/* * libata-core.c - helper library for ATA * * Maintained by: Jeff Garzik * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2003-2004 Red Hat, Inc. All rights reserved. * Copyright 2003-2004 Jeff Garzik * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from http://www.t13.org/ and * http://www.sata-io.org/ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libata.h" #define DRV_VERSION "2.20" /* must be exactly four chars */ /* debounce timing parameters in msecs { interval, duration, timeout } */ const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; static unsigned int ata_dev_init_params(struct ata_device *dev, u16 heads, u16 sectors); static unsigned int ata_dev_set_xfermode(struct ata_device *dev); static void ata_dev_xfermask(struct ata_device *dev); unsigned int ata_print_id = 1; static struct workqueue_struct *ata_wq; struct workqueue_struct *ata_aux_wq; int atapi_enabled = 1; module_param(atapi_enabled, int, 0444); MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); int atapi_dmadir = 0; module_param(atapi_dmadir, int, 0444); MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); int libata_fua = 0; module_param_named(fua, libata_fua, int, 0444); MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); static int ata_ignore_hpa = 0; module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; module_param(ata_probe_timeout, int, 0444); MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); int libata_noacpi = 1; module_param_named(noacpi, libata_noacpi, int, 0444); MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set"); MODULE_AUTHOR("Jeff Garzik"); MODULE_DESCRIPTION("Library module for ATA devices"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); /** * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure * @tf: Taskfile to convert * @fis: Buffer into which data will output * @pmp: Port multiplier port * * Converts a standard ATA taskfile to a Serial ATA * FIS structure (Register - Host to Device). * * LOCKING: * Inherited from caller. */ void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) { fis[0] = 0x27; /* Register - Host to Device FIS */ fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, bit 7 indicates Command FIS */ fis[2] = tf->command; fis[3] = tf->feature; fis[4] = tf->lbal; fis[5] = tf->lbam; fis[6] = tf->lbah; fis[7] = tf->device; fis[8] = tf->hob_lbal; fis[9] = tf->hob_lbam; fis[10] = tf->hob_lbah; fis[11] = tf->hob_feature; fis[12] = tf->nsect; fis[13] = tf->hob_nsect; fis[14] = 0; fis[15] = tf->ctl; fis[16] = 0; fis[17] = 0; fis[18] = 0; fis[19] = 0; } /** * ata_tf_from_fis - Convert SATA FIS to ATA taskfile * @fis: Buffer from which data will be input * @tf: Taskfile to output * * Converts a serial ATA FIS structure to a standard ATA taskfile. * * LOCKING: * Inherited from caller. */ void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) { tf->command = fis[2]; /* status */ tf->feature = fis[3]; /* error */ tf->lbal = fis[4]; tf->lbam = fis[5]; tf->lbah = fis[6]; tf->device = fis[7]; tf->hob_lbal = fis[8]; tf->hob_lbam = fis[9]; tf->hob_lbah = fis[10]; tf->nsect = fis[12]; tf->hob_nsect = fis[13]; } static const u8 ata_rw_cmds[] = { /* pio multi */ ATA_CMD_READ_MULTI, ATA_CMD_WRITE_MULTI, ATA_CMD_READ_MULTI_EXT, ATA_CMD_WRITE_MULTI_EXT, 0, 0, 0, ATA_CMD_WRITE_MULTI_FUA_EXT, /* pio */ ATA_CMD_PIO_READ, ATA_CMD_PIO_WRITE, ATA_CMD_PIO_READ_EXT, ATA_CMD_PIO_WRITE_EXT, 0, 0, 0, 0, /* dma */ ATA_CMD_READ, ATA_CMD_WRITE, ATA_CMD_READ_EXT, ATA_CMD_WRITE_EXT, 0, 0, 0, ATA_CMD_WRITE_FUA_EXT }; /** * ata_rwcmd_protocol - set taskfile r/w commands and protocol * @tf: command to examine and configure * @dev: device tf belongs to * * Examine the device configuration and tf->flags to calculate * the proper read/write commands and protocol to use. * * LOCKING: * caller. */ static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) { u8 cmd; int index, fua, lba48, write; fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; if (dev->flags & ATA_DFLAG_PIO) { tf->protocol = ATA_PROT_PIO; index = dev->multi_count ? 0 : 8; } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) { /* Unable to use DMA due to host limitation */ tf->protocol = ATA_PROT_PIO; index = dev->multi_count ? 