/* * * Common boot and setup code. * * Copyright (C) 2001 PPC64 Team, IBM Corp * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif /* * Here are some early debugging facilities. You can enable one * but your kernel will not boot on anything else if you do so */ /* This one is for use on LPAR machines that support an HVC console * on vterm 0 */ extern void udbg_init_debug_lpar(void); /* This one is for use on Apple G5 machines */ extern void udbg_init_pmac_realmode(void); /* That's RTAS panel debug */ extern void call_rtas_display_status_delay(unsigned char c); /* Here's maple real mode debug */ extern void udbg_init_maple_realmode(void); #define EARLY_DEBUG_INIT() do {} while(0) #if 0 #define EARLY_DEBUG_INIT() udbg_init_debug_lpar() #define EARLY_DEBUG_INIT() udbg_init_maple_realmode() #define EARLY_DEBUG_INIT() udbg_init_pmac_realmode() #define EARLY_DEBUG_INIT() \ do { udbg_putc = call_rtas_display_status_delay; } while(0) #endif /* extern void *stab; */ extern unsigned long klimit; extern void mm_init_ppc64(void); extern void stab_initialize(unsigned long stab); extern void htab_initialize(void); extern void early_init_devtree(void *flat_dt); extern void unflatten_device_tree(void); extern void smp_release_cpus(void); int have_of = 1; int boot_cpuid = 0; int boot_cpuid_phys = 0; dev_t boot_dev; u64 ppc64_pft_size; struct ppc64_caches ppc64_caches; EXPORT_SYMBOL_GPL(ppc64_caches); /* * These are used in binfmt_elf.c to put aux entries on the stack * for each elf executable being started. */ int dcache_bsize; int icache_bsize; int ucache_bsize; /* The main machine-dep calls structure */ struct machdep_calls ppc_md; EXPORT_SYMBOL(ppc_md); #ifdef CONFIG_MAGIC_SYSRQ unsigned long SYSRQ_KEY; #endif /* CONFIG_MAGIC_SYSRQ */ static int ppc64_panic_event(struct notifier_block *, unsigned long, void *); static struct notifier_block ppc64_panic_block = { .notifier_call = ppc64_panic_event, .priority = INT_MIN /* may not return; must be done last */ }; /* * Perhaps we can put the pmac screen_info[] here * on pmac as well so we don't need the ifdef's. * Until we get multiple-console support in here * that is. -- Cort * Maybe tie it to serial consoles, since this is really what * these processors use on existing boards. -- Dan */ struct screen_info screen_info = { .orig_x = 0, .orig_y = 25, .orig_video_cols = 80, .orig_video_lines = 25, .orig_video_isVGA = 1, .orig_video_points = 16 }; #ifdef CONFIG_SMP static int smt_enabled_cmdline; /* Look for ibm,smt-enabled OF option */ static void check_smt_enabled(void) { struct device_node *dn; char *smt_option; /* Allow the command line to overrule the OF option */ if (smt_enabled_cmdline) return; dn = of_find_node_by_path("/options"); if (dn) { smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL); if (smt_option) { if (!strcmp(smt_option, "on")) smt_enabled_at_boot = 1; else if (!strcmp(smt_option, "off")) smt_enabled_at_boot = 0; } } } /* Look for smt-enabled= cmdline option */ static int __init early_smt_enabled(char *p) { smt_enabled_cmdline = 1; if (!p) return 0; if (!strcmp(p, "on") || !strcmp(p, "1")) smt_enabled_at_boot = 1; else if (!strcmp(p, "off") || !strcmp(p, "0")) smt_enabled_at_boot = 0; return 0; } early_param("smt-enabled", early_smt_enabled); /** * setup_cpu_maps - initialize the following cpu maps: * cpu_possible_map * cpu_present_map * cpu_sibling_map * * Having the possible map set up early allows us to restrict allocations * of things like irqstacks to num_possible_cpus() rather than NR_CPUS. * * We do not initialize the online map here; cpus set their own bits in * cpu_online_map as they come up. * * This function is valid only for Open Firmware systems. finish_device_tree * must be called before using this. * * While we're here, we may as well set the "physical" cpu ids in the paca. */ static void __init setup_cpu_maps(void) { struct device_node *dn = NULL; int cpu = 0; int swap_cpuid = 0; check_smt_enabled(); while ((dn = of_find_node_by_type(dn, "cpu")) && cpu < NR_CPUS) { u32 *intserv; int j, len = sizeof(u32), nthreads; intserv = (u32 *)get_property(dn, "ibm,ppc-interrupt-server#s", &len); if (!intserv) intserv = (u32 *)get_property(dn, "reg", NULL); nthreads = len / sizeof(u32); for (j = 0; j < nthreads && cpu < NR_CPUS; j++) { cpu_set(cpu, cpu_present_map); set_hard_smp_processor_id(cpu, intserv[j]); if (intserv[j] == boot_cpuid_phys) swap_cpuid = cpu; cpu_set(cpu, cpu_possible_map); cpu++; } } /* Swap CPU id 0 with boot_cpuid_phys, so we can always assume that * boot cpu is logical 0. */ if (boot_cpuid_phys != get_hard_smp_processor_id(0)) { u32 tmp; tmp = get_hard_smp_processor_id(0); set_hard_smp_processor_id(0, boot_cpuid_phys); set_hard_smp_processor_id(swap_cpuid, tmp); } /* * On pSeries LPAR, we need to know how many cpus * could possibly be added to this partition. */ if (systemcfg->platform == PLATFORM_PSERIES_LPAR && (dn = of_find_node_by_path("/rtas"))) { int num_addr_cell, num_size_cell, maxcpus; unsigned int *ireg; num_addr_cell = prom_n_addr_cells(dn); num_size_cell = prom_n_size_cells(dn); ireg = (unsigned int *) get_property(dn, "ibm,lrdr-capacity", NULL); if (!ireg) goto out; maxcpus = ireg[num_addr_cell + num_size_cell]; /* Double maxcpus for processors which have SMT capability */ if (cpu_has_feature(CPU_FTR_SMT)) maxcpus *= 2; if (maxcpus > NR_CPUS) { printk(KERN_WARNING "Partition configured for %d cpus, " "operating system maximum is %d.\n", maxcpus, NR_CPUS); maxcpus = NR_CPUS; } else printk(KERN_INFO "Partition configured for %d cpus.\n", maxcpus); for (cpu = 0; cpu < maxcpus; cpu++) cpu_set(cpu, cpu_possible_map); out: of_node_put(dn); } /* * Do the sibling map; assume only two threads per processor. */ for_each_cpu(cpu) { cpu_set(cpu, cpu_sibling_map[cpu]); if (cpu_has_feature(CPU_FTR_SMT)) cpu_set(cpu ^ 0x1, cpu_sibling_map[cpu]); } systemcfg->processorCount = num_present_cpus(); } #endif /* CONFIG_SMP */ extern struct machdep_calls pSeries_md; extern struct machdep_calls pmac_md; extern struct machdep_calls maple_md; extern struct machdep_calls bpa_md; extern struct machdep_calls iseries_md; /* Ultimately, stuff them in an elf section like initcalls... */ static struct machdep_calls __initdata *machines[] = { #ifdef CONFIG_PPC_PSERIES &pSeries_md, #endif /* CONFIG_PPC_PSERIES */ #ifdef CONFIG_PPC_PMAC &pmac_md, #endif /* CONFIG_PPC_PMAC */ #ifdef CONFIG_PPC_MAPLE &maple_md, #endif /* CONFIG_PPC_MAPLE */ #ifdef CONFIG_PPC_BPA &bpa_md, #endif #ifdef CONFIG_PPC_ISERIES &iseries_md, #endif NULL }; /* * Early initialization entry point. This is called by head.S * with MMU translation disabled. We rely on the "feature" of * the CPU that ignores the top 2 bits of the address in real * mode so we can access kernel globals normally provided we * only toy with things in the RMO region. From here, we do * some early parsing of the device-tree to setup out LMB * data structures, and allocate & initialize the hash table * and segment tables so we can start running with translation * enabled. * * It is this function which will call the probe() callback of * the various platform types and copy the matching one to the * global ppc_md structure. Your platform can eventually do * some very early initializations from the probe() routine, but * this is not recommended, be very careful as, for example, the * device-tree is not accessible via normal means at this point. */ void __init early_setup(unsigned long dt_ptr) { struct paca_struct *lpaca = get_paca(); static struct machdep_calls **mach; /* * Enable early debugging if any specified (see top of * this file) */ EARLY_DEBUG_INIT(); DBG(" -> early_setup()\n"); /* * Fill the default DBG level (do we want to keep * that old mecanism around forever ?) */ ppcdbg_initialize(); /* * Do early initializations using the flattened device * tree, like retreiving the physical memory map or * calculating/retreiving the hash table size */ early_init_devtree(__va(dt_ptr)); /* * Iterate all ppc_md structures until we find the proper * one for the current machine type */ DBG("Probing machine type for platform %x...\n", systemcfg->platform); for (mach = machines; *mach; mach++) { if ((*mach)->probe(systemcfg->platform)) break; } /* What can we do if we didn't find ? */ if (*mach == NULL) { DBG("No suitable machine found !\n"); for (;;); } ppc_md = **mach; DBG("Found, Initializing memory management...\n"); /* * Initialize stab / SLB management */ if (!firmware_has_feature(FW_FEATURE_ISERIES)) stab_initialize(lpaca->stab_real); /* * Initialize the MMU Hash table and create the linear mapping * of memory */ htab_initialize(); DBG(" <- early_setup()\n"); } /* * Initialize some remaining members of the ppc64_caches and systemcfg structures * (at least until we get rid of them completely). This is mostly some * cache informations about the CPU that will be used by cache flush * routines and/or provided to userland */ static void __init initialize_cache_info(void) { struct device_node *np; unsigned long num_cpus = 0; DBG(" -> initialize_cache_info()\n"); for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) { num_cpus += 1; /* We're assuming *all* of the CPUs have the same * d-cache and i-cache sizes... -Peter */ if ( num_cpus == 1 ) { u32 *sizep, *lsizep; u32 size, lsize; const char *dc, *ic; /* Then read cache informations */ if (systemcfg->platform == PLATFORM_POWERMAC) { dc = "d-cache-block-size"; ic = "i-cache-block-size"; } else { dc = "d-cache-line-size"; ic = "i-cache-line-size"; } size = 0; lsize = cur_cpu_spec->dcache_bsize; sizep = (u32 *)get_property(np, "d-cache-size", NULL); if (sizep != NULL) size = *sizep; lsizep = (u32 *) get_property(np, dc, NULL); if (lsizep != NULL) lsize = *lsizep; if (sizep == 0 || lsizep == 0) DBG("Argh, can't find dcache properties ! " "sizep: %p, lsizep: %p\n", sizep, lsizep); systemcfg->dcache_size = ppc64_caches.dsize = size; systemcfg->dcache_line_size = ppc64_caches.dline_size = lsize; ppc64_caches.log_dline_size = __ilog2(lsize); ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; size = 0; lsize = cur_cpu_spec->icache_bsize; sizep = (u32 *)get_property(np, "i-cache-size", NULL); if (sizep != NULL) size = *sizep; lsizep = (u32 *)get_property(np, ic, NULL); if (lsizep != NULL) lsize = *lsizep; if (sizep == 0 || lsizep == 0) DBG("Argh, can't find icache properties ! " "sizep: %p, lsizep: %p\n", sizep, lsizep); systemcfg->icache_size = ppc64_caches.isize = size; systemcfg->icache_line_size = ppc64_caches.iline_size = lsize; ppc64_caches.log_iline_size = __ilog2(lsize); ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; } } /* Add an eye catcher and the systemcfg layout version number */ strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64"); systemcfg->version.major = SYSTEMCFG_MAJOR; systemcfg->version.minor = SYSTEMCFG_MINOR; systemcfg->processor = mfspr(SPRN_PVR); DBG(" <- initialize_cache_info()\n"); } static void __init check_for_initrd(void) { #ifdef CONFIG_BLK_DEV_INITRD u64 *prop; DBG(" -> check_for_initrd()\n"); if (of_chosen) { prop = (u64 *)get_property(of_chosen, "linux,initrd-start", NULL); if (prop != NULL) { initrd_start = (unsigned long)__va(*prop); prop = (u64 *)get_property(of_chosen, "linux,initrd-end", NULL); if (prop != NULL) { initrd_end = (unsigned long)__va(*prop); initrd_below_start_ok = 1; } else initrd_start = 0; } } /* If we were passed an initrd, set the ROOT_DEV properly if the values * look sensible. If not, clear initrd reference. */ if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE && initrd_end > initrd_start) ROOT_DEV = Root_RAM0; else initrd_start = initrd_end = 0; if (initrd_start) printk("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end); DBG(" <- check_for_initrd()\n"); #endif /* CONFIG_BLK_DEV_INITRD */ } /* * Do some initial setup of the system. The parameters are those which * were passed in from the bootloader. */ void __init setup_system(void) { DBG(" -> setup_system()\n"); /* * Unflatten the device-tree passed by prom_init or kexec */ unflatten_device_tree(); /* * Fill the ppc64_caches & systemcfg structures with informations * retreived from the device-tree. Need to be called before * finish_device_tree() since the later requires some of the * informations filled up here to properly parse the interrupt * tree. * It also sets up the cache line sizes which allows to call * routines like flush_icache_range (used by the hash init * later on). */ initialize_cache_info(); #ifdef CONFIG_PPC_RTAS /* * Initialize RTAS if available */ rtas_initialize(); #endif /* CONFIG_PPC_RTAS */ /* * Check if we have an initrd provided via the device-tree */ check_for_initrd(); /* * Do some platform specific early initializations, that includes * setting up the hash table pointers. It also sets up some interrupt-mapping * related options that will be used by finish_device_tree() */ ppc_md.init_early(); /* * "Finish" the device-tree, that is do the actual parsing of * some of the properties like the interrupt map */ finish_device_tree(); /* * Initialize xmon */ #ifdef CONFIG_XMON_DEFAULT xmon_init(1); #endif /* * Register early console */ register_early_udbg_console(); /* Save unparsed command line copy for /proc/cmdline */ strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE); parse_early_param(); #ifdef CONFIG_SMP /* * iSeries has already initialized the cpu maps at this point. */ setup_cpu_maps(); /* Release secondary cpus out of their spinloops at 0x60 now that * we can map physical -> logical CPU ids */ smp_release_cpus(); #endif printk("Starting Linux PPC64 %s\n", system_utsname.version); printk("-----------------------------------------------------\n"); printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size); printk("ppc64_debug_switch = 0x%lx\n", ppc64_debug_switch); printk("ppc64_interrupt_controller = 0x%ld\n", ppc64_interrupt_controller); printk("systemcfg = 0x%p\n", systemcfg); printk("systemcfg->platform = 0x%x\n", systemcfg->platform); printk("systemcfg->processorCount = 0x%lx\n", systemcfg->processorCount); printk("systemcfg->physicalMemorySize = 0x%lx\n", systemcfg->physicalMemorySize); printk("ppc64_caches.dcache_line_size = 0x%x\n", ppc64_caches.dline_size); printk("ppc64_caches.icache_line_size = 0x%x\n", ppc64_caches.iline_size); printk("htab_address = 0x%p\n", htab_address); printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); printk("-----------------------------------------------------\n"); mm_init_ppc64(); DBG(" <- setup_system()\n"); } /* also used by kexec */ void machine_shutdown(void) { if (ppc_md.nvram_sync) ppc_md.nvram_sync(); } void machine_restart(char *cmd) { machine_shutdown(); ppc_md.restart(cmd); #ifdef CONFIG_SMP smp_send_stop(); #endif printk(KERN_EMERG "System Halted, OK to turn off power\n"); local_irq_disable(); while (1) ; } void