/* * arch/s390/kernel/setup.c * * S390 version * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Hartmut Penner (hp@de.ibm.com), * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "arch/i386/kernel/setup.c" * Copyright (C) 1995, Linus Torvalds */ /* * This file handles the architecture-dependent parts of initialization */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include long psw_kernel_bits = (PSW_BASE_BITS | PSW_MASK_DAT | PSW_ASC_PRIMARY | PSW_MASK_MCHECK | PSW_DEFAULT_KEY); long psw_user_bits = (PSW_BASE_BITS | PSW_MASK_DAT | PSW_ASC_HOME | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_DEFAULT_KEY); /* * User copy operations. */ struct uaccess_ops uaccess; EXPORT_SYMBOL(uaccess); /* * Machine setup.. */ unsigned int console_mode = 0; unsigned int console_devno = -1; unsigned int console_irq = -1; unsigned long machine_flags = 0; unsigned long elf_hwcap = 0; char elf_platform[ELF_PLATFORM_SIZE]; struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS]; volatile int __cpu_logical_map[NR_CPUS]; /* logical cpu to cpu address */ static unsigned long __initdata memory_end; /* * This is set up by the setup-routine at boot-time * for S390 need to find out, what we have to setup * using address 0x10400 ... */ #include static struct resource code_resource = { .name = "Kernel code", .flags = IORESOURCE_BUSY | IORESOURCE_MEM, }; static struct resource data_resource = { .name = "Kernel data", .flags = IORESOURCE_BUSY | IORESOURCE_MEM, }; /* * cpu_init() initializes state that is per-CPU. */ void __cpuinit cpu_init(void) { int addr = hard_smp_processor_id(); /* * Store processor id in lowcore (used e.g. in timer_interrupt) */ get_cpu_id(&S390_lowcore.cpu_data.cpu_id); S390_lowcore.cpu_data.cpu_addr = addr; /* * Force FPU initialization: */ clear_thread_flag(TIF_USEDFPU); clear_used_math(); atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; if (current->mm) BUG(); enter_lazy_tlb(&init_mm, current); } /* * VM halt and poweroff setup routines */ char vmhalt_cmd[128] = ""; char vmpoff_cmd[128] = ""; static char vmpanic_cmd[128] = ""; static void strncpy_skip_quote(char *dst, char *src, int n) { int sx, dx; dx = 0; for (sx = 0; src[sx] != 0; sx++) { if (src[sx] == '"') continue; dst[dx++] = src[sx]; if (dx >= n) break; } } static int __init vmhalt_setup(char *str) { strncpy_skip_quote(vmhalt_cmd, str, 127); vmhalt_cmd[127] = 0; return 1; } __setup("vmhalt=", vmhalt_setup); static int __init vmpoff_setup(char *str) { strncpy_skip_quote(vmpoff_cmd, str, 127); vmpoff_cmd[127] = 0; return 1; } __setup("vmpoff=", vmpoff_setup); static int vmpanic_notify(struct notifier_block *self, unsigned long event, void *data) { if (MACHINE_IS_VM && strlen(vmpanic_cmd) > 0) cpcmd(vmpanic_cmd, NULL, 0, NULL); return NOTIFY_OK; } #define PANIC_PRI_VMPANIC 0 static struct notifier_block vmpanic_nb = { .notifier_call = vmpanic_notify, .priority = PANIC_PRI_VMPANIC }; static int __init vmpanic_setup(char *str) { static int register_done __initdata = 0; strncpy_skip_quote(vmpanic_cmd, str, 127); vmpanic_cmd[127] = 0; if (!register_done) { register_done = 1; atomic_notifier_chain_register(&panic_notifier_list, &vmpanic_nb); } return 1; } __setup("vmpanic=", vmpanic_setup); /* * condev= and conmode= setup parameter. */ static int __init condev_setup(char *str) { int vdev; vdev = simple_strtoul(str, &str, 0); if (vdev >= 0 && vdev < 