0 : 8; } else { tf->protocol = ATA_PROT_DMA; index = 16; } cmd = ata_rw_cmds[index + fua + lba48 + write]; if (cmd) { tf->command = cmd; return 0; } return -1; } /** * ata_tf_read_block - Read block address from ATA taskfile * @tf: ATA taskfile of interest * @dev: ATA device @tf belongs to * * LOCKING: * None. * * Read block address from @tf. This function can handle all * three address formats - LBA, LBA48 and CHS. tf->protocol and * flags select the address format to use. * * RETURNS: * Block address read from @tf. */ u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) { u64 block = 0; if (tf->flags & ATA_TFLAG_LBA) { if (tf->flags & ATA_TFLAG_LBA48) { block |= (u64)tf->hob_lbah << 40; block |= (u64)tf->hob_lbam << 32; block |= tf->hob_lbal << 24; } else block |= (tf->device & 0xf) << 24; block |= tf->lbah << 16; block |= tf->lbam << 8; block |= tf->lbal; } else { u32 cyl, head, sect; cyl = tf->lbam | (tf->lbah << 8); head = tf->device & 0xf; sect = tf->lbal; block = (cyl * dev->heads + head) * dev->sectors + sect; } return block; } /** * ata_build_rw_tf - Build ATA taskfile for given read/write request * @tf: Target ATA taskfile * @dev: ATA device @tf belongs to * @block: Block address * @n_block: Number of blocks * @tf_flags: RW/FUA etc... * @tag: tag * * LOCKING: * None. * * Build ATA taskfile @tf for read/write request described by * @block, @n_block, @tf_flags and @tag on @dev. * * RETURNS: * * 0 on success, -ERANGE if the request is too large for @dev, * -EINVAL if the request is invalid. */ int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, u64 block, u32 n_block, unsigned int tf_flags, unsigned int tag) { tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf->flags |= tf_flags; if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { /* yay, NCQ */ if (!lba_48_ok(block, n_block)) return -ERANGE; tf->protocol = ATA_PROT_NCQ; tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; if (tf->flags & ATA_TFLAG_WRITE) tf->command = ATA_CMD_FPDMA_WRITE; else tf->command = ATA_CMD_FPDMA_READ; tf->nsect = tag << 3; tf->hob_feature = (n_block >> 8) & 0xff; tf->feature = n_block & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->device = 1 << 6; if (tf->flags & ATA_TFLAG_FUA) tf->device |= 1 << 7; } else if (dev->flags & ATA_DFLAG_LBA) { tf->flags |= ATA_TFLAG_LBA; if (lba_28_ok(block, n_block)) { /* use LBA28 */ tf->device |= (block >> 24) & 0xf; } else if (lba_48_ok(block, n_block)) { if (!(dev->flags & ATA_DFLAG_LBA48)) return -ERANGE; /* use LBA48 */ tf->flags |= ATA_TFLAG_LBA48; tf->hob_nsect = (n_block >> 8) & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; } else /* request too large even for LBA48 */ return -ERANGE; if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) return -EINVAL; tf->nsect = n_block & 0xff; tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->device |= ATA_LBA; } else { /* CHS */ u32 sect, head, cyl, track; /* The request -may- be too large for CHS addressing. */ if (!lba_28_ok(block, n_block)) return -ERANGE; if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) return -EINVAL; /* Convert LBA to CHS */ track = (u32)block / dev->sectors; cyl = track / dev->heads; head = track % dev->heads; sect = (u32)block % dev->sectors + 1; DPRINTK("block %u track %u cyl %u head %u sect %u\n", (u32)block, track, cyl, head, sect); /* Check whether the converted CHS can fit. Cylinder: 0-65535 Head: 0-15 Sector: 1-255*/ if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) return -ERANGE; tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ tf->lbal = sect; tf->lbam = cyl; tf->lbah = cyl >> 8; tf->device |= head; } return 0; } /** * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask * @pio_mask: pio_mask * @mwdma_mask: mwdma_mask * @udma_mask: udma_mask * * Pack @pio_mask, @mwdma_mask and @udma_mask into a single * unsigned int xfer_mask. * * LOCKING: * None. * * RETURNS: * Packed xfer_mask. */ static unsigned int ata_pack_xfermask(unsigned int pio_mask, unsigned int mwdma_mask, unsigned int udma_mask) { return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); } /** * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks * @xfer_mask: xfer_mask to unpack * @pio_mask: resulting pio_mask * @mwdma_mask: resulting mwdma_mask * @udma_mask: resulting udma_mask * * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. * Any NULL distination masks will be ignored. */ static void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, unsigned