machine_power_off(void) { machine_shutdown(); ppc_md.power_off(); #ifdef CONFIG_SMP smp_send_stop(); #endif printk(KERN_EMERG "System Halted, OK to turn off power\n"); local_irq_disable(); while (1) ; } /* Used by the G5 thermal driver */ EXPORT_SYMBOL_GPL(machine_power_off); void machine_halt(void) { machine_shutdown(); ppc_md.halt(); #ifdef CONFIG_SMP smp_send_stop(); #endif printk(KERN_EMERG "System Halted, OK to turn off power\n"); local_irq_disable(); while (1) ; } static int ppc64_panic_event(struct notifier_block *this, unsigned long event, void *ptr) { ppc_md.panic((char *)ptr); /* May not return */ return NOTIFY_DONE; } #ifdef CONFIG_SMP DEFINE_PER_CPU(unsigned int, pvr); #endif static int show_cpuinfo(struct seq_file *m, void *v) { unsigned long cpu_id = (unsigned long)v - 1; unsigned int pvr; unsigned short maj; unsigned short min; if (cpu_id == NR_CPUS) { seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq); if (ppc_md.show_cpuinfo != NULL) ppc_md.show_cpuinfo(m); return 0; } /* We only show online cpus: disable preempt (overzealous, I * knew) to prevent cpu going down. */ preempt_disable(); if (!cpu_online(cpu_id)) { preempt_enable(); return 0; } #ifdef CONFIG_SMP pvr = per_cpu(pvr, cpu_id); #else pvr = mfspr(SPRN_PVR); #endif maj = (pvr >> 8) & 0xFF; min = pvr & 0xFF; seq_printf(m, "processor\t: %lu\n", cpu_id); seq_printf(m, "cpu\t\t: "); if (cur_cpu_spec->pvr_mask) seq_printf(m, "%s", cur_cpu_spec->cpu_name); else seq_printf(m, "unknown (%08x)", pvr); #ifdef CONFIG_ALTIVEC if (cpu_has_feature(CPU_FTR_ALTIVEC)) seq_printf(m, ", altivec supported"); #endif /* CONFIG_ALTIVEC */ seq_printf(m, "\n"); /* * Assume here that all clock rates are the same in a * smp system. -- Cort */ seq_printf(m, "clock\t\t: %lu.%06luMHz\n", ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); seq_printf(m, "revision\t: %hd.%hd\n\n", maj, min); preempt_enable(); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos <= NR_CPUS ? (void *)((*pos)+1) : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } struct seq_operations cpuinfo_op = { .start =c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, }; /* * These three variables are used to save values passed to us by prom_init() * via the device tree. The TCE variables are needed because with a memory_limit * in force we may need to explicitly map the TCE are at the top of RAM. */ unsigned long memory_limit; unsigned long tce_alloc_start; unsigned long tce_alloc_end; #ifdef CONFIG_PPC_ISERIES /* * On iSeries we just parse the mem=X option from the command line. * On pSeries it's a bit more complicated, see prom_init_mem() */ static int __init early_parsemem(char *p) { if (!p) return 0; memory_limit = ALIGN(memparse(p, &p), PAGE_SIZE); return 0; } early_param("mem", early_parsemem); #endif /* CONFIG_PPC_ISERIES */ #ifdef CONFIG_PPC_MULTIPLATFORM static int __init set_preferred_console(void) { struct device_node *prom_stdout = NULL; char *name; u32 *spd; int offset = 0; DBG(" -> set_preferred_console()\n"); /* The user has requested a console so this is already set up. */ if (strstr(saved_command_line, "console=")) { DBG(" console was specified !\n"); return -EBUSY; } if (!of_chosen) { DBG(" of_chosen is NULL !\n"); return -ENODEV; } /* We are getting a weird phandle from OF ... */ /* ... So use the full path instead */ name = (char *)get_property(of_chosen, "linux,stdout-path", NULL); if (name == NULL) { DBG(" no linux,stdout-path !\n"); return -ENODEV; } prom_stdout = of_find_node_by_path(name); if (!prom_stdout) { DBG(" can't find stdout package %s !\n", name); return -ENODEV; } DBG("stdout is %s\n", prom_stdout->full_name); name = (char *)get_property(prom_stdout, "name", NULL); if (!name) { DBG(" stdout package has no name !