/* * Low-Level PCI Support for PC * * (c) 1999--2000 Martin Mares <mj@ucw.cz> */ #include <linux/sched.h> #include <linux/pci.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/dmi.h> #include <asm/acpi.h> #include <asm/segment.h> #include <asm/io.h> #include <asm/smp.h> #include "pci.h" unsigned int pci_probe = PCI_PROBE_BIOS | PCI_PROBE_CONF1 | PCI_PROBE_CONF2 | PCI_PROBE_MMCONF; static int pci_bf_sort; int pci_routeirq; int pcibios_last_bus = -1; unsigned long pirq_table_addr; struct pci_bus *pci_root_bus; struct pci_raw_ops *raw_pci_ops; struct pci_raw_ops *raw_pci_ext_ops; int raw_pci_read(unsigned int domain, unsigned int bus, unsigned int devfn, int reg, int len, u32 *val) { if (reg < 256 && raw_pci_ops) return raw_pci_ops->read(domain, bus, devfn, reg, len, val); if (raw_pci_ext_ops) return raw_pci_ext_ops->read(domain, bus, devfn, reg, len, val); return -EINVAL; } int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn, int reg, int len, u32 val) { if (reg < 256 && raw_pci_ops) return raw_pci_ops->write(domain, bus, devfn, reg, len, val); if (raw_pci_ext_ops) return raw_pci_ext_ops->write(domain, bus, devfn, reg, len, val); return -EINVAL; } static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { return raw_pci_read(pci_domain_nr(bus), bus->number, devfn, where, size, value); } static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { return raw_pci_write(pci_domain_nr(bus), bus->number, devfn, where, size, value); } struct pci_ops pci_root_ops = { .read = pci_read, .write = pci_write, }; /* * legacy, numa, and acpi all want to call pcibios_scan_root * from their initcalls. This flag prevents that. */ int pcibios_scanned; /* * This interrupt-safe spinlock protects all accesses to PCI * configuration space. */ DEFINE_SPINLOCK(pci_config_lock); static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) { struct resource *rom_r = &dev->resource[PCI_ROM_RESOURCE]; if (rom_r->parent) return; if (rom_r->start) /* we deal with BIOS assigned ROM later */ return; if (!(pci_probe & PCI_ASSIGN_ROMS)) rom_r->start = rom_r->end = rom_r->flags = 0; } /* * Called after each bus is probed, but before its children * are examined. */ void __devinit pcibios_fixup_bus(struct pci_bus *b) { struct pci_dev *dev; pci_read_bridge_bases(b); list_for_each_entry(dev, &b->devices, bus_list) pcibios_fixup_device_resources(dev); } /* * Only use DMI information to set this if nothing was passed * on the kernel command line (which was parsed earlier). */ static int __devinit set_bf_sort(const struct dmi_system_id *d) { if (pci_bf_sort == pci_bf_sort_default) { pci_bf_sort = pci_dmi_bf; printk(KERN_INFO "PCI: %s detected, enabling pci=bfsort.\n", d->ident); } return 0; } /* * Enable renumbering of PCI bus# ranges to reach all PCI busses (Cardbus) */ #ifdef __i386__ static int __devinit assign_all_busses(const struct dmi_system_id *d) { pci_probe |= PCI_ASSIGN_ALL_BUSSES; printk(KERN_INFO "%s detected: enabling PCI bus# renumbering" " (pci=assign-busses)\n", d->ident); return 0; } #endif static struct dmi_system_id __devinitdata pciprobe_dmi_table[] = { #ifdef __i386__ /* * Laptops which need pci=assign-busses to see Cardbus cards */ { .callback = assign_all_busses, .ident = "Samsung X20 Laptop", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Samsung Electronics"), DMI_MATCH(DMI_PRODUCT_NAME, "SX20S"), }, }, #endif /* __i386__ */ { .callback = set_bf_sort, .ident = "Dell PowerEdge 1950", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1950"), }, }, { .callback = set_bf_sort, .ident = "Dell PowerEdge 1955", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1955"), }, }, { .callback = set_bf_sort, .ident = "Dell PowerEdge 2900", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2900"), }, }, { .callback = set_bf_sort, .ident = "Dell PowerEdge 2950", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2950"), }, }, { .callback = set_bf_sort, .ident = "Dell PowerEdge R900", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge R900"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL20p G3", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G3"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL20p G4", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G4"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL30p G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL30p G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL25p G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL25p G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL35p G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL35p G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL45p G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL45p G2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G2"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL460c G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL460c G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL465c G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL465c G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL480c