.init = ppc7d_init2; ppc_md.show_cpuinfo = ppc7d_show_cpuinfo; /* XXX this is broken... */ ppc_md.irq_canonicalize = ppc7d_irq_canonicalize; ppc_md.init_IRQ = ppc7d_init_irq; ppc_md.get_irq = ppc7d_get_irq; ppc_md.restart = ppc7d_restart; ppc_md.power_off = ppc7d_power_off; ppc_md.halt = ppc7d_halt; ppc_md.find_end_of_memory = ppc7d_find_end_of_memory; ppc_md.setup_io_mappings = ppc7d_map_io; ppc_md.time_init = NULL; ppc_md.set_rtc_time = NULL; ppc_md.get_rtc_time = NULL; ppc_md.calibrate_decr = ppc7d_calibrate_decr; ppc_md.nvram_read_val = NULL; ppc_md.nvram_write_val = NULL; ppc_md.heartbeat = ppc7d_heartbeat; ppc_md.heartbeat_reset = HZ; ppc_md.heartbeat_count = ppc_md.heartbeat_reset; ppc_md.pcibios_fixup_bus = ppc7d_pci_fixup_bus; #if defined(CONFIG_SERIAL_MPSC) || defined(CONFIG_MV643XX_ETH) || \ defined(CONFIG_I2C_MV64XXX) platform_notify = ppc7d_platform_notify; #endif #ifdef CONFIG_SERIAL_MPSC /* On PPC7D, we must configure MPSC support via CPLD control * registers. */ outb(PPC7D_CPLD_RTS_COM4_SCLK | PPC7D_CPLD_RTS_COM56_ENABLED, PPC7D_CPLD_RTS); outb(PPC7D_CPLD_COMS_COM3_TCLKEN | PPC7D_CPLD_COMS_COM3_TXEN | PPC7D_CPLD_COMS_COM4_TCLKEN | PPC7D_CPLD_COMS_COM4_TXEN, PPC7D_CPLD_COMS); #endif /* CONFIG_SERIAL_MPSC */ #if defined(CONFIG_KGDB) || defined(CONFIG_SERIAL_TEXT_DEBUG) ppc7d_early_serial_map(); #ifdef CONFIG_SERIAL_TEXT_DEBUG #if defined(CONFIG_SERIAL_MPSC_CONSOLE) ppc_md.progress = mv64x60_mpsc_progress; #elif defined(CONFIG_SERIAL_8250) ppc_md.progress = gen550_progress; #else #error CONFIG_KGDB || CONFIG_SERIAL_TEXT_DEBUG has no supported CONFIG_SERIAL_XXX #endif /* CONFIG_SERIAL_8250 */ #endif /* CONFIG_SERIAL_TEXT_DEBUG */ #endif /* CONFIG_KGDB || CONFIG_SERIAL_TEXT_DEBUG */ /* Enable write access to user flash. This is necessary for * flash probe. */ val8 = readb((void *)isa_io_base + PPC7D_CPLD_SW_FLASH_WRITE_PROTECT); writeb(val8 | (PPC7D_CPLD_SW_FLASH_WRPROT_ENABLED & PPC7D_CPLD_SW_FLASH_WRPROT_USER_MASK), (void *)isa_io_base + PPC7D_CPLD_SW_FLASH_WRITE_PROTECT); /* Determine if this board has IBM ALMA VME devices */ val8 = readb((void *)isa_io_base + PPC7D_CPLD_BOARD_REVISION); rev_num = (val8 & PPC7D_CPLD_BOARD_REVISION_NUMBER_MASK) >> 5; if (rev_num <= 1) ppc7d_has_alma = 1; #ifdef DEBUG console_printk[0] = 8; #endif }