/* * Debug Store support * * This provides a low-level interface to the hardware's Debug Store * feature that is used for branch trace store (BTS) and * precise-event based sampling (PEBS). * * It manages: * - per-thread and per-cpu allocation of BTS and PEBS * - buffer memory allocation (optional) * - buffer overflow handling * - buffer access * * It assumes: * - get_task_struct on all parameter tasks * - current is allowed to trace parameter tasks * * * Copyright (C) 2007-2008 Intel Corporation. * Markus Metzger <markus.t.metzger@intel.com>, 2007-2008 */ #include <asm/ds.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/mm.h> /* * The configuration for a particular DS hardware implementation. */ struct ds_configuration { /* the size of the DS structure in bytes */ unsigned char sizeof_ds; /* the size of one pointer-typed field in the DS structure in bytes; this covers the first 8 fields related to buffer management. */ unsigned char sizeof_field; /* the size of a BTS/PEBS record in bytes */ unsigned char sizeof_rec[2]; }; static struct ds_configuration ds_cfg; /* * Debug Store (DS) save area configuration (see Intel64 and IA32 * Architectures Software Developer's Manual, section 18.5) * * The DS configuration consists of the following fields; different * architetures vary in the size of those fields. * - double-word aligned base linear address of the BTS buffer * - write pointer into the BTS buffer * - end linear address of the BTS buffer (one byte beyond the end of * the buffer) * - interrupt pointer into BTS buffer * (interrupt occurs when write pointer passes interrupt pointer) * - double-word aligned base linear address of the PEBS buffer * - write pointer into the PEBS buffer * - end linear address of the PEBS buffer (one byte beyond the end of * the buffer) * - interrupt pointer into PEBS buffer * (interrupt occurs when write pointer passes interrupt pointer) * - value to which counter is reset following counter overflow * * Later architectures use 64bit pointers throughout, whereas earlier * architectures use 32bit pointers in 32bit mode. * * * We compute the base address for the first 8 fields based on: * - the field size stored in the DS configuration * - the relative field position * - an offset giving the start of the respective region * * This offset is further used to index various arrays holding * information for BTS and PEBS at the respective index. * * On later 32bit processors, we only access the lower 32bit of the * 64bit pointer fields. The upper halves will be zeroed out. */ enum ds_field { ds_buffer_base = 0, ds_index, ds_absolute_maximum, ds_interrupt_threshold, }; enum ds_qualifier { ds_bts = 0, ds_pebs }; static inline unsigned long ds_get(const unsigned char *base, enum ds_qualifier qual, enum ds_field field) { base += (ds_cfg.sizeof_field * (field + (4 * qual))); return *(unsigned long *)base; } static inline void ds_set(unsigned char *base, enum ds_qualifier qual, enum ds_field field, unsigned long value) { base += (ds_cfg.sizeof_field * (field + (4 * qual))); (*(unsigned long *)base) = value; } /* * Locking is done only for allocating BTS or PEBS resources and for * guarding context and buffer memory allocation. * * Most functions require the current task to own the ds context part * they are going to access. All the locking is done when validating * access to the context. */ static spinlock_t ds_lock = __SPIN_LOCK_UNLOCKED(ds_lock); /* * Validate that the current task is allowed to access the BTS/PEBS * buffer of the parameter task. * * Returns 0, if access is granted; -Eerrno, otherwise. */ static inline int ds_validate_access(struct ds_context *context, enum ds_qualifier qual) { if (!context) return -EPERM; if (context->owner[qual] == current) return 0; return -EPERM; } /* * We either support (system-wide) per-cpu or per-thread allocation. * We distinguish the two based on the task_struct pointer, where a * NULL pointer indicates per-cpu allocation for the current cpu. * * Allocations are