G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL480c G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL685c G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL685c G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant DL385 G2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL385 G2"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant DL585 G2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL585 G2"), }, }, #ifdef __i386__ { .callback = assign_all_busses, .ident = "Compaq EVO N800c", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Compaq"), DMI_MATCH(DMI_PRODUCT_NAME, "EVO N800c"), }, }, #endif { .callback = set_bf_sort, .ident = "HP ProLiant DL385 G2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL385 G2"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant DL585 G2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL585 G2"), }, }, {} }; struct pci_bus * __devinit pcibios_scan_root(int busnum) { struct pci_bus *bus = NULL; struct pci_sysdata *sd; dmi_check_system(pciprobe_dmi_table); while ((bus = pci_find_next_bus(bus)) != NULL) { if (bus->number == busnum) { /* Already scanned */ return bus; } } /* Allocate per-root-bus (not per bus) arch-specific data. * TODO: leak; this memory is never freed. * It's arguable whether it's worth the trouble to care. */ sd = kzalloc(sizeof(*sd), GFP_KERNEL); if (!sd) { printk(KERN_ERR "PCI: OOM, not probing PCI bus %02x\n", busnum); return NULL; } printk(KERN_DEBUG "PCI: Probing PCI hardware (bus %02x)\n", busnum); return pci_scan_bus_parented(NULL, busnum, &pci_root_ops, sd); } extern u8 pci_cache_line_size; static int __init pcibios_init(void) { struct cpuinfo_x86 *c = &boot_cpu_data; if (!raw_pci_ops) { printk(KERN_WARNING "PCI: System does not support PCI\n"); return 0; } /* * Assume PCI cacheline size of 32 bytes for all x86s except K7/K8 * and P4. It's also good for 386/486s (which actually have 16) * as quite a few PCI devices do not support smaller values. */ pci_cache_line_size = 32 >> 2; if (c->x86 >= 6 && c->x86_vendor == X86_VENDOR_AMD) pci_cache_line_size = 64 >> 2; /* K7 & K8 */ else if (c->x86 > 6 && c->x86_vendor == X86_VENDOR_INTEL) pci_cache_line_size = 128 >> 2; /* P4 */ pcibios_resource_survey(); if (pci_bf_sort >= pci_force_bf) pci_sort_breadthfirst(); return 0; } subsys_initcall(pcibios_init); char * __devinit pcibios_setup(char *str) { if (!strcmp(str, "off")) { pci_probe = 0; return NULL; } else if (!strcmp(str, "bfsort")) { pci_bf_sort = pci_force_bf; return NULL; } else if (!strcmp(str, "nobfsort")) { pci_bf_sort = pci_force_nobf; return NULL; } #ifdef CONFIG_PCI_BIOS else if (!strcmp(str, "bios")) { pci_probe = PCI_PROBE_BIOS; return NULL; } else if (!strcmp(str, "nobios")) { pci_probe &= ~PCI_PROBE_BIOS; return NULL; } else if (!strcmp(str, "biosirq")) { pci_probe |= PCI_BIOS_IRQ_SCAN; return NULL; } else if (!strncmp(str, "pirqaddr=", 9)) { pirq_table_addr = simple_strtoul(str+9, NULL, 0); return NULL; } #endif #ifdef CONFIG_PCI_DIRECT else if (!strcmp(str, "conf1")) { pci_probe = PCI_PROBE_CONF1 | PCI_NO_CHECKS; return NULL; } else if (!strcmp(str, "conf2")) { pci_probe = PCI_PROBE_CONF2 | PCI_NO_CHECKS; return NULL; } #endif #ifdef CONFIG_PCI_MMCONFIG else if (!strcmp(str, "nommconf")) { pci_probe &= ~PCI_PROBE_MMCONF; return NULL; } #endif else if (!strcmp(str, "noacpi")) { acpi_noirq_set(); return NULL; } else if (!strcmp(str, "noearly")) { pci_probe |= PCI_PROBE_NOEARLY; return NULL; } #ifndef CONFIG_X86_VISWS else if (!strcmp(str, "usepirqmask")) { pci_probe |= PCI_USE_PIRQ_MASK; return NULL; } else if (!strncmp(str, "irqmask=", 8)) { pcibios_irq_mask = simple_strtol(str+8, NULL, 0); return NULL; } else if (!strncmp(str, "lastbus=", 8)) { pcibios_last_bus = simple_strtol(str+8, NULL, 0); return NULL; } #endif else if (!strcmp(str, "rom")) { pci_probe |= PCI_ASSIGN_ROMS; return NULL; } else if (!strcmp(str, "assign-busses")) { pci_probe |= PCI_ASSIGN_ALL_BUSSES; return NULL; } else if (!strcmp(str, "use_crs")) { pci_probe |= PCI_USE__CRS; return NULL; } else if (!strcmp(str, "routeirq")) { pci_routeirq = 1; return NULL; } return str; } unsigned int pcibios_assign_all_busses(void) { return (pci_probe & PCI_ASSIGN_ALL_BUSSES) ? 1 : 0; } int pcibios_enable_device(struct pci_dev *dev, int mask) { int err; if ((err = pci_enable_resources(dev, mask)) < 0) return err; if (!dev->msi_enabled) return pcibios_enable_irq(dev); return 0; } void pcibios_disable_device (struct pci_dev *dev) { if (!dev->msi_enabled && pcibios_disable_irq) pcibios_disable_irq(dev); } struct pci_bus *__devinit pci_scan_bus_with_sysdata(int busno) { struct pci_bus *bus = NULL; struct pci_sysdata *sd; /* * Allocate per-root-bus (not per bus) arch-specific data. * TODO: leak; this memory is never freed. * It's arguable whether it's worth the trouble to care. */ sd = kzalloc(sizeof(*sd), GFP_KERNEL); if (!sd) { printk(KERN_ERR "PCI: OOM, skipping PCI bus %02x\n", busno); return NULL; } sd->node = -1; bus = pci_scan_bus(busno, &pci_root_ops, sd); if (!bus) kfree(sd); return bus; }