/* arch/sparc64/kernel/kprobes.c * * Copyright (C) 2004 David S. Miller */ #include #include #include #include #include /* We do not have hardware single-stepping on sparc64. * So we implement software single-stepping with breakpoint * traps. The top-level scheme is similar to that used * in the x86 kprobes implementation. * * In the kprobe->ainsn.insn[] array we store the original * instruction at index zero and a break instruction at * index one. * * When we hit a kprobe we: * - Run the pre-handler * - Remember "regs->tnpc" and interrupt level stored in * "regs->tstate" so we can restore them later * - Disable PIL interrupts * - Set regs->tpc to point to kprobe->ainsn.insn[0] * - Set regs->tnpc to point to kprobe->ainsn.insn[1] * - Mark that we are actively in a kprobe * * At this point we wait for the second breakpoint at * kprobe->ainsn.insn[1] to hit. When it does we: * - Run the post-handler * - Set regs->tpc to "remembered" regs->tnpc stored above, * restore the PIL interrupt level in "regs->tstate" as well * - Make any adjustments necessary to regs->tnpc in order * to handle relative branches correctly. See below. * - Mark that we are no longer actively in a kprobe. */ int arch_prepare_kprobe(struct kprobe *p) { return 0; } void arch_copy_kprobe(struct kprobe *p) { p->ainsn.insn[0] = *p->addr; p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2; p->opcode = *p->addr; } void arch_arm_kprobe(struct kprobe *p) { *p->addr = BREAKPOINT_INSTRUCTION; flushi(p->addr); } void arch_disarm_kprobe(struct kprobe *p) { *p->addr = p->opcode; flushi(p->addr); } void arch_remove_kprobe(struct kprobe *p) { } /* kprobe_status settings */ #define KPROBE_HIT_ACTIVE 0x00000001 #define KPROBE_HIT_SS 0x00000002 static struct kprobe *current_kprobe; static unsigned long current_kprobe_orig_tnpc; static unsigned long current_kprobe_orig_tstate_pil; static unsigned int kprobe_status; static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) { current_kprobe_orig_tnpc = regs->tnpc; current_kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL); regs->tstate |= TSTATE_PIL; /*single step inline, if it a breakpoint instruction*/ if (p->opcode == BREAKPOINT_INSTRUCTION) { regs->tpc = (unsigned long) p->addr; regs->tnpc = current_kprobe_orig_tnpc; } else { regs->tpc = (unsigned long) &p->ainsn.insn[0]; regs->tnpc = (unsigned long) &p->ainsn.insn[1]; } } static int kprobe_handler(struct pt_regs *regs) { struct kprobe *p; void *addr = (void *) regs->tpc; int ret = 0; preempt_disable(); if (kprobe_running()) { /* We *are* holding lock here, so this is safe. * Disarm the probe we just hit, and ignore it. */ p = get_kprobe(addr); if (p) { if (kprobe_status == KPROBE_HIT_SS) { regs->tstate = ((regs->tstate & ~TSTATE_PIL) | current_kprobe_orig_tstate_pil); unlock_kprobes(); goto no_kprobe; } arch_disarm_kprobe(p); regs->tpc = (unsigned long) p->addr; regs->tnpc = current_kprobe_orig_tnpc; regs->tstate = ((regs->tstate & ~TSTATE_PIL) | current_kprobe_orig_tstate_pil); ret = 1; } else { p = current_kprobe; if (p->break_handler && p->break_handler(p, regs)) goto ss_probe; } /* If it's not ours, can't be delete race, (we hold lock). */ goto no_kprobe; } lock_kprobes(); p = get_kprobe(addr); if (!p) { unlock_kprobes(); if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. */ ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } kprobe_status = KPROBE_HIT_ACTIVE; current_kprobe = p; if (p->pre_handler && p->pre_handler(p, regs)) return 1; ss_probe: prepare_singlestep(p, regs); kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } /* If INSN is a relative control transfer instruction, * return the corrected branch destination value. * * The original INSN location was REAL_PC, it actually * executed at PC and produced destination address NPC. */ static unsigned long relbranch_fixup(u32 insn, unsigned long real_pc, unsigned long pc, unsigned long npc) { /* Branch not taken, no mods necessary. */ if (npc == pc + 0x4UL) return real_pc + 0x4UL; /* The three cases are call, branch w/prediction, * and traditional branch. */ if ((insn & 0xc0000000) == 0x40000000 || (insn & 0xc1c00000) == 0x00400000 || (insn & 0xc1c00000) == 0x00800000) { /* The instruction did all the work for us * already, just apply the offset to the correct * instruction location. */ return (real_pc + (npc - pc)); } return real_pc + 0x4UL; } /* If INSN is an instruction which writes it's PC location * into a destination register, fix that up. */ static void retpc_fixup(struct