/* smp.c: Sparc64 SMP support. * * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void calibrate_delay(void); /* Please don't make this stuff initdata!!! --DaveM */ static unsigned char boot_cpu_id; cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE; cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE; static cpumask_t smp_commenced_mask; static cpumask_t cpu_callout_map; void smp_info(struct seq_file *m) { int i; seq_printf(m, "State:\n"); for (i = 0; i < NR_CPUS; i++) { if (cpu_online(i)) seq_printf(m, "CPU%d:\t\tonline\n", i); } } void smp_bogo(struct seq_file *m) { int i; for (i = 0; i < NR_CPUS; i++) if (cpu_online(i)) seq_printf(m, "Cpu%dBogo\t: %lu.%02lu\n" "Cpu%dClkTck\t: %016lx\n", i, cpu_data(i).udelay_val / (500000/HZ), (cpu_data(i).udelay_val / (5000/HZ)) % 100, i, cpu_data(i).clock_tick); } void __init smp_store_cpu_info(int id) { int cpu_node, def; /* multiplier and counter set by smp_setup_percpu_timer() */ cpu_data(id).udelay_val = loops_per_jiffy; cpu_find_by_mid(id, &cpu_node); cpu_data(id).clock_tick = prom_getintdefault(cpu_node, "clock-frequency", 0); def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024)); cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size", def); def = 32; cpu_data(id).dcache_line_size = prom_getintdefault(cpu_node, "dcache-line-size", def); def = 16 * 1024; cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size", def); def = 32; cpu_data(id).icache_line_size = prom_getintdefault(cpu_node, "icache-line-size", def); def = ((tlb_type == hypervisor) ? (3 * 1024 * 1024) : (4 * 1024 * 1024)); cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size", def); def = 64; cpu_data(id).ecache_line_size = prom_getintdefault(cpu_node, "ecache-line-size", def); printk("CPU[%d]: Caches " "D[sz(%d):line_sz(%d)] " "I[sz(%d):line_sz(%d)] " "E[sz(%d):line_sz(%d)]\n", id, cpu_data(id).dcache_size, cpu_data(id).dcache_line_size, cpu_data(id).icache_size, cpu_data(id).icache_line_size, cpu_data(id).ecache_size, cpu_data(id).ecache_line_size); } static void smp_setup_percpu_timer(void); static volatile unsigned long callin_flag = 0; void __init smp_callin(void) { int cpuid = hard_smp_processor_id(); __local_per_cpu_offset = __per_cpu_offset(cpuid); if (tlb_type == hypervisor) sun4v_ktsb_register(); __flush_tlb_all(); smp_setup_percpu_timer(); if (cheetah_pcache_forced_on) cheetah_enable_pcache(); local_irq_enable(); calibrate_delay(); smp_store_cpu_info(cpuid); callin_flag = 1; __asm__ __volatile__("membar #Sync\n\t" "flush %%g6" : : : "memory"); /* Clear this or we will die instantly when we * schedule back to this idler... */ current_thread_info()->new_child = 0; /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; while (!cpu_isset(cpuid, smp_commenced_mask)) rmb(); cpu_set(cpuid, cpu_online_map); /* idle thread is expected to have preempt disabled */ preempt_disable(); } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } static unsigned long current_tick_offset __read_mostly; /* This tick register synchronization scheme is taken entirely from * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. * * The only change I've made is to rework it so that the master * initiates the synchonization instead of the slave. -DaveM */ #define MASTER 0 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) #define NUM_ROUNDS 64 /* magic value */ #define NUM_ITERS 5 /* likewise */ static DEFINE_SPINLOCK(itc_sync_lock); static unsigned long go[SLAVE + 1]; #define DEBUG_TICK_SYNC 0 static inline long get_delta (long *rt, long *master) { unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; unsigned long tcenter, t0, t1, tm; unsigned long i; for (i = 0; i < NUM_ITERS; i++) { t0 = tick_ops->get_tick(); go[MASTER] = 1; membar_storeload(); while (!