/* * Copyright (C) 1995 Linus Torvalds */ /* * This file handles the architecture-dependent parts of initialization */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/screen_info.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/initrd.h> #include <linux/highmem.h> #include <linux/bootmem.h> #include <linux/module.h> #include <asm/processor.h> #include <linux/console.h> #include <linux/seq_file.h> #include <linux/crash_dump.h> #include <linux/root_dev.h> #include <linux/pci.h> #include <linux/acpi.h> #include <linux/kallsyms.h> #include <linux/edd.h> #include <linux/mmzone.h> #include <linux/kexec.h> #include <linux/cpufreq.h> #include <linux/dmi.h> #include <linux/dma-mapping.h> #include <linux/ctype.h> #include <asm/mtrr.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/io.h> #include <asm/smp.h> #include <asm/msr.h> #include <asm/desc.h> #include <video/edid.h> #include <asm/e820.h> #include <asm/dma.h> #include <asm/mpspec.h> #include <asm/mmu_context.h> #include <asm/proto.h> #include <asm/setup.h> #include <asm/mach_apic.h> #include <asm/numa.h> #include <asm/sections.h> #include <asm/dmi.h> #include <asm/cacheflush.h> /* * Machine setup.. */ struct cpuinfo_x86 boot_cpu_data __read_mostly; EXPORT_SYMBOL(boot_cpu_data); unsigned long mmu_cr4_features; /* Boot loader ID as an integer, for the benefit of proc_dointvec */ int bootloader_type; unsigned long saved_video_mode; int force_mwait __cpuinitdata; /* * Early DMI memory */ int dmi_alloc_index; char dmi_alloc_data[DMI_MAX_DATA]; /* * Setup options */ struct screen_info screen_info; EXPORT_SYMBOL(screen_info); struct sys_desc_table_struct { unsigned short length; unsigned char table[0]; }; struct edid_info edid_info; EXPORT_SYMBOL_GPL(edid_info); extern int root_mountflags; char __initdata command_line[COMMAND_LINE_SIZE]; struct resource standard_io_resources[] = { { .name = "dma1", .start = 0x00, .end = 0x1f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic1", .start = 0x20, .end = 0x21, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer0", .start = 0x40, .end = 0x43, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer1", .start = 0x50, .end = 0x53, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x60, .end = 0x6f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma page reg", .start = 0x80, .end = 0x8f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic2", .start = 0xa0, .end = 0xa1, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma2", .start = 0xc0, .end = 0xdf, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "fpu", .start = 0xf0, .end = 0xff, .flags = IORESOURCE_BUSY | IORESOURCE_IO } }; #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM) struct resource data_resource = { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_RAM, }; struct resource code_resource = { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_RAM, }; struct resource bss_resource = { .name = "Kernel bss", .start = 0, .end = 0, .flags = IORESOURCE_RAM, }; #ifdef CONFIG_PROC_VMCORE /* elfcorehdr= specifies the location of elf core header * stored by the crashed kernel. This option will be passed * by kexec loader to the capture kernel. */ static int __init setup_elfcorehdr(char *arg) { char *end; if (!arg) return -EINVAL; elfcorehdr_addr = memparse(arg, &end); return end > arg ? 0 : -EINVAL; } early_param("elfcorehdr", setup_elfcorehdr); #endif #ifndef CONFIG_NUMA static void __init contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn) { unsigned long bootmap_size, bootmap; bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT; bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size); if (bootmap == -1L) panic("Cannot find bootmem map of size %ld\n",bootmap_size); bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn); e820_register_active_regions(0, start_pfn, end_pfn); free_bootmem_with_active_regions(0, end_pfn); reserve_bootmem(bootmap, bootmap_size); } #endif #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) struct edd edd; #ifdef