\n"); goto not_found; } spd = (u32 *)get_property(prom_stdout, "current-speed", NULL); if (0) ; #ifdef CONFIG_SERIAL_8250_CONSOLE else if (strcmp(name, "serial") == 0) { int i; u32 *reg = (u32 *)get_property(prom_stdout, "reg", &i); if (i > 8) { switch (reg[1]) { case 0x3f8: offset = 0; break; case 0x2f8: offset = 1; break; case 0x898: offset = 2; break; case 0x890: offset = 3; break; default: /* We dont recognise the serial port */ goto not_found; } } } #endif /* CONFIG_SERIAL_8250_CONSOLE */ #ifdef CONFIG_PPC_PSERIES else if (strcmp(name, "vty") == 0) { u32 *reg = (u32 *)get_property(prom_stdout, "reg", NULL); char *compat = (char *)get_property(prom_stdout, "compatible", NULL); if (reg && compat && (strcmp(compat, "hvterm-protocol") == 0)) { /* Host Virtual Serial Interface */ int offset; switch (reg[0]) { case 0x30000000: offset = 0; break; case 0x30000001: offset = 1; break; default: goto not_found; } of_node_put(prom_stdout); DBG("Found hvsi console at offset %d\n", offset); return add_preferred_console("hvsi", offset, NULL); } else { /* pSeries LPAR virtual console */ of_node_put(prom_stdout); DBG("Found hvc console\n"); return add_preferred_console("hvc", 0, NULL); } } #endif /* CONFIG_PPC_PSERIES */ #ifdef CONFIG_SERIAL_PMACZILOG_CONSOLE else if (strcmp(name, "ch-a") == 0) offset = 0; else if (strcmp(name, "ch-b") == 0) offset = 1; #endif /* CONFIG_SERIAL_PMACZILOG_CONSOLE */ else goto not_found; of_node_put(prom_stdout); DBG("Found serial console at ttyS%d\n", offset); if (spd) { static char __initdata opt[16]; sprintf(opt, "%d", *spd); return add_preferred_console("ttyS", offset, opt); } else return add_preferred_console("ttyS", offset, NULL); not_found: DBG("No preferred console found !\n"); of_node_put(prom_stdout); return -ENODEV; } console_initcall(set_preferred_console); #endif /* CONFIG_PPC_MULTIPLATFORM */ #ifdef CONFIG_IRQSTACKS static void __init irqstack_early_init(void) { unsigned int i; /* * interrupt stacks must be under 256MB, we cannot afford to take * SLB misses on them. */ for_each_cpu(i) { softirq_ctx[i] = (struct thread_info *)__va(lmb_alloc_base(THREAD_SIZE, THREAD_SIZE, 0x10000000)); hardirq_ctx[i] = (struct thread_info *)__va(lmb_alloc_base(THREAD_SIZE, THREAD_SIZE, 0x10000000)); } } #else #define irqstack_early_init() #endif /* * Stack space used when we detect a bad kernel stack pointer, and * early in SMP boots before relocation is enabled. */ static void __init emergency_stack_init(void) { unsigned long limit; unsigned int i; /* * Emergency stacks must be under 256MB, we cannot afford to take * SLB misses on them. The ABI also requires them to be 128-byte * aligned. * * Since we use these as temporary stacks during secondary CPU * bringup, we need to get at them in real mode. This means they * must also be within the RMO region. */ limit = min(0x10000000UL, lmb.rmo_size); for_each_cpu(i) paca[i].emergency_sp = __va(lmb_alloc_base(PAGE_SIZE, 128, limit)) + PAGE_SIZE; } /* * Called from setup_arch to initialize the bitmap of available * syscalls in the systemcfg page */ void __init setup_syscall_map(void) { unsigned int i, count64 = 0, count32 = 0; extern unsigned long *sys_call_table; extern unsigned long *sys_call_table32; extern unsigned long sys_ni_syscall; for (i = 0; i < __NR_syscalls; i++) { if (sys_call_table[i] == sys_ni_syscall) continue; count64++; systemcfg->syscall_map_64[i >> 5] |= 0x80000000UL >> (i & 0x1f); } for (i = 0; i < __NR_syscalls; i++) { if (sys_call_table32[i] == sys_ni_syscall) continue; count32++; systemcfg->syscall_map_32[i >> 5] |= 0x80000000UL >> (i & 0x1f); } printk(KERN_INFO "Syscall map setup, %d 32 bits and %d 64 