/* * Procedures for interfacing to Open Firmware. * * Peter Bergner, IBM Corp. June 2001. * Copyright (C) 2001 Peter Bergner. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/bitops.h> #include <asm/types.h> #include <asm/page.h> #include <asm/prom.h> #include <asm/lmb.h> #include <asm/abs_addr.h> struct lmb lmb; #undef DEBUG void lmb_dump_all(void) { #ifdef DEBUG unsigned long i; struct lmb *_lmb = &lmb; udbg_printf("lmb_dump_all:\n"); udbg_printf(" memory.cnt = 0x%lx\n", _lmb->memory.cnt); udbg_printf(" memory.size = 0x%lx\n", _lmb->memory.size); for (i=0; i < _lmb->memory.cnt ;i++) { udbg_printf(" memory.region[0x%x].base = 0x%lx\n", i, _lmb->memory.region[i].base); udbg_printf(" .physbase = 0x%lx\n", _lmb->memory.region[i].physbase); udbg_printf(" .size = 0x%lx\n", _lmb->memory.region[i].size); } udbg_printf("\n reserved.cnt = 0x%lx\n", _lmb->reserved.cnt); udbg_printf(" reserved.size = 0x%lx\n", _lmb->reserved.size); for (i=0; i < _lmb->reserved.cnt ;i++) { udbg_printf(" reserved.region[0x%x].base = 0x%lx\n", i, _lmb->reserved.region[i].base); udbg_printf(" .physbase = 0x%lx\n", _lmb->reserved.region[i].physbase); udbg_printf(" .size = 0x%lx\n", _lmb->reserved.region[i].size); } #endif /* DEBUG */ } static unsigned long __init lmb_addrs_overlap(unsigned long base1, unsigned long size1, unsigned long base2, unsigned long size2) { return ((base1 < (base2+size2)) && (base2 < (base1+size1))); } static long __init lmb_addrs_adjacent(unsigned long base1, unsigned long size1, unsigned long base2, unsigned long size2) { if (base2 == base1 + size1) return 1; else if (base1 == base2 + size2) return -1; return 0; } static long __init lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1, unsigned long r2) { unsigned long base1 = rgn->region[r1].base; unsigned long size1 = rgn->region[r1].size; unsigned long base2 = rgn->region[r2].base; unsigned long size2 = rgn->region[r2].size; return lmb_addrs_adjacent(base1, size1, base2, size2); } /* Assumption: base addr of region 1 < base addr of region 2 */ static void __init lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1, unsigned long r2) { unsigned long i; rgn->region[r1].size += rgn->region[r2].size; for (i=r2; i < rgn->cnt-1; i++) { rgn->region[i].base = rgn->region[i+1].base; rgn->region[i].physbase = rgn->region[i+1].physbase; rgn->region[i].size = rgn->region[i+1].size; } rgn->cnt--; } /* This routine called with relocation disabled. */ void __init lmb_init(void) { struct lmb *_lmb = &lmb; /* Create a dummy zero size LMB which will get coalesced away later. * This simplifies the lmb_add() code below... */ _lmb->memory.region[0].base = 0; _lmb->memory.region[0].size = 0; _lmb->memory.cnt = 1; /* Ditto. */ _lmb->reserved.region[0].base = 0; _lmb->reserved.region[0].size = 0; _lmb->reserved.cnt = 1; } /* This routine called with relocation disabled. */ void __init lmb_analyze(void) { unsigned long i; unsigned long mem_size = 0; unsigned long size_mask = 0; struct lmb *_lmb = &lmb; #ifdef CONFIG_MSCHUNKS unsigned long physbase = 0; #endif for (i=0; i < _lmb->memory.cnt; i++) { unsigned long lmb_size; lmb_size = _lmb->memory.region[i].size; #ifdef CONFIG_MSCHUNKS _lmb->memory.region[i].physbase = physbase; physbase += lmb_size; #else _lmb->memory.region[i].physbase = _lmb->memory.region[i].base; #endif mem_size += lmb_size; size_mask |= lmb_size; } _lmb->memory.size = mem_size; } /* This routine called with relocation disabled. */ static long __init lmb_add_region(struct lmb_region *rgn, unsigned long base, unsigned long size) { unsigned long i, coalesced = 0; long adjacent; /* First try and coalesce this LMB with another. */ for (i=0; i < rgn->cnt; i++) { unsigned long rgnbase = rgn->region[i].base; unsigned long rgnsize = rgn->region[i].size; adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize); if ( adjacent > 0 ) { rgn->region[i].base -= size; rgn->region[i].physbase -= size; rgn->region[i].size += size; coalesced++; break; } else if ( adjacent < 0 ) { rgn->region[i].size += size; coalesced++; break; } } if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) { lmb_coalesce_regions(rgn, i, i+1); coalesced++; } if ( coalesced ) { return coalesced; } else if ( rgn->cnt >= MAX_LMB_REGIONS ) { return -1; } /* Couldn't coalesce the LMB, so add it to the sorted table. */ for (i=rgn->cnt-1; i >= 0; i--) { if (base < rgn->region[i].base) { rgn->region[i+1].base = rgn->region[i].base; rgn->region[i+1].physbase = rgn->region[i].physbase; rgn->region[i+1].size = rgn->region[i].size; } else { rgn->region[i+1].base = base; rgn->region[i+1].physbase = lmb_abs_to_phys(base); rgn->region[i+1].size = size; break; } } rgn->cnt++; return 0; } /* This routine called with relocation disabled. */ long __init lmb_add(unsigned long base, unsigned long size) { struct lmb *_lmb = &lmb; struct lmb_region *_rgn = &(_lmb->memory); /* On pSeries LPAR systems, the first LMB is our RMO region. */ if ( base == 0 ) _lmb->rmo_size = size; return lmb_add_region(_rgn, base, size); } long __init lmb_reserve(unsigned long base, unsigned long size) { struct lmb *_lmb = &lmb; struct lmb_region *_rgn = &(_lmb->reserved); return lmb_add_region(_rgn, base, size); } long __init lmb_overlaps_region(struct lmb_region *rgn, unsigned long base, unsigned long size) { unsigned long i; for (i=0; i < rgn->cnt; i++) { unsigned long rgnbase = rgn->region[i].base; unsigned long rgnsize = rgn->region[i].size; if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) { break; } } return (i < rgn->cnt) ? i : -1; } unsigned long __init lmb_alloc(unsigned long size, unsigned long align) { return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE); } unsigned long __init lmb_alloc_base(unsigned long size, unsigned long align, unsigned long max_addr) { long i, j; unsigned long base = 0; struct lmb *_lmb = &lmb; struct lmb_region *_mem = &(_lmb->memory); struct lmb_region *_rsv = &(_lmb->reserved); for (i=_mem->cnt-1; i >= 0; i--) { unsigned long lmbbase = _mem->region[i].base; unsigned long lmbsize = _mem->region[i].size; if ( max_addr == LMB_ALLOC_ANYWHERE ) base = _ALIGN_DOWN(lmbbase+lmbsize-size, align); else if ( lmbbase < max_addr ) base = _ALIGN_DOWN(min(lmbbase+lmbsize,max_addr)-size, align); else continue; while ( (lmbbase <= base) && ((j = lmb_overlaps_region(_rsv,base,size)) >= 0) ) { base = _ALIGN_DOWN(_rsv->region[j].base-size, align); } if ( (base != 0) && (lmbbase <= base) ) break; } if ( i < 0 ) return 0; lmb_add_region(_rsv, base, size); return base; } unsigned long __init lmb_phys_mem_size(void) { struct lmb *_lmb = &lmb; #ifdef CONFIG_MSCHUNKS return _lmb->memory.size; #else struct lmb_region *_mem = &(_lmb->memory); unsigned long total = 0; int i; /* add all physical memory to the bootmem map */ for (i=0; i < _mem->cnt; i++) total += _mem->region[i].size; return total; #endif /* CONFIG_MSCHUNKS */ } unsigned long __init lmb_end_of_DRAM(void) { struct lmb *_lmb = &lmb; struct lmb_region *_mem = &(_lmb->memory); int idx = _mem->cnt - 1; #ifdef CONFIG_MSCHUNKS return (_mem->region[idx].physbase + _mem->region[idx].size); #else return (_mem->region[idx].base + _mem->region[idx].size); #endif /* CONFIG_MSCHUNKS */ return 0; } unsigned long __init lmb_abs_to_phys(unsigned long aa) { unsigned long i, pa = aa; struct lmb *_lmb = &lmb; struct lmb_region *_mem = &(_lmb->memory); for (i=0; i < _mem->cnt; i++) { unsigned long lmbbase = _mem->region[i].base; unsigned long lmbsize = _mem->region[i].size; if ( lmb_addrs_overlap(aa,1,lmbbase,lmbsize) ) { pa = _mem->region[i].physbase + (aa - lmbbase); break; } } return pa; } /* * Truncate the lmb list to memory_limit if it's set * You must call lmb_analyze() after this. */ void __init lmb_enforce_memory_limit(void) { extern unsigned long memory_limit; unsigned long i, limit; struct lmb_region *mem = &(lmb.memory); if (! memory_limit) return; limit = memory_limit; for (i = 0; i < mem->cnt; i++) { if (limit > mem->region[i].size) { limit -= mem->region[i].size; continue; } mem->region[i].size = limit; mem->cnt = i + 1; break; } }