CONFIG_EDD_MODULE EXPORT_SYMBOL(edd); #endif /** * copy_edd() - Copy the BIOS EDD information * from boot_params into a safe place. * */ static inline void copy_edd(void) { memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, sizeof(edd.mbr_signature)); memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; edd.edd_info_nr = boot_params.eddbuf_entries; } #else static inline void copy_edd(void) { } #endif #ifdef CONFIG_KEXEC static void __init reserve_crashkernel(void) { unsigned long long free_mem; unsigned long long crash_size, crash_base; int ret; free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; ret = parse_crashkernel(boot_command_line, free_mem, &crash_size, &crash_base); if (ret == 0 && crash_size) { if (crash_base > 0) { printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crash_base >> 20), (unsigned long)(free_mem >> 20)); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; reserve_bootmem(crash_base, crash_size); } else printk(KERN_INFO "crashkernel reservation failed - " "you have to specify a base address\n"); } } #else static inline void __init reserve_crashkernel(void) {} #endif #define EBDA_ADDR_POINTER 0x40E unsigned __initdata ebda_addr; unsigned __initdata ebda_size; static void discover_ebda(void) { /* * there is a real-mode segmented pointer pointing to the * 4K EBDA area at 0x40E */ ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER); ebda_addr <<= 4; ebda_size = *(unsigned short *)__va(ebda_addr); /* Round EBDA up to pages */ if (ebda_size == 0) ebda_size = 1; ebda_size <<= 10; ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE); if (ebda_size > 64*1024) ebda_size = 64*1024; } void __init setup_arch(char **cmdline_p) { printk(KERN_INFO "Command line: %s\n", boot_command_line); ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); screen_info = boot_params.screen_info; edid_info = boot_params.edid_info; saved_video_mode = boot_params.hdr.vid_mode; bootloader_type = boot_params.hdr.type_of_loader; #ifdef CONFIG_BLK_DEV_RAM rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0); #endif setup_memory_region(); copy_edd(); if (!boot_params.hdr.root_flags) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long) &_text; init_mm.end_code = (unsigned long) &_etext; init_mm.end_data = (unsigned long) &_edata; init_mm.brk = (unsigned long) &_end; code_resource.start = virt_to_phys(&_text); code_resource.end = virt_to_phys(&_etext)-1; data_resource.start = virt_to_phys(&_etext); data_resource.end = virt_to_phys(&_edata)-1; bss_resource.start = virt_to_phys(&__bss_start); bss_resource.end = virt_to_phys(&__bss_stop)-1; early_identify_cpu(&boot_cpu_data); strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; parse_early_param(); finish_e820_parsing(); e820_register_active_regions(0, 0, -1UL); /* * partially used pages are not usable - thus * we are rounding upwards: */ end_pfn = e820_end_of_ram(); num_physpages = end_pfn; check_efer(); discover_ebda(); init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT)); dmi_scan_machine(); #ifdef CONFIG_SMP /* setup to use the static apicid table during kernel startup */ x86_cpu_to_apicid_ptr = (void *)&x86_cpu_to_apicid_init; #endif #ifdef CONFIG_ACPI /* * Initialize the ACPI boot-time table parser (gets the RSDP and SDT). * Call this early for SRAT node setup. */ acpi_boot_table_init(); #endif /* How many end-of-memory variables you have, grandma! */ max_low_pfn = end_pfn; max_pfn = end_pfn; high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1; /* Remove active ranges so rediscovery with NUMA-awareness happens */ remove_all_active_ranges(); #ifdef CONFIG_ACPI_NUMA /* * Parse SRAT to discover nodes. */ acpi_numa_init(); #endif #ifdef CONFIG_NUMA numa_initmem_init(0, end_pfn); #else contig_initmem_init(0, end_pfn); #endif /* Reserve direct mapping */ reserve_bootmem_generic(table_start << PAGE_SHIFT, (table_end - table_start) << PAGE_SHIFT); /* reserve kernel */ reserve_bootmem_generic(__pa_symbol(&_text), __pa_symbol(&_end) - __pa_symbol(&_text)); /* * reserve