65536) { console_devno = vdev; console_irq = -1; } return 1; } __setup("condev=", condev_setup); static int __init conmode_setup(char *str) { #if defined(CONFIG_SCLP_CONSOLE) if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0) SET_CONSOLE_SCLP; #endif #if defined(CONFIG_TN3215_CONSOLE) if (strncmp(str, "3215", 5) == 0) SET_CONSOLE_3215; #endif #if defined(CONFIG_TN3270_CONSOLE) if (strncmp(str, "3270", 5) == 0) SET_CONSOLE_3270; #endif return 1; } __setup("conmode=", conmode_setup); static void __init conmode_default(void) { char query_buffer[1024]; char *ptr; if (MACHINE_IS_VM) { cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL); console_devno = simple_strtoul(query_buffer + 5, NULL, 16); ptr = strstr(query_buffer, "SUBCHANNEL ="); console_irq = simple_strtoul(ptr + 13, NULL, 16); cpcmd("QUERY TERM", query_buffer, 1024, NULL); ptr = strstr(query_buffer, "CONMODE"); /* * Set the conmode to 3215 so that the device recognition * will set the cu_type of the console to 3215. If the * conmode is 3270 and we don't set it back then both * 3215 and the 3270 driver will try to access the console * device (3215 as console and 3270 as normal tty). */ cpcmd("TERM CONMODE 3215", NULL, 0, NULL); if (ptr == NULL) { #if defined(CONFIG_SCLP_CONSOLE) SET_CONSOLE_SCLP; #endif return; } if (strncmp(ptr + 8, "3270", 4) == 0) { #if defined(CONFIG_TN3270_CONSOLE) SET_CONSOLE_3270; #elif defined(CONFIG_TN3215_CONSOLE) SET_CONSOLE_3215; #elif defined(CONFIG_SCLP_CONSOLE) SET_CONSOLE_SCLP; #endif } else if (strncmp(ptr + 8, "3215", 4) == 0) { #if defined(CONFIG_TN3215_CONSOLE) SET_CONSOLE_3215; #elif defined(CONFIG_TN3270_CONSOLE) SET_CONSOLE_3270; #elif defined(CONFIG_SCLP_CONSOLE) SET_CONSOLE_SCLP; #endif } } else if (MACHINE_IS_P390) { #if defined(CONFIG_TN3215_CONSOLE) SET_CONSOLE_3215; #elif defined(CONFIG_TN3270_CONSOLE) SET_CONSOLE_3270; #endif } else { #if defined(CONFIG_SCLP_CONSOLE) SET_CONSOLE_SCLP; #endif } } #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE) static void __init setup_zfcpdump(unsigned int console_devno) { static char str[64]; if (ipl_info.type != IPL_TYPE_FCP_DUMP) return; if (console_devno != -1) sprintf(str, "cio_ignore=all,!0.0.%04x,!0.0.%04x", ipl_info.data.fcp.dev_id.devno, console_devno); else sprintf(str, "cio_ignore=all,!0.0.%04x", ipl_info.data.fcp.dev_id.devno); strcat(COMMAND_LINE, " "); strcat(COMMAND_LINE, str); console_loglevel = 2; } #else static inline void setup_zfcpdump(unsigned int console_devno) {} #endif /* CONFIG_ZFCPDUMP */ #ifdef CONFIG_SMP void (*_machine_restart)(char *command) = machine_restart_smp; void (*_machine_halt)(void) = machine_halt_smp; void (*_machine_power_off)(void) = machine_power_off_smp; #else /* * Reboot, halt and power_off routines for non SMP. */ static void do_machine_restart_nonsmp(char * __unused) { do_reipl(); } static void do_machine_halt_nonsmp(void) { if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0) __cpcmd(vmhalt_cmd, NULL, 0, NULL); signal_processor(smp_processor_id(), sigp_stop_and_store_status); } static void do_machine_power_off_nonsmp(void) { if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0) __cpcmd(vmpoff_cmd, NULL, 0, NULL); signal_processor(smp_processor_id(), sigp_stop_and_store_status); } void (*_machine_restart)(char *command) = do_machine_restart_nonsmp; void (*_machine_halt)(void) = do_machine_halt_nonsmp; void (*_machine_power_off)(void) = do_machine_power_off_nonsmp; #endif /* * Reboot, halt and power_off stubs. They just call _machine_restart, * _machine_halt or _machine_power_off. */ void machine_restart(char *command) { if ((!in_interrupt() && !in_atomic()) || oops_in_progress) /* * Only unblank the console if we are called in enabled * context or a bust_spinlocks cleared the way for us. */ console_unblank(); _machine_restart(command); } void machine_halt(void) { if (!in_interrupt() || oops_in_progress) /* * Only unblank the console if we are called in enabled * context or a bust_spinlocks cleared the way for us. */ console_unblank(); _machine_halt(); } void machine_power_off(void) { if (!in_interrupt() || oops_in_progress) /* * Only unblank the console if we are called in enabled * context or a bust_spinlocks cleared the way for us. */ console_unblank(); _machine_power_off(); } /* * Dummy power off function. */ void (*pm_power_off)(void) = machine_power_off; static int __init early_parse_mem(char *p) { memory_end = memparse(p, &p); return 0; } early_param("mem", early_parse_mem); /* * "ipldelay=XXX[sm]" sets ipl delay in seconds or minutes */ static int __init early_parse_ipldelay(char *p) { unsigned long delay = 0; delay = simple_strtoul(p, &p, 0); switch (*p) { case 's': case 'S': delay *= 1000000; break; case 'm': case 'M': delay *= 60 * 1000000; } /* now wait for the requested amount of time */ udelay(delay); return 0; } early_param("ipldelay", early_parse_ipldelay); #ifdef CONFIG_S390_SWITCH_AMODE unsigned int switch_amode = 0; EXPORT_SYMBOL_GPL(switch_amode); static void set_amode_and_uaccess(unsigned long user_amode, unsigned long user32_amode) { psw_user_bits = PSW_BASE_BITS | PSW_MASK_DAT | user_amode | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_DEFAULT_KEY; #ifdef CONFIG_COMPAT psw_user32_bits = PSW_BASE32_BITS | PSW_MASK_DAT | user_amode | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_DEFAULT_KEY; psw32_user_bits = PSW32_BASE_BITS | PSW32_MASK_DAT | user32_amode | PSW32_MASK_IO | PSW32_MASK_EXT | PSW32_MASK_MCHECK | PSW32_MASK_PSTATE; #endif psw_kernel_bits = PSW_BASE_BITS | PSW_MASK_DAT | PSW_ASC_HOME | PSW_MASK_MCHECK | PSW_DEFAULT_KEY; if (MACHINE_HAS_MVCOS) { printk("mvcos available.\n"); memcpy(&uaccess, &uaccess_mvcos_switch, sizeof(uaccess)); } else { printk("mvcos not available.\n"); memcpy(&uaccess, &uaccess_pt, sizeof(uaccess)); } } /* * Switch kernel/user addressing modes? */ static int __init early_parse_switch_amode(char *p) { switch_amode = 1; return 0; } early_param("switch_amode", early_parse_switch_amode); #else /* CONFIG_S390_SWITCH_AMODE */ static inline void set_amode_and_uaccess(unsigned long user_amode, unsigned long user32_amode) { } #endif /* CONFIG_S390_SWITCH_AMODE */ #ifdef CONFIG_S390_EXEC_PROTECT unsigned int s390_noexec = 0; EXPORT_SYMBOL_GPL(s390_noexec); /* * Enable execute protection? */ static int __init early_parse_noexec(char *p) { if (!strncmp(p, "off", 3)) return 0; switch_amode = 1; s390_noexec = 1; return 0; } early_param("noexec", early_parse_noexec); #endif /* CONFIG_S390_EXEC_PROTECT */ static void setup_addressing_mode(void) { if (s390_noexec) { printk("S390 execute protection active, "); set_amode_and_uaccess(PSW_ASC_SECONDARY, PSW32_ASC_SECONDARY); } else if (switch_amode) { printk("S390 address spaces switched, "); set_amode_and_uaccess(PSW_ASC_PRIMARY, PSW32_ASC_PRIMARY); } #ifdef CONFIG_TRACE_IRQFLAGS sysc_restore_trace_psw.mask = psw_kernel_bits & ~PSW_MASK_MCHECK; io_restore_trace_psw.mask = psw_kernel_bits & ~PSW_MASK_MCHECK; #endif } static void __init setup_lowcore(void) { struct _lowcore *lc; int lc_pages; /* * Setup lowcore for boot cpu */ lc_pages = sizeof(void *) == 8 ? 