(tm = go[SLAVE])) rmb(); go[SLAVE] = 0; wmb(); t1 = tick_ops->get_tick(); if (t1 - t0 < best_t1 - best_t0) best_t0 = t0, best_t1 = t1, best_tm = tm; } *rt = best_t1 - best_t0; *master = best_tm - best_t0; /* average best_t0 and best_t1 without overflow: */ tcenter = (best_t0/2 + best_t1/2); if (best_t0 % 2 + best_t1 % 2 == 2) tcenter++; return tcenter - best_tm; } void smp_synchronize_tick_client(void) { long i, delta, adj, adjust_latency = 0, done = 0; unsigned long flags, rt, master_time_stamp, bound; #if DEBUG_TICK_SYNC struct { long rt; /* roundtrip time */ long master; /* master's timestamp */ long diff; /* difference between midpoint and master's timestamp */ long lat; /* estimate of itc adjustment latency */ } t[NUM_ROUNDS]; #endif go[MASTER] = 1; while (go[MASTER]) rmb(); local_irq_save(flags); { for (i = 0; i < NUM_ROUNDS; i++) { delta = get_delta(&rt, &master_time_stamp); if (delta == 0) { done = 1; /* let's lock on to this... */ bound = rt; } if (!done) { if (i > 0) { adjust_latency += -delta; adj = -delta + adjust_latency/4; } else adj = -delta; tick_ops->add_tick(adj, current_tick_offset); } #if DEBUG_TICK_SYNC t[i].rt = rt; t[i].master = master_time_stamp; t[i].diff = delta; t[i].lat = adjust_latency/4; #endif } } local_irq_restore(flags); #if DEBUG_TICK_SYNC for (i = 0; i < NUM_ROUNDS; i++) printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", t[i].rt, t[i].master, t[i].diff, t[i].lat); #endif printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles," "maxerr %lu cycles)\n", smp_processor_id(), delta, rt); } static void smp_start_sync_tick_client(int cpu); static void smp_synchronize_one_tick(int cpu) { unsigned long flags, i; go[MASTER] = 0; smp_start_sync_tick_client(cpu); /* wait for client to be ready */ while (!go[MASTER]) rmb(); /* now let the client proceed into his loop */ go[MASTER] = 0; membar_storeload(); spin_lock_irqsave(&itc_sync_lock, flags); { for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { while (!go[MASTER]) rmb(); go[MASTER] = 0; wmb(); go[SLAVE] = tick_ops->get_tick(); membar_storeload(); } } spin_unlock_irqrestore(&itc_sync_lock, flags); } extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load); extern unsigned long sparc64_cpu_startup; /* The OBP cpu startup callback truncates the 3rd arg cookie to * 32-bits (I think) so to be safe we have it read the pointer * contained here so we work on >4GB machines. -DaveM */ static struct thread_info *cpu_new_thread = NULL; static int __devinit smp_boot_one_cpu(unsigned int cpu) { unsigned long entry = (unsigned long)(&sparc64_cpu_startup); unsigned long cookie = (unsigned long)(&cpu_new_thread); struct task_struct *p; int timeout, ret; p = fork_idle(cpu); callin_flag = 0; cpu_new_thread = task_thread_info(p); cpu_set(cpu, cpu_callout_map); if (tlb_type == hypervisor) { /* Alloc the mondo queues, cpu will load them. */ sun4v_init_mondo_queues(0, cpu, 1, 0); prom_startcpu_cpuid(cpu, entry, cookie); } else { int cpu_node; cpu_find_by_mid(cpu, &cpu_node); prom_startcpu(cpu_node, entry, cookie); } for (timeout = 0; timeout < 5000000; timeout++) { if (callin_flag) break; udelay(100); } if (callin_flag) { ret = 0; } else { printk("Processor %d is stuck.\n", cpu); cpu_clear(cpu, cpu_callout_map); ret = -ENODEV; } cpu_new_thread = NULL; return ret; } static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) { u64 result, target; int stuck, tmp; if (this_is_starfire) { /* map to real upaid */ cpu = (((cpu & 0x3c) << 1) | ((cpu & 0x40) >> 4) | (cpu & 0x3)); } target = (cpu << 14) | 0x70; again: /* Ok, this is the real Spitfire Errata #54. * One must read back from a UDB internal register * after writes to the UDB interrupt dispatch, but * before the membar Sync for that write. * So we use the high UDB control register (ASI 0x7f, * ADDR 0x20) for the dummy read. -DaveM */ tmp = 0x40; __asm__ __volatile__( "wrpr %1, %2, %%pstate\n\t" "stxa %4, [%0] %3\n\t" "stxa %5, [%0+%8] %3\n\t" "add %0, %8, %0\n\t" "stxa %6, [%0+%8] %3\n\t" "membar #Sync\n\t" "stxa %%g0, [%7] %3\n\t" "membar #Sync\n\t" "mov 0x20, %%g1\n\t" "ldxa [%%g1] 0x7f, %%g0\n\t" "membar #Sync" : "=r" (tmp) : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), "r" (data0), "r" (data1), "r" (data2), "r" (target), "r" (0x10), "0" (tmp) : "g1"); /* NOTE: PSTATE_IE is still clear. */ stuck = 100000; do { __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (result) : "i" (ASI_INTR_DISPATCH_STAT)); if (result == 0) { __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); return; } stuck -= 1; if (stuck == 0) break; } while (result & 0x1); __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); if (stuck == 0) { printk("CPU[%d]: mondo stuckage result[%016lx]\n", smp_processor_id(), result); } else { udelay(2); goto again; } } static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) { u64 pstate; int i; __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); for_each_cpu_mask(i, mask) spitfire_xcall_helper(data0, data1, data2, pstate, i); } /* Cheetah now allows to send the whole 64-bytes of data in the interrupt * packet, but we have no use for that. However we do take advantage of * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). */ static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) { u64 pstate, ver; int nack_busy_id, is_jbus; if (cpus_empty(mask)) return; /* Unfortunately, someone at Sun had the brilliant idea to make the * busy/nack fields hard-coded by ITID number for this Ultra-III * derivative processor. */ __asm__ ("rdpr %%ver, %0" : "=r" (ver)); is_jbus = ((ver >> 32) == __JALAPENO_ID || (ver >> 32) == __SERRANO_ID); __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); retry: __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" : : "r" (pstate), "i" (PSTATE_IE)); /* Setup the dispatch data registers. */ __asm__ __volatile__("stxa %0, [%3] %6\n\t" "stxa %1, [%4] %6\n\t" "stxa %2, [%5] %6\n\t" "membar #Sync\n\t" : /* no outputs */ : "r" (data0), "r" (data1), "r" (data2), "r" (0x40), "r" (0x50), "r" (0x60), "i" (ASI_INTR_W)); nack_busy_id = 0; { int i; for_each_cpu_mask(i, mask) { u64 target = (i << 14) | 0x70; if (!is_jbus) target |= (nack_busy_id << 24); __asm__ __volatile__( "stxa %%g0, [%0] %1\n\t" "membar #Sync\n\t" : /* no outputs */ : "r" (target), "i" (ASI_INTR_W)); nack_busy_id++; } } /* Now, poll for completion. */ { u64 dispatch_stat; long stuck; stuck = 100000 * nack_busy_id; do { __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (dispatch_stat) : "i" (ASI_INTR_DISPATCH_STAT)); if (dispatch_stat == 0UL) { __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); return; } if (!--stuck) break; } while (dispatch_stat & 0x5555555555555555UL); __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) { /* Busy bits will not clear, continue instead * of freezing up on this cpu. */ printk("CPU[%d]: mondo stuckage result[%016lx]\n", smp_processor_id(), dispatch_stat); } else { int i, this_busy_nack = 0; /* Delay some random time with interrupts enabled * to prevent deadlock. */ udelay(2 * nack_busy_id); /* Clear out the mask bits for cpus which did not * NACK us. */ for_each_cpu_mask(i, mask) { u64 check_mask; if (is_jbus) check_mask = (0x2UL << (2*i)); else check_mask = (0x2UL << this_busy_nack); if ((dispatch_stat & check_mask) == 0) cpu_clear(i, mask); this_busy_nack += 2; } goto retry; } } } /* Multi-cpu list version. */ static int init_cpu_list(u16 *list, cpumask_t mask) { int i, cnt; cnt = 0; for_each_cpu_mask(i, mask) list[cnt++] = i; return cnt; } static int update_cpu_list(u16 *list, int orig_cnt, cpumask_t mask) { int i; for (i = 0; i < orig_cnt; i++) { if (list[i] == 0xffff) cpu_clear(i, mask); } return init_cpu_list(list, mask); } static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) { int this_cpu = get_cpu(); struct trap_per_cpu *tb = &trap_block[this_cpu]; u64 *mondo = __va(tb->cpu_mondo_block_pa); u16 *cpu_list = __va(tb->cpu_list_pa); int cnt, retries; mondo[0] = data0; mondo[1] = data1; mondo[2] = data2; wmb(); retries = 0; cnt = init_cpu_list(cpu_list, mask); do { register unsigned long func __asm__("%o5"); register unsigned long arg0 __asm__("%o0"); register unsigned long arg1 __asm__("%o1"); register unsigned long arg2 __asm__("%o2"); func = HV_FAST_CPU_MONDO_SEND; arg0 = cnt; arg1 = tb->cpu_list_pa; arg2 = tb->cpu_mondo_block_pa; __asm__ __volatile__("ta %8" : "=&r" (func), "=&r" (arg0), "=&r" (arg1), "=&r" (arg2) : "0" (func), "1" (arg0), "2" (arg1), "3" (arg2), "i" (HV_FAST_TRAP) : "memory"); if (likely(arg0 == HV_EOK)) break; if (unlikely(++retries > 100)) { printk("CPU[%d]: sun4v mondo error %lu\n", this_cpu, func); break; } cnt = update_cpu_list(cpu_list, cnt, mask); udelay(2 * cnt); } while (1); put_cpu(); } /* Send cross call to all processors mentioned in MASK * except self. */ static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask) { u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); int this_cpu = get_cpu(); cpus_and(mask, mask, cpu_online_map); cpu_clear(this_cpu, mask); if (tlb_type == spitfire) spitfire_xcall_deliver(data0, data1, data2, mask); else if (tlb_type == cheetah || tlb_type == cheetah_plus) cheetah_xcall_deliver(data0, data1, data2, mask); else hypervisor_xcall_deliver(data0, data1, data2, mask); /* NOTE: Caller runs local copy on master. */ put_cpu(); } extern unsigned long xcall_sync_tick; static void smp_start_sync_tick_client(int cpu) { cpumask_t mask = cpumask_of_cpu(cpu); smp_cross_call_masked(&xcall_sync_tick, 0, 0, 0, mask); } /* Send cross call to all processors except self. */ #define smp_cross_call(func, ctx, data1, data2) \ smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map) struct call_data_struct { void (*func) (void *info); void *info; atomic_t finished; int wait; }; static DEFINE_SPINLOCK(call_lock); static struct call_data_struct *call_data; extern unsigned long xcall_call_function; /* * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ static int smp_call_function_mask(void (*func)(void *info), void *info, int nonatomic, int wait, cpumask_t mask) { struct call_data_struct data; int cpus = cpus_weight(mask) - 1; long timeout; if (!cpus) return 0; /* Can deadlock when called with interrupts disabled */ WARN_ON(irqs_disabled()); data.func = func; data.info = info; atomic_set(&data.finished, 0); data.wait = wait; spin_lock(&call_lock); call_data = &data; smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask); /* * Wait for other cpus to complete function or at * least snap the call data. */ timeout = 1000000; while (atomic_read(&data.finished) != cpus) { if (--timeout <= 0) goto out_timeout; barrier(); udelay(1); } spin_unlock(&call_lock); return 0; out_timeout: spin_unlock(&call_lock); printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n", (long) num_online_cpus() - 1L, (long) atomic_read(&data.finished)); return 0; } int smp_call_function(void (*func)(void *info), void *info, int nonatomic, int wait) { return smp_call_function_mask(func, info, nonatomic, wait, cpu_online_map); } void smp_call_function_client(int irq, struct pt_regs *regs) { void (*func) (void *info) = call_data->func; void *info = call_data->info; clear_softint(1 << irq); if (call_data->wait) { /* let initiator proceed only after completion */ func(info); atomic_inc(&call_data->finished); } else { /* let initiator proceed after getting data */ atomic_inc(&call_data->finished); func(info); } } static void tsb_sync(void *info) { struct mm_struct *mm = info; if (current->active_mm == mm) tsb_context_switch(mm); } void smp_tsb_sync(struct mm_struct *mm) { smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask); } extern unsigned long xcall_flush_tlb_mm; extern unsigned long xcall_flush_tlb_pending; extern unsigned long xcall_flush_tlb_kernel_range; extern unsigned long xcall_report_regs; extern unsigned long xcall_receive_signal; #ifdef DCACHE_ALIASING_POSSIBLE extern unsigned long xcall_flush_dcache_page_cheetah; #endif extern unsigned long xcall_flush_dcache_page_spitfire; #ifdef CONFIG_DEBUG_DCFLUSH extern atomic_t dcpage_flushes; extern atomic_t dcpage_flushes_xcall; #endif static __inline__ void __local_flush_dcache_page(struct page *page) { #ifdef DCACHE_ALIASING_POSSIBLE __flush_dcache_page(page_address(page), ((tlb_type == spitfire) && page_mapping(page) != NULL)); #else if (page_mapping(page) != NULL && tlb_type == spitfire) __flush_icache_page(__pa(page_address(page))); #endif } void smp_flush_dcache_page_impl(struct page *page, int cpu) { cpumask_t mask = cpumask_of_cpu(cpu); int this_cpu; if (tlb_type == hypervisor) return; #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes); #endif this_cpu = get_cpu(); if (cpu == this_cpu) { __local_flush_dcache_page(page); } else if (cpu_online(cpu)) { void *pg_addr = page_address(page); u64 data0; if (tlb_type == spitfire) { data0 = ((u64)&xcall_flush_dcache_page_spitfire); if (page_mapping(page) != NULL) data0 |= ((u64)1 << 32); spitfire_xcall_deliver(data0, __pa(pg_addr), (u64) pg_addr, mask); } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { #ifdef DCACHE_ALIASING_POSSIBLE data0 = ((u64)&xcall_flush_dcache_page_cheetah); cheetah_xcall_deliver(data0, __pa(pg_addr), 0, mask); #endif } #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes_xcall); #endif } put_cpu(); } void flush_dcache_page_all(struct mm_struct *mm, struct page *page) { void *pg_addr = page_address(page); cpumask_t mask = cpu_online_map; u64 data0; int this_cpu; if (tlb_type == hypervisor) return; this_cpu = get_cpu(); cpu_clear(this_cpu, mask); #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes); #endif if (cpus_empty(mask)) goto flush_self; if (tlb_type == spitfire) { data0 = ((u64)&xcall_flush_dcache_page_spitfire); if (page_mapping(page) != NULL) data0 |= ((u64)1 << 32); spitfire_xcall_deliver(data0, __pa(pg_addr), (u64) pg_addr, mask); } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { #ifdef DCACHE_ALIASING_POSSIBLE data0 = ((u64)&xcall_flush_dcache_page_cheetah); cheetah_xcall_deliver(data0, __pa(pg_addr), 0, mask); #endif } #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes_xcall); #endif flush_self: __local_flush_dcache_page(page); put_cpu(); } static void __smp_receive_signal_mask(cpumask_t mask) { smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask); } void smp_receive_signal(int cpu) { cpumask_t mask = cpumask_of_cpu(cpu); if (cpu_online(cpu)) __smp_receive_signal_mask(mask); } void smp_receive_signal_client(int irq, struct pt_regs *regs) { struct mm_struct *mm; clear_softint(1 << irq); /* See if we need to allocate a new TLB context because * the version of the one we are using is now out of date. */ mm = current->active_mm; if (likely(mm)) { if (unlikely(!CTX_VALID(mm->context))) { unsigned long flags; spin_lock_irqsave(&mm->context.lock, flags); get_new_mmu_context(mm); load_secondary_context(mm); spin_unlock_irqrestore(&mm->context.lock, flags); } } } void smp_new_mmu_context_version(void) { __smp_receive_signal_mask(cpu_online_map); } void smp_report_regs(void) { smp_cross_call(&xcall_report_regs, 0, 0, 0); } /* We know that the window frames of the user have been flushed * to the stack before we get here because all callers of us * are flush_tlb_*() routines, and these run after flush_cache_*() * which performs the flushw. * * The SMP TLB coherency scheme we use works as follows: * * 1) mm->cpu_vm_mask is a bit mask of which cpus an address * space has (potentially) executed on, this is the heuristic * we use to avoid doing cross calls. * * Also, for flushing from kswapd and also for clones, we * use cpu_vm_mask as the list of cpus to make run the TLB. * * 2) TLB context numbers are shared globally across all processors * in the system, this allows us to play several games to avoid * cross calls. * * One invariant is that when a cpu switches to a process, and * that processes tsk->active_mm->cpu_vm_mask does not have the * current cpu's bit set, that tlb context is flushed locally. * * If the address space is non-shared (ie. mm->count == 1) we avoid * cross calls when we want to flush the currently