physical page 0 - it's a special BIOS page on many boxes, * enabling clean reboots, SMP operation, laptop functions. */ reserve_bootmem_generic(0, PAGE_SIZE); /* reserve ebda region */ if (ebda_addr) reserve_bootmem_generic(ebda_addr, ebda_size); #ifdef CONFIG_NUMA /* reserve nodemap region */ if (nodemap_addr) reserve_bootmem_generic(nodemap_addr, nodemap_size); #endif #ifdef CONFIG_SMP /* Reserve SMP trampoline */ reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE); #endif #ifdef CONFIG_ACPI_SLEEP /* * Reserve low memory region for sleep support. */ acpi_reserve_bootmem(); #endif /* * Find and reserve possible boot-time SMP configuration: */ find_smp_config(); #ifdef CONFIG_BLK_DEV_INITRD if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) { unsigned long ramdisk_image = boot_params.hdr.ramdisk_image; unsigned long ramdisk_size = boot_params.hdr.ramdisk_size; unsigned long ramdisk_end = ramdisk_image + ramdisk_size; unsigned long end_of_mem = end_pfn << PAGE_SHIFT; if (ramdisk_end <= end_of_mem) { reserve_bootmem_generic(ramdisk_image, ramdisk_size); initrd_start = ramdisk_image + PAGE_OFFSET; initrd_end = initrd_start+ramdisk_size; } else { printk(KERN_ERR "initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)\ndisabling initrd\n", ramdisk_end, end_of_mem); initrd_start = 0; } } #endif reserve_crashkernel(); paging_init(); #ifdef CONFIG_PCI early_quirks(); #endif /* * set this early, so we dont allocate cpu0 * if MADT list doesnt list BSP first * mpparse.c/MP_processor_info() allocates logical cpu numbers. */ cpu_set(0, cpu_present_map); #ifdef CONFIG_ACPI /* * Read APIC and some other early information from ACPI tables. */ acpi_boot_init(); #endif init_cpu_to_node(); /* * get boot-time SMP configuration: */ if (smp_found_config) get_smp_config(); init_apic_mappings(); /* * We trust e820 completely. No explicit ROM probing in memory. */ e820_reserve_resources(); e820_mark_nosave_regions(); { unsigned i; /* request I/O space for devices used on all i[345]86 PCs */ for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) request_resource(&ioport_resource, &standard_io_resources[i]); } e820_setup_gap(); #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif } static int __cpuinit get_model_name(struct cpuinfo_x86 *c) { unsigned int *v; if (c->extended_cpuid_level < 0x80000004) return 0; v = (unsigned int *) c->x86_model_id; cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); c->x86_model_id[48] = 0; return 1; } static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c) { unsigned int n, dummy, eax, ebx, ecx, edx; n = c->extended_cpuid_level; if (n >= 0x80000005) { cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n", edx>>24, edx&0xFF, ecx>>24, ecx&0xFF); c->x86_cache_size=(ecx>>24)+(edx>>24); /* On K8 L1 TLB is inclusive, so don't count it */ c->x86_tlbsize = 0; } if (n >= 0x80000006) { cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); ecx = cpuid_ecx(0x80000006); c->x86_cache_size = ecx >> 16; c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n", c->x86_cache_size, ecx & 0xFF); } if (n >= 0x80000007) cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power); if (n >= 0x80000008) { cpuid(0x80000008, &eax, &dummy, &dummy, &dummy); c->x86_virt_bits = (eax >> 8) & 0xff; c->x86_phys_bits = eax & 0xff; } } #ifdef CONFIG_NUMA static int nearby_node(int apicid) { int i; for (i = apicid - 1; i >= 0; i--) { int node = apicid_to_node[i]; if (node != NUMA_NO_NODE && node_online(node)) return node; } for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { int node = apicid_to_node[i]; if (node != NUMA_NO_NODE && node_online(node)) return node; } return first_node(node_online_map); /* Shouldn't happen */ } #endif /* * On a AMD dual core setup the lower bits of the APIC id distingush the cores. * Assumes number of cores is a power of two. */ static void __init amd_detect_cmp(struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP unsigned bits; #ifdef CONFIG_NUMA