2 : 1; lc = (struct _lowcore *) __alloc_bootmem(lc_pages * PAGE_SIZE, lc_pages * PAGE_SIZE, 0); memset(lc, 0, lc_pages * PAGE_SIZE); lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY; lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) restart_int_handler; if (switch_amode) lc->restart_psw.mask |= PSW_ASC_HOME; lc->external_new_psw.mask = psw_kernel_bits; lc->external_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) ext_int_handler; lc->svc_new_psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT; lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call; lc->program_new_psw.mask = psw_kernel_bits; lc->program_new_psw.addr = PSW_ADDR_AMODE | (unsigned long)pgm_check_handler; lc->mcck_new_psw.mask = psw_kernel_bits & ~PSW_MASK_MCHECK & ~PSW_MASK_DAT; lc->mcck_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) mcck_int_handler; lc->io_new_psw.mask = psw_kernel_bits; lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler; lc->ipl_device = S390_lowcore.ipl_device; lc->jiffy_timer = -1LL; lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE; lc->async_stack = (unsigned long) __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE; lc->panic_stack = (unsigned long) __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE; lc->current_task = (unsigned long) init_thread_union.thread_info.task; lc->thread_info = (unsigned long) &init_thread_union; #ifndef CONFIG_64BIT if (MACHINE_HAS_IEEE) { lc->extended_save_area_addr = (__u32) __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0); /* enable extended save area */ __ctl_set_bit(14, 29); } #endif set_prefix((u32)(unsigned long) lc); } static void __init setup_resources(void) { struct resource *res, *sub_res; int i; code_resource.start = (unsigned long) &_text; code_resource.end = (unsigned long) &_etext - 1; data_resource.start = (unsigned long) &_etext; data_resource.end = (unsigned long) &_edata - 1; for (i = 0; i < MEMORY_CHUNKS; i++) { if (!memory_chunk[i].size) continue; res = alloc_bootmem_low(sizeof(struct resource)); res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; switch (memory_chunk[i].type) { case CHUNK_READ_WRITE: res->name = "System RAM"; break; case CHUNK_READ_ONLY: res->name = "System ROM"; res->flags |= IORESOURCE_READONLY; break; default: res->name = "reserved"; } res->start = memory_chunk[i].addr; res->end = memory_chunk[i].addr + memory_chunk[i].size - 1; request_resource(&iomem_resource, res); if (code_resource.start >= res->start && code_resource.start <= res->end && code_resource.end > res->end) { sub_res = alloc_bootmem_low(sizeof(struct resource)); memcpy(sub_res, &code_resource, sizeof(struct resource)); sub_res->end = res->end; code_resource.start = res->end + 1; request_resource(res, sub_res); } if (code_resource.start >= res->start && code_resource.start <= res->end && code_resource.end <= res->end) request_resource(res, &code_resource); if (data_resource.start >= res->start && data_resource.start <= res->end && data_resource.end > res->end) { sub_res = alloc_bootmem_low(sizeof(struct