use-counted. As soon as resources are allocated, * further allocations must be of the same type (per-cpu or * per-thread). We model this by counting allocations (i.e. the number * of tracers of a certain type) for one type negatively: * =0 no tracers * >0 number of per-thread tracers * <0 number of per-cpu tracers * * The below functions to get and put tracers and to check the * allocation type require the ds_lock to be held by the caller. * * Tracers essentially gives the number of ds contexts for a certain * type of allocation. */ static long tracers; static inline void get_tracer(struct task_struct *task) { tracers += (task ? 1 : -1); } static inline void put_tracer(struct task_struct *task) { tracers -= (task ? 1 : -1); } static inline int check_tracer(struct task_struct *task) { return (task ? (tracers >= 0) : (tracers <= 0)); } /* * The DS context is either attached to a thread or to a cpu: * - in the former case, the thread_struct contains a pointer to the * attached context. * - in the latter case, we use a static array of per-cpu context * pointers. * * Contexts are use-counted. They are allocated on first access and * deallocated when the last user puts the context. * * We distinguish between an allocating and a non-allocating get of a * context: * - the allocating get is used for requesting BTS/PEBS resources. It * requires the caller to hold the global ds_lock. * - the non-allocating get is used for all other cases. A * non-existing context indicates an error. It acquires and releases * the ds_lock itself for obtaining the context. * * A context and its DS configuration are allocated and deallocated * together. A context always has a DS configuration of the * appropriate size. */ static DEFINE_PER_CPU(struct ds_context *, system_context); #define this_system_context per_cpu(system_context, smp_processor_id()) /* * Returns the pointer to the parameter task's context or to the * system-wide context, if task is NULL. * * Increases the use count of the returned context, if not NULL. */ static inline struct ds_context *ds_get_context(struct task_struct *task) { struct ds_context *context; unsigned long irq; spin_lock_irqsave(&ds_lock, irq); context = (task ? task->thread.ds_ctx : this_system_context); if (context) context->count++; spin_unlock_irqrestore(&ds_lock, irq); return context; } /* * Same as ds_get_context, but allocates the context and it's DS * structure, if necessary; returns NULL; if out of memory. */ static inline struct ds_context *ds_alloc_context(struct task_struct *task) { struct ds_context **p_context = (task ? &task->thread.ds_ctx : &this_system_context); struct ds_context *context = *p_context; unsigned long irq; if (!context) { context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) return NULL; context->ds = kzalloc(ds_cfg.sizeof_ds, GFP_KERNEL); if (!context->ds) { kfree(context); return NULL; } spin_lock_irqsave(&ds_lock, irq); if (*p_context) { kfree(context->ds); kfree(context); context = *p_context; } else { *p_context = context; context->this = p_context; context->task = task; if (task) set_tsk_thread_flag(task, TIF_DS_AREA_MSR); if (!task || (task == current)) wrmsrl(MSR_IA32_DS_AREA, (unsigned long)context->ds); } spin_unlock_irqrestore(&ds_lock, irq); } context->count++; return context; } /* * Decreases the use count of the parameter context, if not NULL. * Deallocates the context, if the use count reaches zero. */ static inline void ds_put_context(struct ds_context *context) { unsigned long irq; if (!context) return; spin_lock_irqsave(&ds_lock, irq); if (--context->count) goto out; *(context->this) = NULL; if (context->task) clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR); if (!context->task || (context->task == current)) wrmsrl(MSR_IA32_DS_AREA, 0); put_tracer(context->task); /* free any leftover buffers from tracers that did not * deallocate them properly. */ kfree(context->buffer[ds_bts]); kfree(context->buffer[ds_pebs]); kfree(context->ds); kfree(context); out: spin_unlock_irqrestore(&ds_lock, irq); } /* * Handle a buffer overflow * * task: the task whose buffers are overflowing; * NULL for a buffer overflow on the current cpu * context: the ds context * qual: the buffer type */ static void ds_overflow(struct task_struct *task, struct ds_context *context, enum ds_qualifier qual) { if (!context) return; if (context->callback[qual]) (*context->callback[qual])(task); /* todo: do some more overflow handling */ } /* * Allocate a non-pageable buffer of the parameter size. * Checks the memory and the locked memory rlimit. * * Returns the buffer, if successful; * NULL, if out of memory or rlimit exceeded. * * size: the requested buffer size in bytes * pages (out): if not NULL, contains the number of pages reserved */ static inline void *ds_allocate_buffer(size_t size, unsigned int *pages) { unsigned long rlim, vm, pgsz; void *buffer; pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; vm = current->mm->total_vm + pgsz; if (rlim < vm) return NULL; rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; vm = current->mm->locked_vm + pgsz; if (rlim < vm) return NULL; buffer = kzalloc(size, GFP_KERNEL); if (!buffer) return NULL; current->mm->total_vm += pgsz; current->mm->locked_vm += pgsz; if (pages) *pages = pgsz; return buffer; } static int ds_request(struct task_struct *task, void *base, size_t size, ds_ovfl_callback_t ovfl, enum ds_qualifier qual) { struct ds_context *context; unsigned long buffer, adj; const unsigned long alignment = (1 << 3); unsigned long irq; int error = 0; if (!ds_cfg.sizeof_ds) return -EOPNOTSUPP; /* we require some space to do alignment adjustments below */ if (size < (alignment + ds_cfg.sizeof_rec[qual])) return -EINVAL; /* buffer overflow notification is not yet implemented */ if (ovfl) return -EOPNOTSUPP; context = ds_alloc_context(task); if (!context) return -ENOMEM; spin_lock_irqsave(&ds_lock, irq); error = -EPERM; if (!check_tracer(task)) goto out_unlock; get_tracer(task); error = -EALREADY; if (context->owner[qual] == current) goto out_put_tracer; error = -EPERM; if (context->owner[qual] != NULL) goto out_put_tracer; context->owner[qual] = current; spin_unlock_irqrestore(&ds_lock, irq); error = -ENOMEM; if (!base) { base = ds_allocate_buffer(size, &context->pages[qual]); if (!base) goto out_release; context->buffer[qual] = base; } error = 0; context->callback[qual] = ovfl; /* adjust the buffer address and size to meet alignment * constraints: * - buffer is double-word aligned * - size is multiple of record size * * We checked the size at the very beginning; we have enough * space to do the adjustment. */ buffer = (unsigned long)base; adj = ALIGN(buffer, alignment) - buffer; buffer += adj; size -= adj; size /= ds_cfg.sizeof_rec[qual]; size *= ds_cfg.sizeof_rec[qual]; ds_set(context->ds, qual, ds_buffer_base, buffer); ds_set(context->ds, qual, ds_index, buffer); ds_set(context->ds, qual, ds_absolute_maximum, buffer + size); if (ovfl) { /* todo: select a suitable interrupt threshold */ } else ds_set(context->ds, qual, ds_interrupt_threshold, buffer + size + 1); /* we keep the context until ds_release */ return error; out_release: context->owner[qual] = NULL; ds_put_context(context); put_tracer(task); return error; out_put_tracer: spin_unlock_irqrestore(&ds_lock, irq); ds_put_context(context); put_tracer(task); return error; out_unlock: spin_unlock_irqrestore(&ds_lock, irq); ds_put_context(context); return error; } int ds_request_bts(struct task_struct *task, void *base, size_t size, ds_ovfl_callback_t ovfl) { return ds_request(task, base, size, ovfl, ds_bts); } int ds_request_pebs(struct task_struct *task, void *base, size_t size, ds_ovfl_callback_t ovfl) { return ds_request(task, base, size, ovfl, ds_pebs); } static int ds_release(struct task_struct *task, enum ds_qualifier qual) { struct ds_context *context; int error; context = ds_get_context(task); error = ds_validate_access(context, qual); if (error < 0) goto out; kfree(context->buffer[qual]); context->buffer[qual] = NULL; current->mm->total_vm -= context->pages[qual]; current->mm->locked_vm -= context->pages[qual]; context->pages[qual] = 0; context->owner[qual] = NULL; /* * we put the context twice: * once for the ds_get_context * once for the corresponding ds_request */ ds_put_context(context); out: ds_put_context(context); return error; } int ds_release_bts(struct task_struct *task) { return ds_release(task, ds_bts); } int ds_release_pebs(struct task_struct *task) { return ds_release(task, ds_pebs); } static int ds_get_index(struct task_struct *task, size_t *pos, enum ds_qualifier qual) { struct ds_context *context; unsigned long base, index; int error; context = ds_get_context(task); error = ds_validate_access(context, qual); if (error < 0) goto out; base = ds_get(context->ds, qual, ds_buffer_base); index = ds_get(context->ds, qual, ds_index); error = ((index - base) / ds_cfg.sizeof_rec[qual]); if (pos) *pos = error; out: ds_put_context(context); return error; } int ds_get_bts_index(struct task_struct *task, size_t *pos) { return ds_get_index(task, pos, ds_bts); } int ds_get_pebs_index(struct task_struct *task, size_t *pos) { return ds_get_index(task, pos, ds_pebs); } static int ds_get_end(struct task_struct *task, size_t *pos, enum ds_qualifier qual) { struct ds_context *context; unsigned long base, end; int error; context = ds_get_context(task); error = ds_validate_access(context, qual); if (error < 0) goto out; base = ds_get(context->ds, qual, ds_buffer_base); end = ds_get(context->ds, qual, ds_absolute_maximum); error = ((end - base) / ds_cfg.sizeof_rec[qual]); if (pos) *pos = error; out: ds_put_context(context); return error; } int ds_get_bts_end(struct task_struct *task, size_t *pos) { return ds_get_end(task, pos, ds_bts); } int ds_get_pebs_end(struct task_struct *task, size_t *pos) { return ds_get_end(task, pos, ds_pebs); } static int ds_access(struct task_struct *task, size_t index, const void **record, enum ds_qualifier qual) { struct ds_context *context; unsigned long base, idx; int error; if (!record) return -EINVAL; context = ds_get_context(task); error = ds_validate_access(context, qual); if (error < 0) goto out; base = ds_get(context->ds, qual, ds_buffer_base); idx = base + (index * ds_cfg.sizeof_rec[qual]); error = -EINVAL; if (idx > ds_get(context->ds, qual, ds_absolute_maximum)) goto out; *record = (const void *)idx; error = ds_cfg.sizeof_rec[qual]; out: ds_put_context(context); return error; } int ds_access_bts(struct task_struct *task, size_t index, const void **record) { return ds_access(task, index, record, ds_bts); } int ds_access_pebs(struct task_struct *task, size_t index, const void **record) { return ds_access(task, index, record, ds_pebs); } static int ds_write(struct task_struct *task, const void *record, size_t size, enum ds_qualifier qual, int force) { struct ds_context *context; int error; if (!record) return -EINVAL; error = -EPERM; context = ds_get_context(task); if (!context) goto out; if (!force) { error = ds_validate_access(context, qual); if (error < 0) goto out; } error = 0; while (size) { unsigned long base, index, end, write_end, int_th; unsigned long write_size, adj_write_size; /* * write as much as possible without producing an * overflow interrupt. * * interrupt_threshold must either be * - bigger than absolute_maximum or * - point to a record between buffer_base and absolute_maximum * * index points to a valid record. */ base = ds_get(context->ds, qual, ds_buffer_base); index = ds_get(context->ds, qual, ds_index); end = ds_get(context->ds, qual, ds_absolute_maximum); int_th = ds_get(context->ds, qual, ds_interrupt_threshold); write_end = min(end, int_th); /* if we are already beyond the interrupt threshold, * we fill the entire buffer */ if (write_end <= index) write_end = end; if (write_end <= index) goto out; write_size = min((unsigned long) size, write_end - index); memcpy((void *)index, record, write_size); record = (const char *)record + write_size; size -= write_size; error += write_size; adj_write_size = write_size / ds_cfg.sizeof_rec[qual]; adj_write_size *= ds_cfg.sizeof_rec[qual]; /* zero out trailing bytes */ memset((char *)index + write_size, 0, adj_write_size - write_size); index += adj_write_size; if (index >= end) index = base; ds_set(context->ds, qual, ds_index, index); if (index >= int_th) ds_overflow(task, context, qual); } out: ds_put_context(context); return error; } int ds_write_bts(struct task_struct *task, const void *record, size_t size) { return ds_write(task, record, size, ds_bts, /* force = */ 0); } int ds_write_pebs(struct task_struct *task, const void *record, size_t size) { return ds_write(task, record, size, ds_pebs, /* force = */ 0); } int ds_unchecked_write_bts(struct task_struct *task, const void *record, size_t size) { return ds_write(task, record, size, ds_bts, /* force = */ 1); } int ds_unchecked_write_pebs(struct task_struct *task, const void *record, size_t size) { return ds_write(task, record, size, ds_pebs, /* force = */ 1); } static int ds_reset_or_clear(struct task_struct *task, enum ds_qualifier qual, int clear) { struct ds_context *context; unsigned long base, end; int error; context = ds_get_context(task); error = ds_validate_access(context, qual); if (error < 0) goto out; base = ds_get(context->ds, qual, ds_buffer_base); end = ds_get(context->ds, qual, ds_absolute_maximum); if (clear) memset((void *)base, 0, end - base); ds_set(context->ds, qual, ds_index, base); error = 0; out: ds_put_context(context); return error; } int ds_reset_bts(struct task_struct *task) { return ds_reset_or_clear(task, ds_bts, /* clear = */ 0); } int ds_reset_pebs(struct task_struct *task) { return ds_reset_or_clear(task, ds_pebs, /* clear = */ 0); } int ds_clear_bts(struct task_struct *task) { return ds_reset_or_clear(task, ds_bts, /* clear = */ 1); } int ds_clear_pebs(struct task_struct *task) { return ds_reset_or_clear(task, ds_pebs, /* clear = */ 1); } int ds_get_pebs_reset(struct task_struct *task, u64 *value) { struct ds_context *context; int error; if (!value) return -EINVAL; context = ds_get_context(task); error = ds_validate_access(context, ds_pebs); if (error < 0) goto out; *value = *(u64 *)(context->ds + (ds_cfg.sizeof_field * 8)); error = 0; out: ds_put_context(context); return error; } int ds_set_pebs_reset(struct task_struct *task, u64 value) { struct ds_context *context; int error; context = ds_get_context(task); error = ds_validate_access(context, ds_pebs); if (error < 0) goto out; *(u64 *)(context->ds + (ds_cfg.sizeof_field * 8)) = value; error = 0; out: ds_put_context(context); return error; } static const struct ds_configuration ds_cfg_var = { .sizeof_ds = sizeof(long) * 12, .sizeof_field = sizeof(long), .sizeof_rec[ds_bts] = sizeof(long) * 3, #ifdef __i386__ .sizeof_rec[ds_pebs] = sizeof(long) * 10 #else .sizeof_rec[ds_pebs] = sizeof(long) * 18 #endif }; static const struct ds_configuration ds_cfg_64 = { .sizeof_ds = 8 * 12, .sizeof_field = 8, .sizeof_rec[ds_bts] = 8 * 3, #ifdef __i386__ .sizeof_rec[ds_pebs] = 8 * 10 #else .sizeof_rec[ds_pebs] = 8 * 18 #endif }; static inline void ds_configure(const struct ds_configuration *cfg) { ds_cfg = *cfg; } void __cpuinit ds_init_intel(struct cpuinfo_x86 *c) { switch (c->x86) { case 0x6: switch (c->x86_model) { case 0xD: case 0xE: /* Pentium M */ ds_configure(&ds_cfg_var); break; case 0xF: /* Core2 */ case 0x1C: /* Atom */ ds_configure(&ds_cfg_64); break; default: /* sorry, don't know about them */ break; } break; case 0xF: switch (c->x86_model) { case 0x0: case 0x1: case 0x2: /* Netburst */ ds_configure(&ds_cfg_var); break; default: /* sorry, don't know about them */ break; } break; default: /* sorry, don't know about them */ break; } } void ds_free(struct ds_context *context) { /* This is called when the task owning the parameter context * is dying. There should not be any user of that context left * to disturb us, anymore. */ unsigned long leftovers = context->count; while (leftovers--) ds_put_context(context); }