int cpu = smp_processor_id(); int node = 0; unsigned apicid = hard_smp_processor_id(); #endif unsigned ecx = cpuid_ecx(0x80000008); c->x86_max_cores = (ecx & 0xff) + 1; /* CPU telling us the core id bits shift? */ bits = (ecx >> 12) & 0xF; /* Otherwise recompute */ if (bits == 0) { while ((1 << bits) < c->x86_max_cores) bits++; } /* Low order bits define the core id (index of core in socket) */ c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1); /* Convert the APIC ID into the socket ID */ c->phys_proc_id = phys_pkg_id(bits); #ifdef CONFIG_NUMA node = c->phys_proc_id; if (apicid_to_node[apicid] != NUMA_NO_NODE) node = apicid_to_node[apicid]; if (!node_online(node)) { /* Two possibilities here: - The CPU is missing memory and no node was created. In that case try picking one from a nearby CPU - The APIC IDs differ from the HyperTransport node IDs which the K8 northbridge parsing fills in. Assume they are all increased by a constant offset, but in the same order as the HT nodeids. If that doesn't result in a usable node fall back to the path for the previous case. */ int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits); if (ht_nodeid >= 0 && apicid_to_node[ht_nodeid] != NUMA_NO_NODE) node = apicid_to_node[ht_nodeid]; /* Pick a nearby node */ if (!node_online(node)) node = nearby_node(apicid); } numa_set_node(cpu, node); printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node); #endif #endif } #define ENABLE_C1E_MASK 0x18000000 #define CPUID_PROCESSOR_SIGNATURE 1 #define CPUID_XFAM 0x0ff00000 #define CPUID_XFAM_K8 0x00000000 #define CPUID_XFAM_10H 0x00100000 #define CPUID_XFAM_11H 0x00200000 #define CPUID_XMOD 0x000f0000 #define CPUID_XMOD_REV_F 0x00040000 /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */ static __cpuinit int amd_apic_timer_broken(void) { u32 lo, hi; u32 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); switch (eax & CPUID_XFAM) { case CPUID_XFAM_K8: if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F) break; case CPUID_XFAM_10H: case CPUID_XFAM_11H: rdmsr(MSR_K8_ENABLE_C1E, lo, hi); if (lo & ENABLE_C1E_MASK) return 1; break; default: /* err on the side of caution */ return 1; } return 0; } static void __cpuinit init_amd(struct cpuinfo_x86 *c) { unsigned level; #ifdef CONFIG_SMP unsigned long value; /* * Disable TLB flush filter by setting HWCR.FFDIS on K8 * bit 6 of msr C001_0015 * * Errata 63 for SH-B3 steppings * Errata 122 for all steppings (F+ have it disabled by default) */ if (c->x86 == 15) { rdmsrl(MSR_K8_HWCR, value); value |= 1 << 6; wrmsrl(MSR_K8_HWCR, value); } #endif /* Bit 31 in normal CPUID used for nonstandard 3DNow ID; 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */ clear_bit(0*32+31, &c->x86_capability); /* On C+ stepping K8 rep microcode works well for copy/memset */ level = cpuid_eax(1); if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)) set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability); if (c->x86 == 0x10 || c->x86 == 0x11) set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability); /* Enable workaround for FXSAVE leak */ if (c->x86 >= 6) set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability); level = get_model_name(c); if (!level) { switch (c->x86) { case 15: /* Should distinguish Models here, but this is only a fallback anyways. */ strcpy(c->x86_model_id, "Hammer"); break; } } display_cacheinfo(c); /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */ if (c->x86_power & (1<<8)) set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability); /* Multi core CPU? */ if (c->extended_cpuid_level >= 0x80000008) amd_detect_cmp(c); if (c->extended_cpuid_level >= 0x80000006 && (cpuid_edx(0x80000006) & 0xf000)) num_cache_leaves = 4; else num_cache_leaves = 3; if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11) set_bit(X86_FEATURE_K8, &c->x86_capability); /* RDTSC can be speculated around */ clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); /* Family 10 doesn't support C states in MWAIT so don't use