running process's * tlb state. This is done by clearing all cpu bits except the current * processor's in current->active_mm->cpu_vm_mask and performing the * flush locally only. This will force any subsequent cpus which run * this task to flush the context from the local tlb if the process * migrates to another cpu (again). * * 3) For shared address spaces (threads) and swapping we bite the * bullet for most cases and perform the cross call (but only to * the cpus listed in cpu_vm_mask). * * The performance gain from "optimizing" away the cross call for threads is * questionable (in theory the big win for threads is the massive sharing of * address space state across processors). */ /* This currently is only used by the hugetlb arch pre-fault * hook on UltraSPARC-III+ and later when changing the pagesize * bits of the context register for an address space. */ void smp_flush_tlb_mm(struct mm_struct *mm) { u32 ctx = CTX_HWBITS(mm->context); int cpu = get_cpu(); if (atomic_read(&mm->mm_users) == 1) { mm->cpu_vm_mask = cpumask_of_cpu(cpu); goto local_flush_and_out; } smp_cross_call_masked(&xcall_flush_tlb_mm, ctx, 0, 0, mm->cpu_vm_mask); local_flush_and_out: __flush_tlb_mm(ctx, SECONDARY_CONTEXT); put_cpu(); } void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) { u32 ctx = CTX_HWBITS(mm->context); int cpu = get_cpu(); if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) mm->cpu_vm_mask = cpumask_of_cpu(cpu); else smp_cross_call_masked(&xcall_flush_tlb_pending, ctx, nr, (unsigned long) vaddrs, mm->cpu_vm_mask); __flush_tlb_pending(ctx, nr, vaddrs); put_cpu(); } void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) { start &= PAGE_MASK; end = PAGE_ALIGN(end); if (start != end) { smp_cross_call(&xcall_flush_tlb_kernel_range, 0, start, end); __flush_tlb_kernel_range(start, end); } } /* CPU capture. */ /* #define CAPTURE_DEBUG */ extern unsigned long xcall_capture; static atomic_t smp_capture_depth = ATOMIC_INIT(0); static atomic_t smp_capture_registry = ATOMIC_INIT(0); static unsigned long penguins_are_doing_time; void smp_capture(void) { int result = atomic_add_ret(1, &smp_capture_depth); if (result == 1) { int ncpus = num_online_cpus(); #ifdef CAPTURE_DEBUG printk("CPU[%d]: Sending penguins to jail...", smp_processor_id()); #endif penguins_are_doing_time = 1; membar_storestore_loadstore(); atomic_inc(&smp_capture_registry); smp_cross_call(&xcall_capture, 0, 0, 0); while (atomic_read(&smp_capture_registry) != ncpus) rmb(); #ifdef CAPTURE_DEBUG printk("done\n"); #endif } } void smp_release(void) { if (atomic_dec_and_test(&smp_capture_depth)) { #ifdef CAPTURE_DEBUG printk("CPU[%d]: Giving pardon to " "imprisoned penguins\n", smp_processor_id()); #endif penguins_are_doing_time = 0; membar_storeload_storestore(); atomic_dec(&smp_capture_registry); } } /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they * can service tlb flush xcalls... */ extern void prom_world(int); void smp_penguin_jailcell(int irq, struct pt_regs *regs) { clear_softint(1 << irq); preempt_disable(); __asm__ __volatile__("flushw"); prom_world(1); atomic_inc(&smp_capture_registry); membar_storeload_storestore(); while (penguins_are_doing_time) rmb(); atomic_dec(&smp_capture_registry); prom_world(0); preempt_enable(); } #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier #define prof_counter(__cpu) cpu_data(__cpu).counter void smp_percpu_timer_interrupt(struct pt_regs *regs) { unsigned long compare, tick, pstate; int cpu = smp_processor_id(); int user = user_mode(regs); /* * Check for level 14 softint. */ { unsigned long tick_mask = tick_ops->softint_mask; if (!(get_softint() & tick_mask)) { extern void handler_irq(int, struct pt_regs *); handler_irq(14, regs); return; } clear_softint(tick_mask); } do { profile_tick(CPU_PROFILING, regs); if (!