pt_regs *regs, u32 insn, unsigned long real_pc) { unsigned long *slot = NULL; /* Simplest cast is call, which always uses %o7 */ if ((insn & 0xc0000000) == 0x40000000) { slot = ®s->u_regs[UREG_I7]; } /* Jmpl encodes the register inside of the opcode */ if ((insn & 0xc1f80000) == 0x81c00000) { unsigned long rd = ((insn >> 25) & 0x1f); if (rd <= 15) { slot = ®s->u_regs[rd]; } else { /* Hard case, it goes onto the stack. */ flushw_all(); rd -= 16; slot = (unsigned long *) (regs->u_regs[UREG_FP] + STACK_BIAS); slot += rd; } } if (slot != NULL) *slot = real_pc; } /* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the breakpoint * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. * * This function prepares to return from the post-single-step * breakpoint trap. */ static void resume_execution(struct kprobe *p, struct pt_regs *regs) { u32 insn = p->ainsn.insn[0]; regs->tpc = current_kprobe_orig_tnpc; regs->tnpc = relbranch_fixup(insn, (unsigned long) p->addr, (unsigned long) &p->ainsn.insn[0], regs->tnpc); retpc_fixup(regs, insn, (unsigned long) p->addr); regs->tstate = ((regs->tstate & ~TSTATE_PIL) | current_kprobe_orig_tstate_pil); } static inline int post_kprobe_handler(struct pt_regs *regs) { if (!kprobe_running()) return 0; if (current_kprobe->post_handler) current_kprobe->post_handler(current_kprobe, regs, 0); resume_execution(current_kprobe, regs); unlock_kprobes(); preempt_enable_no_resched(); return 1; } /* Interrupts disabled, kprobe_lock held. */ static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { if (current_kprobe->fault_handler && current_kprobe->fault_handler(current_kprobe, regs, trapnr)) return 1; if (kprobe_status & KPROBE_HIT_SS) { resume_execution(current_kprobe, regs); unlock_kprobes(); preempt_enable_no_resched(); } return 0; } /* * Wrapper routine to for handling exceptions. */ int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; switch (val) { case DIE_DEBUG: if (kprobe_handler(args->regs)) return NOTIFY_STOP; break; case DIE_DEBUG_2: if (post_kprobe_handler(args->regs)) return NOTIFY_STOP; break; case DIE_GPF: if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) return NOTIFY_STOP; break; case DIE_PAGE_FAULT: if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) return NOTIFY_STOP; break; default: break; } return NOTIFY_DONE; } asmlinkage void kprobe_trap(unsigned long trap_level, struct pt_regs *regs) { BUG_ON(trap_level != 0x170 && trap_level != 0x171); if (user_mode(regs)) { local_irq_enable(); bad_trap(regs, trap_level); return; } /* trap_level == 0x170 --> ta 0x70 * trap_level == 0x171 --> ta 0x71 */ if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2, (trap_level == 0x170) ? "debug" : "debug_2", regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) bad_trap(regs, trap_level); } /* Jprobes support. */ static struct pt_regs jprobe_saved_regs; static struct pt_regs *jprobe_saved_regs_location; static struct sparc_stackf jprobe_saved_stack; int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct jprobe *jp = container_of(p, struct jprobe, kp); jprobe_saved_regs_location = regs; memcpy(&jprobe_saved_regs, regs, sizeof(*regs)); /* Save a whole stack frame, this gets arguments * pushed onto the stack after using up all the * arg registers. */ memcpy(&jprobe_saved_stack, (char *) (regs->u_regs[UREG_FP] + STACK_BIAS), sizeof(jprobe_saved_stack)); regs->tpc = (unsigned long) jp->entry; regs->tnpc = ((unsigned long) jp->entry) + 0x4UL; regs->tstate |= TSTATE_PIL; return 1; } void jprobe_return(void) { preempt_enable_no_resched(); __asm__ __volatile__( ".globl jprobe_return_trap_instruction\n" "jprobe_return_trap_instruction:\n\t" "ta 0x70"); } extern void jprobe_return_trap_instruction(void); extern void __show_regs(struct pt_regs * regs); int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) { u32 *addr = (u32 *) regs->tpc; if (addr == (u32 *) jprobe_return_trap_instruction) { if (jprobe_saved_regs_location != regs) { printk("JPROBE: Current regs (%p) does not match " "saved regs (%p).\n", regs, jprobe_saved_regs_location); printk("JPROBE: Saved registers\n"); __show_regs(jprobe_saved_regs_location); printk("JPROBE: Current registers\n"); __show_regs(regs); BUG(); } /* Restore old register state. Do pt_regs * first so that UREG_FP is the original one for * the stack frame restore. */ memcpy(regs, &jprobe_saved_regs, sizeof(*regs)); memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS), &jprobe_saved_stack, sizeof(jprobe_saved_stack)); return 1; } return 0; }