it */ if (c->x86 == 0x10 && !force_mwait) clear_bit(X86_FEATURE_MWAIT, &c->x86_capability); if (amd_apic_timer_broken()) disable_apic_timer = 1; } static void __cpuinit detect_ht(struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP u32 eax, ebx, ecx, edx; int index_msb, core_bits; cpuid(1, &eax, &ebx, &ecx, &edx); if (!cpu_has(c, X86_FEATURE_HT)) return; if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) goto out; smp_num_siblings = (ebx & 0xff0000) >> 16; if (smp_num_siblings == 1) { printk(KERN_INFO "CPU: Hyper-Threading is disabled\n"); } else if (smp_num_siblings > 1 ) { if (smp_num_siblings > NR_CPUS) { printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings); smp_num_siblings = 1; return; } index_msb = get_count_order(smp_num_siblings); c->phys_proc_id = phys_pkg_id(index_msb); smp_num_siblings = smp_num_siblings / c->x86_max_cores; index_msb = get_count_order(smp_num_siblings) ; core_bits = get_count_order(c->x86_max_cores); c->cpu_core_id = phys_pkg_id(index_msb) & ((1 << core_bits) - 1); } out: if ((c->x86_max_cores * smp_num_siblings) > 1) { printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id); printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id); } #endif } /* * find out the number of processor cores on the die */ static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c) { unsigned int eax, t; if (c->cpuid_level < 4) return 1; cpuid_count(4, 0, &eax, &t, &t, &t); if (eax & 0x1f) return ((eax >> 26) + 1); else return 1; } static void srat_detect_node(void) { #ifdef CONFIG_NUMA unsigned node; int cpu = smp_processor_id(); int apicid = hard_smp_processor_id(); /* Don't do the funky fallback heuristics the AMD version employs for now. */ node = apicid_to_node[apicid]; if (node == NUMA_NO_NODE) node = first_node(node_online_map); numa_set_node(cpu, node); printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node); #endif } static void __cpuinit init_intel(struct cpuinfo_x86 *c) { /* Cache sizes */ unsigned n; init_intel_cacheinfo(c); if (c->cpuid_level > 9 ) { unsigned eax = cpuid_eax(10); /* Check for version and the number of counters */ if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability); } if (cpu_has_ds) { unsigned int l1, l2; rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); if (!(l1 & (1<<11))) set_bit(X86_FEATURE_BTS, c->x86_capability); if (!(l1 & (1<<12))) set_bit(X86_FEATURE_PEBS, c->x86_capability); } n = c->extended_cpuid_level; if (n >= 0x80000008) { unsigned eax = cpuid_eax(0x80000008); c->x86_virt_bits = (eax >> 8) & 0xff; c->x86_phys_bits = eax & 0xff; /* CPUID workaround for Intel 0F34 CPU */ if (c->x86_vendor == X86_VENDOR_INTEL && c->x86 == 0xF && c->x86_model == 0x3 && c->x86_mask == 0x4) c->x86_phys_bits = 36; } if (c->x86 == 15) c->x86_cache_alignment = c->x86_clflush_size * 2; if ((c->x86 == 0xf && c->x86_model >= 0x03) || (c->x86 == 0x6 && c->x86_model >= 0x0e)) set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability); if (c->x86 == 6) set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability); if (c->x86 == 15) set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); else clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); c->x86_max_cores = intel_num_cpu_cores(c); srat_detect_node(); } static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) { char *v = c->x86_vendor_id; if (!strcmp(v, "AuthenticAMD")) c->x86_vendor = X86_VENDOR_AMD; else if (!strcmp(v, "GenuineIntel")) c->x86_vendor = X86_VENDOR_INTEL; else c->x86_vendor = X86_VENDOR_UNKNOWN; } struct cpu_model_info { int vendor; int family; char *model_names[16]; }; /* Do some early cpuid on the boot CPU to get some parameter that are needed before check_bugs. Everything advanced is in identify_cpu below. */ void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c) { u32 tfms; c->loops_per_jiffy = loops_per_jiffy; c->x86_cache_size = -1; c->x86_vendor = X86_VENDOR_UNKNOWN; c->x86_model = c->x86_mask = 0; /* So far unknown... */ c->x86_vendor_id[0] = '\0'; /* Unset */ c->x86_model_id[0] = '\0'; /* Unset */ c->x86_clflush_size = 64; c->x86_cache_alignment = c->x86_clflush_size; c->x86_max_cores = 1; c->extended_cpuid_level = 0; memset(&c->x86_capability, 0, sizeof c->x86_capability); /* Get vendor name */ cpuid(0x00000000, (unsigned int *)&c->cpuid_level, (unsigned int *)&c->x86_vendor_id[0], (unsigned int *)&c->x86_vendor_id[8], (unsigned int *)&c->x86_vendor_id[4]); get_cpu_vendor(c); /* Initialize the standard set of capabilities */ /* Note that the vendor-specific code below might override */ /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { __u32 misc; cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4], &c->x86_capability[0]); c->x86 = (tfms >> 8) & 0xf; c->x86_model = (tfms >> 4) & 0xf; c->x86_mask = tfms & 0xf; if (c->x86 == 0xf) c->x86 += (tfms >> 20) & 0xff; if (c->x86 >= 0x6) c->x86_model += ((tfms >> 16) & 0xF) << 4; if (c->x86_capability[0] & (1<<19)) c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; } else { /* Have CPUID level 0 only - unheard of */ c->x86 = 4; } #ifdef CONFIG_SMP c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff; c->cpu_index = 0; #endif } /* * This does the hard work of actually picking apart the CPU stuff... */ void __cpuinit identify_cpu(struct cpuinfo_x86 *c) { int i; u32 xlvl; early_identify_cpu(c); /* AMD-defined flags: level 0x80000001 */ xlvl = cpuid_eax(0x80000000); c->extended_cpuid_level = xlvl; if ((xlvl & 0xffff0000) == 0x80000000) { if (xlvl >= 0x80000001) { c->x86_capability[1] = cpuid_edx(0x80000001); c->x86_capability[6] = cpuid_ecx(0x80000001); } if (xlvl >= 0x80000004) get_model_name(c); /* Default name */ } /* Transmeta-defined flags: level 0x80860001 */ xlvl = cpuid_eax(0x80860000); if ((xlvl & 0xffff0000) == 0x80860000) { /* Don't set x86_cpuid_level here for now to not confuse. */ if (xlvl >= 0x80860001) c->x86_capability[2] = cpuid_edx(0x80860001); } init_scattered_cpuid_features(c); c->apicid = phys_pkg_id(0); /* * Vendor-specific initialization. In this section we * canonicalize the feature flags, meaning if there are * features a certain CPU supports which CPUID doesn't * tell us, CPUID claiming incorrect flags, or other bugs, * we handle them here. * * At the end of this section, c->x86_capability better * indicate the features this CPU genuinely supports! */ switch (c->x86_vendor) { case X86_VENDOR_AMD: init_amd(c); break; case X86_VENDOR_INTEL: init_intel(c); break; case X86_VENDOR_UNKNOWN: default: display_cacheinfo(c); break; } select_idle_routine(c); detect_ht(c); /* * On SMP, boot_cpu_data holds the common feature set between * all CPUs; so make sure that we indicate which features are * common between the CPUs. The first time this routine gets * executed, c == &boot_cpu_data. */ if (c != &boot_cpu_data) { /* AND the already accumulated flags with these */ for (i = 0 ; i < NCAPINTS ; i++) boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; } #ifdef CONFIG_X86_MCE mcheck_init(c); #endif if (c != &boot_cpu_data) mtrr_ap_init(); #ifdef CONFIG_NUMA numa_add_cpu(smp_processor_id()); #endif } void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) { if (c->x86_model_id[0]) printk("%s", c->x86_model_id); if (c->x86_mask || c->cpuid_level >= 0) printk(" stepping %02x\n", c->x86_mask); else printk("\n"); } /* * Get CPU information for use by the procfs. */ static int show_cpuinfo(struct seq_file *m, void *v) { struct cpuinfo_x86 *c = v; int cpu = 0; /* * These flag bits must match the definitions in <asm/cpufeature.h>. * NULL means this bit is undefined or reserved; either way it doesn't * have meaning as far as Linux is concerned. Note that it's important * to realize there is a difference between this table and CPUID -- if * applications want to get the raw CPUID data, they should access * /dev/cpu/<cpu_nr>/cpuid instead. */ static const char *const x86_cap_flags[] = { /* Intel-defined */ "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov", "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx", "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe", /* AMD-defined */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL, NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm", "3dnowext", "3dnow", /* Transmeta-defined */ "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, /* Other (Linux-defined) */ "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr", NULL, NULL, NULL, NULL, "constant_tsc", "up", NULL, "arch_perfmon", "pebs", "bts", NULL, "sync_rdtsc", "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, /* Intel-defined (#2) */ "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est", "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL, NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, /* VIA/Cyrix/Centaur-defined */ NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en", "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, /* AMD-defined (#2) */ "lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy", "altmovcr8", "abm", "sse4a", "misalignsse", "3dnowprefetch", "osvw", "ibs", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, /* Auxiliary (Linux-defined) */ "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *const x86_power_flags[] = { "ts", /* temperature sensor */ "fid", /* frequency id control */ "vid", /* voltage id control */ "ttp", /* thermal trip */ "tm", "stc", "100mhzsteps", "hwpstate", "", /* tsc invariant mapped to constant_tsc */ /* nothing */ }; #ifdef CONFIG_SMP if (!cpu_online(c->cpu_index)) return 0; cpu = c->cpu_index; #endif seq_printf(m,"processor\t: %u\n" "vendor_id\t: %s\n" "cpu family\t: %d\n" "model\t\t: %d\n" "model name\t: %s\n", (unsigned)cpu, c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown", c->x86, (int)c->x86_model, c->x86_model_id[0] ? c->x86_model_id : "unknown"); if (c->x86_mask || c->cpuid_level >= 0) seq_printf(m, "stepping\t: %d\n", c->x86_mask); else seq_printf(m, "stepping\t: unknown\n"); if (cpu_has(c,X86_FEATURE_TSC)) { unsigned int freq = cpufreq_quick_get((unsigned)cpu); if (!freq) freq = cpu_khz; seq_printf(m, "cpu MHz\t\t: %u.%03u\n", freq / 1000, (freq % 1000)); } /* Cache size */ if (c->x86_cache_size >= 0) seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size); #ifdef CONFIG_SMP if (smp_num_siblings * c->x86_max_cores > 1) { seq_printf(m, "physical id\t: %d\n", c->phys_proc_id); seq_printf(m, "siblings\t: %d\n", cpus_weight(per_cpu(cpu_core_map, cpu))); seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id); seq_printf(m, "cpu cores\t: %d\n", c->booted_cores); } #endif seq_printf(m, "fpu\t\t: yes\n" "fpu_exception\t: yes\n" "cpuid level\t: %d\n" "wp\t\t: yes\n" "flags\t\t:", c->cpuid_level); { int i; for ( i = 0 ; i < 32*NCAPINTS ; i++ ) if (cpu_has(c, i) && x86_cap_flags[i] != NULL) seq_printf(m, " %s", x86_cap_flags[i]); } seq_printf(m, "\nbogomips\t: %lu.%02lu\n", c->loops_per_jiffy/(500000/HZ), (c->loops_per_jiffy/(5000/HZ)) % 100); if (c->x86_tlbsize > 0) seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize); seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size); seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment); seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n", c->x86_phys_bits, c->x86_virt_bits); seq_printf(m, "power management:"); { unsigned i; for (i = 0; i < 32; i++) if (c->x86_power & (1 << i)) { if (i < ARRAY_SIZE(x86_power_flags) && x86_power_flags[i]) seq_printf(m, "%s%s", x86_power_flags[i][0]?" ":"", x86_power_flags[i]); else seq_printf(m, " [%d]", i); } } seq_printf(m, "\n\n"); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { if (*pos == 0) /* just in case, cpu 0 is not the first */ *pos = first_cpu(cpu_possible_map); if ((*pos) < NR_CPUS && cpu_possible(*pos)) return &cpu_data(*pos); return NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { *pos = next_cpu(*pos, cpu_possible_map); return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } struct seq_operations cpuinfo_op = { .start =c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, };