bits syscalls\n", count32, count64); } /* * Called into from start_kernel, after lock_kernel has been called. * Initializes bootmem, which is unsed to manage page allocation until * mem_init is called. */ void __init setup_arch(char **cmdline_p) { extern void do_init_bootmem(void); ppc64_boot_msg(0x12, "Setup Arch"); *cmdline_p = cmd_line; /* * Set cache line size based on type of cpu as a default. * Systems with OF can look in the properties on the cpu node(s) * for a possibly more accurate value. */ dcache_bsize = ppc64_caches.dline_size; icache_bsize = ppc64_caches.iline_size; /* reboot on panic */ panic_timeout = 180; if (ppc_md.panic) notifier_chain_register(&panic_notifier_list, &ppc64_panic_block); init_mm.start_code = PAGE_OFFSET; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = klimit; irqstack_early_init(); emergency_stack_init(); stabs_alloc(); /* set up the bootmem stuff with available memory */ do_init_bootmem(); sparse_init(); /* initialize the syscall map in systemcfg */ setup_syscall_map(); ppc_md.setup_arch(); /* Use the default idle loop if the platform hasn't provided one. */ if (NULL == ppc_md.idle_loop) { ppc_md.idle_loop = default_idle; printk(KERN_INFO "Using default idle loop\n"); } paging_init(); ppc64_boot_msg(0x15, "Setup Done"); } /* ToDo: do something useful if ppc_md is not yet setup. */ #define PPC64_LINUX_FUNCTION 0x0f000000 #define PPC64_IPL_MESSAGE 0xc0000000 #define PPC64_TERM_MESSAGE 0xb0000000 static void ppc64_do_msg(unsigned int src, const char *msg) { if (ppc_md.progress) { char buf[128]; sprintf(buf, "%08X\n", src); ppc_md.progress(buf, 0); snprintf(buf, 128, "%s", msg); ppc_md.progress(buf, 0); } } /* Print a boot progress message. */ void ppc64_boot_msg(unsigned int src, const char *msg) { ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); printk("[boot]%04x %s\n", src, msg); } /* Print a termination message (print only -- does not stop the kernel) */ void ppc64_terminate_msg(unsigned int src, const char *msg) { ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg); printk("[terminate]%04x %s\n", src, msg); } #ifndef CONFIG_PPC_ISERIES /* * This function can be used by platforms to "find" legacy serial ports. * It works for "serial" nodes under an "isa" node, and will try to * respect the "ibm,aix-loc" property if any. It works with up to 8 * ports. */ #define MAX_LEGACY_SERIAL_PORTS 8 static struct plat_serial8250_port serial_ports[MAX_LEGACY_SERIAL_PORTS+1]; static unsigned int old_serial_count; void __init generic_find_legacy_serial_ports(u64 *physport, unsigned int *default_speed) { struct device_node *np; u32 *sizeprop; struct isa_reg_property { u32 space; u32 address; u32 size; }; struct pci_reg_property { struct pci_address addr; u32 size_hi; u32 size_lo; }; DBG(" -> generic_find_legacy_serial_port()\n"); *physport = 0; if (default_speed) *default_speed = 0; np = of_find_node_by_path("/"); if (!np) return; /* First fill our array */ for (np = NULL; (np = of_find_node_by_type(np, "serial"));) { struct device_node *isa, *pci; struct isa_reg_property *reg; unsigned long phys_size, addr_size, io_base; u32 *rangesp; u32 *interrupts, *clk, *spd; char *typep; int index, rlen, rentsize; /* Ok, first check if it's under an "isa" parent */ isa = of_get_parent(np); if (!isa || strcmp(isa->name, "isa")) { DBG("%s: no isa parent found\n", np->full_name); continue; } /* Now look for an "ibm,aix-loc" property that gives us ordering * if any... */ typep = (char *)get_property(np, "ibm,aix-loc", NULL); /* Get the ISA port number */ reg = (struct isa_reg_property *)get_property(np, "reg", NULL); if (reg == NULL) goto next_port; /* We assume the interrupt number isn't translated ... */ interrupts = (u32 *)get_property(np, "interrupts", NULL); /* get clock freq. if present */ clk = (u32 *)get_property(np, "clock-frequency", NULL); /* get default speed if present */ spd = (u32 *)get_property(np, "current-speed", NULL); /* Default to locate at end of array */ index = old_serial_count; /* end of the array by default */ /* If we have a location index, then use it */ if (typep && *typep == 'S') { index = simple_strtol(typep+1, NULL, 0) - 1; /* if index is out of range, use end of array instead */ if (index >= MAX_LEGACY_SERIAL_PORTS) index = old_serial_count; /* if our index is still out of range, that mean that * array is full, we could scan for a free slot but that * make little sense to bother, just skip the port */ if (index >= MAX_LEGACY_SERIAL_PORTS) goto next_port; if (index >= old_serial_count) old_serial_count = index + 1; /* Check if there is a port who already claimed our slot */ if (serial_ports[index].iobase != 0) { /* if we still have some room, move it, else override */ if (old_serial_count < MAX_LEGACY_SERIAL_PORTS) { DBG("Moved legacy port %d -> %d\n", index, old_serial_count); serial_ports[old_serial_count++] = serial_ports[index]; } else { DBG("Replacing legacy port %d\n", index); } } } if (index >= MAX_LEGACY_SERIAL_PORTS) goto next_port; if (index >= old_serial_count) old_serial_count = index + 1; /* Now fill the entry */ memset(&serial_ports[index], 0, sizeof(struct plat_serial8250_port)); serial_ports[index].uartclk = clk ? *clk : BASE_BAUD * 16; serial_ports[index].iobase = reg->address; serial_ports[index].irq = interrupts ? interrupts[0] : 0; serial_ports[index].flags = ASYNC_BOOT_AUTOCONF; DBG("Added legacy port, index: %d, port: %x, irq: %d, clk: %d\n", index, serial_ports[index].iobase, serial_ports[index].irq, serial_ports[index].uartclk); /* Get phys address of IO reg for port 1 */ if (index != 0) goto next_port; pci = of_get_parent(isa); if (!pci) { DBG("%s: no pci parent found\n", np->full_name); goto next_port; } rangesp = (u32 *)get_property(pci, "ranges", &rlen); if (rangesp == NULL) { of_node_put(pci); goto next_port; } rlen /= 4; /* we need the #size-cells of the PCI bridge node itself */ phys_size = 1; sizeprop = (u32 *)get_property(pci, "#size-cells", NULL); if (sizeprop != NULL) phys_size = *sizeprop; /* we need the parent #addr-cells */ addr_size = prom_n_addr_cells(pci); rentsize = 3 + addr_size + phys_size; io_base = 0; for (;rlen >= rentsize; rlen -= rentsize,rangesp += rentsize) { if (((rangesp[0] >> 24) & 0x3) != 1) continue; /* not IO space */ io_base = rangesp[3]; if (addr_size == 2) io_base = (io_base << 32) | rangesp[4]; } if (io_base != 0) { *physport = io_base + reg->address; if (default_speed && spd) *default_speed = *spd; } of_node_put(pci); next_port: of_node_put(isa); } DBG(" <- generic_find_legacy_serial_port()\n"); } static struct platform_device serial_device = { .name = "serial8250", .id = PLAT8250_DEV_PLATFORM, .dev = { .platform_data = serial_ports, }, }; static int __init serial_dev_init(void) { return platform_device_register(&serial_device); } arch_initcall(serial_dev_init); #endif /* CONFIG_PPC_ISERIES */ int check_legacy_ioport(unsigned long base_port) { if (ppc_md.check_legacy_ioport == NULL) return 0; return ppc_md.check_legacy_ioport(base_port); } EXPORT_SYMBOL(check_legacy_ioport); #ifdef CONFIG_XMON static int __init early_xmon(char *p) { /* ensure xmon is enabled */ if (p) { if (strncmp(p, "on", 2) == 0) xmon_init(1); if (strncmp(p, "off", 3) == 0) xmon_init(0); if (strncmp(p, "early", 5) != 0) return 0; } xmon_init(1); debugger(NULL); return 0; } early_param("xmon", early_xmon); #endif void cpu_die(void) { if (ppc_md.cpu_die) ppc_md.cpu_die(); }