resource)); memcpy(sub_res, &data_resource, sizeof(struct resource)); sub_res->end = res->end; data_resource.start = res->end + 1; request_resource(res, sub_res); } if (data_resource.start >= res->start && data_resource.start <= res->end && data_resource.end <= res->end) request_resource(res, &data_resource); } } unsigned long real_memory_size; EXPORT_SYMBOL_GPL(real_memory_size); static void __init setup_memory_end(void) { unsigned long memory_size; unsigned long max_mem; int i; #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE) if (ipl_info.type == IPL_TYPE_FCP_DUMP) memory_end = ZFCPDUMP_HSA_SIZE; #endif memory_size = 0; memory_end &= PAGE_MASK; max_mem = memory_end ? min(VMALLOC_START, memory_end) : VMALLOC_START; memory_end = min(max_mem, memory_end); /* * Make sure all chunks are MAX_ORDER aligned so we don't need the * extra checks that HOLES_IN_ZONE would require. */ for (i = 0; i < MEMORY_CHUNKS; i++) { unsigned long start, end; struct mem_chunk *chunk; unsigned long align; chunk = &memory_chunk[i]; align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1); start = (chunk->addr + align - 1) & ~(align - 1); end = (chunk->addr + chunk->size) & ~(align - 1); if (start >= end) memset(chunk, 0, sizeof(*chunk)); else { chunk->addr = start; chunk->size = end - start; } } for (i = 0; i < MEMORY_CHUNKS; i++) { struct mem_chunk *chunk = &memory_chunk[i]; real_memory_size = max(real_memory_size, chunk->addr + chunk->size); if (chunk->addr >= max_mem) { memset(chunk, 0, sizeof(*chunk)); continue; } if (chunk->addr + chunk->size > max_mem) chunk->size = max_mem - chunk->addr; memory_size = max(memory_size, chunk->addr + chunk->size); } if (!memory_end) memory_end = memory_size; } static void __init setup_memory(void) { unsigned long bootmap_size; unsigned long start_pfn, end_pfn; int i; /* * partially used pages are not usable - thus * we are rounding upwards: */ start_pfn = PFN_UP(__pa(&_end)); end_pfn = max_pfn = PFN_DOWN(memory_end); #ifdef CONFIG_BLK_DEV_INITRD /* * Move the initrd in case the bitmap of the bootmem allocater * would overwrite it. */ if (INITRD_START && INITRD_SIZE) { unsigned long bmap_size; unsigned long start; bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1); bmap_size = PFN_PHYS(bmap_size); if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) { start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE; if (start + INITRD_SIZE > memory_end) { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)\n" "disabling initrd\n", start + INITRD_SIZE, memory_end); INITRD_START = INITRD_SIZE = 0; } else { printk("Moving initrd (0x%08lx -> 0x%08lx, " "size: %ld)\n", INITRD_START, start, INITRD_SIZE); memmove((void *) start, (void *) INITRD_START, INITRD_SIZE); INITRD_START = start; } } } #endif /* * Initialize the boot-time allocator */ bootmap_size = init_bootmem(start_pfn, end_pfn); /* * Register RAM areas with the bootmem allocator. */ for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) { unsigned long start_chunk, end_chunk, pfn; if (memory_chunk[i].type != CHUNK_READ_WRITE) continue; start_chunk = PFN_DOWN(memory_chunk[i].addr); end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size) - 1; end_chunk = min(end_chunk, end_pfn); if (start_chunk >= end_chunk) continue; add_active_range(0, start_chunk, end_chunk); pfn = max(start_chunk, start_pfn); for (; pfn <= end_chunk; pfn++) page_set_storage_key(PFN_PHYS(pfn), PAGE_DEFAULT_KEY); } psw_set_key(PAGE_DEFAULT_KEY); free_bootmem_with_active_regions(0, max_pfn); /* * Reserve memory used for lowcore/command line/kernel image. */ reserve_bootmem(0, (unsigned long)_ehead); reserve_bootmem((unsigned long)_stext, PFN_PHYS(start_pfn) - (unsigned long)_stext); /* * Reserve the bootmem bitmap itself as well. We do this in two * steps (first step was init_bootmem()) because this catches * the (very unlikely) case of us accidentally initializing the * bootmem allocator with an invalid RAM area. */ reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size); #ifdef CONFIG_BLK_DEV_INITRD if (INITRD_START && INITRD_SIZE) { if (INITRD_START + INITRD_SIZE <= memory_end) { reserve_bootmem(INITRD_START, INITRD_SIZE); initrd_start = INITRD_START; initrd_end = initrd_start + INITRD_SIZE; } else { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)\ndisabling initrd\n", initrd_start + INITRD_SIZE, memory_end); initrd_start = initrd_end = 0; } } #endif } static __init unsigned int stfl(void) { asm volatile( " .insn s,0xb2b10000,0(0)\n" /* stfl */ "0:\n" EX_TABLE(0b,0b)); return S390_lowcore.stfl_fac_list; } static __init int stfle(unsigned long long *list, int doublewords) { typedef struct { unsigned long long _[doublewords]; } addrtype; register unsigned long __nr asm("0") = doublewords - 1; asm volatile(".insn s,0xb2b00000,%0" /* stfle */ : "=m" (*(addrtype *) list), "+d" (__nr) : : "cc"); return __nr + 1; } /* * Setup hardware capabilities. */ static void __init setup_hwcaps(void) { static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 }; struct cpuinfo_S390 *cpuinfo = &S390_lowcore.cpu_data; unsigned long long facility_list_extended; unsigned int facility_list; int i; facility_list = stfl(); /* * The store facility list bits numbers as found in the principles * of operation are numbered with bit 1UL<<31 as number 0 to * bit 1UL<<0 as number 31. * Bit 0: instructions named N3, "backported" to esa-mode * Bit 2: z/Architecture mode is active * Bit 7: the store-facility-list-extended facility is installed * Bit 17: the message-security assist is installed * Bit 19: the long-displacement facility is installed * Bit 21: the extended-immediate facility is installed * These get translated to: * HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1, * HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3, * HWCAP_S390_LDISP bit 4, and HWCAP_S390_EIMM bit 5. */ for (i = 0; i < 6; i++) if (facility_list & (1UL << (31 - stfl_bits[i]))) elf_hwcap |= 1UL << i; /* * Check for additional facilities with store-facility-list-extended. * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0 * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information * as stored by stfl, bits 32-xxx contain additional facilities. * How many facility words are stored depends on the number of * doublewords passed to the instruction. The additional facilites * are: * Bit 43: decimal floating point facility is installed * translated to: * HWCAP_S390_DFP bit 6. */ if ((elf_hwcap & (1UL << 2)) && stfle(&facility_list_extended, 1) > 0) { if (facility_list_extended & (1ULL << (64 - 43))) elf_hwcap |= 1UL << 6; } switch (cpuinfo->cpu_id.machine) { case 0x9672: #if !defined(CONFIG_64BIT) default: /* Use "g5" as default for 31 bit kernels. */ #endif strcpy(elf_platform, "g5"); break; case 0x2064: case 0x2066: #if