/* * Generic VM initialization for x86-64 NUMA setups. * Copyright 2002,2003 Andi Kleen, SuSE Labs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef Dprintk #define Dprintk(x...) #endif struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; bootmem_data_t plat_node_bdata[MAX_NUMNODES]; int memnode_shift; u8 memnodemap[NODEMAPSIZE]; unsigned char cpu_to_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = NUMA_NO_NODE }; unsigned char apicid_to_node[256] __cpuinitdata = { [0 ... NR_CPUS-1] = NUMA_NO_NODE }; cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly; int numa_off __initdata; int __init compute_hash_shift(struct node *nodes, int numnodes) { int i; int shift = 20; unsigned long addr,maxend=0; for (i = 0; i < numnodes; i++) if ((nodes[i].start != nodes[i].end) && (nodes[i].end > maxend)) maxend = nodes[i].end; while ((1UL << shift) < (maxend / NODEMAPSIZE)) shift++; printk (KERN_DEBUG"Using %d for the hash shift. Max adder is %lx \n", shift,maxend); memset(memnodemap,0xff,sizeof(*memnodemap) * NODEMAPSIZE); for (i = 0; i < numnodes; i++) { if (nodes[i].start == nodes[i].end) continue; for (addr = nodes[i].start; addr < nodes[i].end; addr += (1UL << shift)) { if (memnodemap[addr >> shift] != 0xff) { printk(KERN_INFO "Your memory is not aligned you need to rebuild your kernel " "with a bigger NODEMAPSIZE shift=%d adder=%lu\n", shift,addr); return -1; } memnodemap[addr >> shift] = i; } } return shift; } #ifdef CONFIG_SPARSEMEM int early_pfn_to_nid(unsigned long pfn) { return phys_to_nid(pfn << PAGE_SHIFT); } #endif /* Initialize bootmem allocator for a node */ void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) { unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start; unsigned long nodedata_phys; const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE); start = round_up(start, ZONE_ALIGN); printk("Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end); start_pfn = start >> PAGE_SHIFT; end_pfn = end >> PAGE_SHIFT; memory_present(nodeid, start_pfn, end_pfn); nodedata_phys = find_e820_area(start, end, pgdat_size); if (nodedata_phys == -1L) panic("Cannot find memory pgdat in node %d\n", nodeid); Dprintk("nodedata_phys %lx\n", nodedata_phys); node_data[nodeid] = phys_to_virt(nodedata_phys); memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid]; NODE_DATA(nodeid)->node_start_pfn = start_pfn; NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn; /* Find a place for the bootmem map */ bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE); bootmap_start = find_e820_area(bootmap_start, end, bootmap_pages<> PAGE_SHIFT, start_pfn, end_pfn); e820_bootmem_free(NODE_DATA(nodeid), start, end); reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size); reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages< 0 have a zero length zone DMA */ dma_end_pfn = __pa(MAX_DMA_ADDRESS) >> PAGE_SHIFT; if (start_pfn < dma_end_pfn) { zones[ZONE_DMA] = dma_end_pfn - start_pfn; holes[ZONE_DMA] = e820_hole_size(start_pfn, dma_end_pfn); zones[ZONE_NORMAL] = end_pfn - dma_end_pfn; holes[ZONE_NORMAL] = e820_hole_size(dma_end_pfn, end_pfn); } else { zones[ZONE_NORMAL] = end_pfn - start_pfn; holes[ZONE_NORMAL] = e820_hole_size(start_pfn, end_pfn); } free_area_init_node(nodeid, NODE_DATA(nodeid), zones, start_pfn, holes); } void __init numa_init_array(void) { int rr, i; /* There are unfortunately some poorly designed mainboards around that only connect memory to a single CPU. This breaks the 1:1 cpu->node mapping. To avoid this fill in the mapping for all possible CPUs, as the number of CPUs is not known yet. We round robin the existing nodes. */ rr = 0; for (i = 0; i < NR_CPUS; i++) { if (cpu_to_node[i] != NUMA_NO_NODE) continue; rr = next_node(rr, node_online_map); if (rr == MAX_NUMNODES) rr = first_node(node_online_map); cpu_to_node[i] = rr; rr++; } set_bit(0, &node_to_cpumask[cpu_to_node(0)]); } #ifdef CONFIG_NUMA_EMU int numa_fake __initdata = 0; /* Numa emulation */ static int numa_emulation(unsigned long start_pfn, unsigned long end_pfn) { int i; struct node nodes[MAX_NUMNODES]; unsigned long sz = ((end_pfn - start_pfn)< 1) { unsigned long x = 1; while ((x << 1) < sz) x <<= 1; if (x < sz/2) printk("Numa emulation unbalanced. Complain to maintainer\n"); sz = x; } memset(&nodes,0,sizeof(nodes)); for (i = 0; i < numa_fake; i++) { nodes[i].start = (start_pfn<> 20); node_set_online(i); } memnode_shift = compute_hash_shift(nodes, numa_fake); if (memnode_shift < 0) { memnode_shift = 0; printk(KERN_ERR "No NUMA hash function found. Emulation disabled.\n"); return -1; } for_each_online_node(i) setup_node_bootmem(i, nodes[i].start, nodes[i].end); numa_init_array(); return 0; } #endif void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn) { int i; #ifdef CONFIG_NUMA_EMU if (numa_fake && !numa_emulation(start_pfn, end_pfn)) return; #endif #ifdef CONFIG_ACPI_NUMA if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT)) return; #endif #ifdef CONFIG_K8_NUMA if (!numa_off && !k8_scan_nodes(start_pfn<