--prof_counter(cpu)) { irq_enter(); if (cpu == boot_cpu_id) { kstat_this_cpu.irqs[0]++; timer_tick_interrupt(regs); } update_process_times(user); irq_exit(); prof_counter(cpu) = prof_multiplier(cpu); } /* Guarantee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); compare = tick_ops->add_compare(current_tick_offset); tick = tick_ops->get_tick(); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); } while (time_after_eq(tick, compare)); } static void __init smp_setup_percpu_timer(void) { int cpu = smp_processor_id(); unsigned long pstate; prof_counter(cpu) = prof_multiplier(cpu) = 1; /* Guarantee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); tick_ops->init_tick(current_tick_offset); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); } void __init smp_tick_init(void) { boot_cpu_id = hard_smp_processor_id(); current_tick_offset = timer_tick_offset; cpu_set(boot_cpu_id, cpu_online_map); prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1; } /* /proc/profile writes can call this, don't __init it please. */ static DEFINE_SPINLOCK(prof_setup_lock); int setup_profiling_timer(unsigned int multiplier) { unsigned long flags; int i; if ((!multiplier) || (timer_tick_offset / multiplier) < 1000) return -EINVAL; spin_lock_irqsave(&prof_setup_lock, flags); for (i = 0; i < NR_CPUS; i++) prof_multiplier(i) = multiplier; current_tick_offset = (timer_tick_offset / multiplier); spin_unlock_irqrestore(&prof_setup_lock, flags); return 0; } /* Constrain the number of cpus to max_cpus. */ void __init smp_prepare_cpus(unsigned int max_cpus) { if (num_possible_cpus() > max_cpus) { int instance, mid; instance = 0; while (!cpu_find_by_instance(instance, NULL, &mid)) { if (mid != boot_cpu_id) { cpu_clear(mid, phys_cpu_present_map); if (num_possible_cpus() <= max_cpus) break; } instance++; } } smp_store_cpu_info(boot_cpu_id); } /* Set this up early so that things like the scheduler can init * properly. We use the same cpu mask for both the present and * possible cpu map. */ void __init smp_setup_cpu_possible_map(void) { int instance, mid; instance = 0; while (!cpu_find_by_instance(instance, NULL, &mid)) { if (mid < NR_CPUS) cpu_set(mid, phys_cpu_present_map); instance++; } } void __devinit smp_prepare_boot_cpu(void) { int cpu = hard_smp_processor_id(); if (cpu >= NR_CPUS) { prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); prom_halt(); } current_thread_info()->cpu = cpu; __local_per_cpu_offset = __per_cpu_offset(cpu); cpu_set(smp_processor_id(), cpu_online_map); cpu_set(smp_processor_id(), phys_cpu_present_map); } int __devinit __cpu_up(unsigned int cpu) { int ret = smp_boot_one_cpu(cpu); if (!ret) { cpu_set(cpu, smp_commenced_mask); while (!cpu_isset(cpu, cpu_online_map)) mb(); if (!cpu_isset(cpu, cpu_online_map)) { ret = -ENODEV; } else { /* On SUN4V, writes to %tick and %stick are * not allowed. */ if (tlb_type != hypervisor) smp_synchronize_one_tick(cpu); } } return ret; } void __init smp_cpus_done(unsigned int max_cpus) { unsigned long bogosum = 0; int i; for (i = 0; i < NR_CPUS; i++) { if (cpu_online(i)) bogosum += cpu_data(i).udelay_val; } printk("Total of %ld processors activated " "(%lu.%02lu BogoMIPS).\n", (long) num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); } void smp_send_reschedule(int cpu) { smp_receive_signal(cpu); } /* This is a nop because we capture all other cpus * anyways when making the PROM active. */ void smp_send_stop(void) { } unsigned long __per_cpu_base __read_mostly; unsigned long __per_cpu_shift __read_mostly; EXPORT_SYMBOL(__per_cpu_base); EXPORT_SYMBOL(__per_cpu_shift); void __init setup_per_cpu_areas(void) { unsigned long goal, size, i; char *ptr; /* Copy section for each CPU (we discard the original) */ goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES); #ifdef CONFIG_MODULES if (goal < PERCPU_ENOUGH_ROOM) goal = PERCPU_ENOUGH_ROOM; #endif __per_cpu_shift = 0; for (size = 1UL; size < goal; size <<= 1UL) __per_cpu_shift++; ptr = alloc_bootmem(size * NR_CPUS); __per_cpu_base = ptr - __per_cpu_start; for (i = 0; i < NR_CPUS; i++, ptr += size) memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); }