defined(CONFIG_64BIT) default: /* Use "z900" as default for 64 bit kernels. */ #endif strcpy(elf_platform, "z900"); break; case 0x2084: case 0x2086: strcpy(elf_platform, "z990"); break; case 0x2094: strcpy(elf_platform, "z9-109"); break; } } /* * Setup function called from init/main.c just after the banner * was printed. */ void __init setup_arch(char **cmdline_p) { /* * print what head.S has found out about the machine */ #ifndef CONFIG_64BIT printk((MACHINE_IS_VM) ? "We are running under VM (31 bit mode)\n" : "We are running native (31 bit mode)\n"); printk((MACHINE_HAS_IEEE) ? "This machine has an IEEE fpu\n" : "This machine has no IEEE fpu\n"); #else /* CONFIG_64BIT */ printk((MACHINE_IS_VM) ? "We are running under VM (64 bit mode)\n" : "We are running native (64 bit mode)\n"); #endif /* CONFIG_64BIT */ /* Save unparsed command line copy for /proc/cmdline */ strlcpy(boot_command_line, COMMAND_LINE, COMMAND_LINE_SIZE); *cmdline_p = COMMAND_LINE; *(*cmdline_p + COMMAND_LINE_SIZE - 1) = '\0'; ROOT_DEV = Root_RAM0; init_mm.start_code = PAGE_OFFSET; init_mm.end_code = (unsigned long) &_etext; init_mm.end_data = (unsigned long) &_edata; init_mm.brk = (unsigned long) &_end; if (MACHINE_HAS_MVCOS) memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess)); else memcpy(&uaccess, &uaccess_std, sizeof(uaccess)); parse_early_param(); setup_ipl_info(); setup_memory_end(); setup_addressing_mode(); setup_memory(); setup_resources(); setup_lowcore(); cpu_init(); __cpu_logical_map[0] = S390_lowcore.cpu_data.cpu_addr; smp_setup_cpu_possible_map(); /* * Setup capabilities (ELF_HWCAP & ELF_PLATFORM). */ setup_hwcaps(); /* * Create kernel page tables and switch to virtual addressing. */ paging_init(); /* Setup default console */ conmode_default(); /* Setup zfcpdump support */ setup_zfcpdump(console_devno); } void __cpuinit print_cpu_info(struct cpuinfo_S390 *cpuinfo) { printk(KERN_INFO "cpu %d " #ifdef CONFIG_SMP "phys_idx=%d " #endif "vers=%02X ident=%06X machine=%04X unused=%04X\n", cpuinfo->cpu_nr, #ifdef CONFIG_SMP cpuinfo->cpu_addr, #endif cpuinfo->cpu_id.version, cpuinfo->cpu_id.ident, cpuinfo->cpu_id.machine, cpuinfo->cpu_id.unused); } /* * show_cpuinfo - Get information on one CPU for use by procfs. */ static int show_cpuinfo(struct seq_file *m, void *v) { static const char *hwcap_str[7] = { "esan3", "zarch", "stfle", "msa", "ldisp", "eimm", "dfp" }; struct cpuinfo_S390 *cpuinfo; unsigned long n = (unsigned long) v - 1; int i; s390_adjust_jiffies(); preempt_disable(); if (!n) { seq_printf(m, "vendor_id : IBM/S390\n" "# processors : %i\n" "bogomips per cpu: %lu.%02lu\n", num_online_cpus(), loops_per_jiffy/(500000/HZ), (loops_per_jiffy/(5000/HZ))%100); seq_puts(m, "features\t: "); for (i = 0; i < 7; i++) if (hwcap_str[i] && (elf_hwcap & (1UL << i))) seq_printf(m, "%s ", hwcap_str[i]); seq_puts(m, "\n"); } if (cpu_online(n)) { #ifdef CONFIG_SMP if (smp_processor_id() == n) cpuinfo = &S390_lowcore.cpu_data; else cpuinfo = &lowcore_ptr[n]->cpu_data; #else cpuinfo = &S390_lowcore.cpu_data; #endif seq_printf(m, "processor %li: " "version = %02X, " "identification = %06X, " "machine = %04X\n", n, cpuinfo->cpu_id.version, cpuinfo->cpu_id.ident, cpuinfo->cpu_id.machine); } preempt_enable(); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < NR_CPUS ? (void *)((unsigned long) *pos + 1) : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, };