int *mwdma_mask, unsigned int *udma_mask) { if (pio_mask) *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; if (mwdma_mask) *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; if (udma_mask) *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; } static const struct ata_xfer_ent { int shift, bits; u8 base; } ata_xfer_tbl[] = { { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, { -1, }, }; /** * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask * @xfer_mask: xfer_mask of interest * * Return matching XFER_* value for @xfer_mask. Only the highest * bit of @xfer_mask is considered. * * LOCKING: * None. * * RETURNS: * Matching XFER_* value, 0 if no match found. */ static u8 ata_xfer_mask2mode(unsigned int xfer_mask) { int highbit = fls(xfer_mask) - 1; const struct ata_xfer_ent *ent; for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) if (highbit >= ent->shift && highbit < ent->shift + ent->bits) return ent->base + highbit - ent->shift; return 0; } /** * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* * @xfer_mode: XFER_* of interest * * Return matching xfer_mask for @xfer_mode. * * LOCKING: * None. * * RETURNS: * Matching xfer_mask, 0 if no match found. */ static unsigned int ata_xfer_mode2mask(u8 xfer_mode) { const struct ata_xfer_ent *ent; for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) return 1 << (ent->shift + xfer_mode - ent->base); return 0; } /** * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* * @xfer_mode: XFER_* of interest * * Return matching xfer_shift for @xfer_mode. * * LOCKING: * None. * * RETURNS: * Matching xfer_shift, -1 if no match found. */ static int ata_xfer_mode2shift(unsigned int xfer_mode) { const struct ata_xfer_ent *ent; for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) return ent->shift; return -1; } /** * ata_mode_string - convert xfer_mask to string * @xfer_mask: mask of bits supported; only highest bit counts. * * Determine string which represents the highest speed * (highest bit in @modemask). * * LOCKING: * None. * * RETURNS: * Constant C string representing highest speed listed in * @mode_mask, or the constant C string "". */ static const char *ata_mode_string(unsigned int xfer_mask) { static const char * const xfer_mode_str[] = { "PIO0", "PIO1", "PIO2", "PIO3", "PIO4", "PIO5", "PIO6", "MWDMA0", "MWDMA1", "MWDMA2", "MWDMA3", "MWDMA4", "UDMA/16", "UDMA/25", "UDMA/33", "UDMA/44", "UDMA/66", "UDMA/100", "UDMA/133", "UDMA7", }; int highbit; highbit = fls(xfer_mask) - 1; if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) return xfer_mode_str[highbit]; return ""; } static const char *sata_spd_string(unsigned int spd) { static const char * const spd_str[] = { "1.5 Gbps", "3.0 Gbps", }; if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) return ""; return spd_str[spd - 1]; } void ata_dev_disable(struct ata_device *dev) { if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) { ata_dev_printk(dev, KERN_WARNING, "disabled\n"); ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | ATA_DNXFER_QUIET); dev->class++; } } /** * ata_devchk - PATA device presence detection * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * This technique was originally described in * Hale Landis's ATADRVR (www.ata-atapi.com), and * later found its way into the ATA/ATAPI spec. * * Write a pattern to the ATA shadow registers, * and if a device is present, it will respond by * correctly storing and echoing back the * ATA shadow register contents. * * LOCKING: * caller. */ static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 nsect, lbal; ap->ops->dev_select(ap, device); iowrite8(0x55, ioaddr->nsect_addr); iowrite8(0xaa, ioaddr->lbal_addr); iowrite8(0xaa, ioaddr->nsect_addr); iowrite8(0x55, ioaddr->lbal_addr); iowrite8(0x55, ioaddr->nsect_addr); iowrite8(0xaa, ioaddr->lbal_addr); nsect = ioread8(ioaddr->nsect_addr); lbal = ioread8(ioaddr->lbal_addr); if ((nsect == 0x55) && (lbal == 0xaa)) return 1; /* we found a device */ return 0; /* nothing found */ } /** * ata_dev_classify - determine device type based on ATA-spec signature * @tf: ATA taskfile register set for device to be identified * * Determine from taskfile register contents whether a device is * ATA or ATAPI, as per "Signature and persistence" section * of ATA/PI spec (volume 1, sect 5.14). * * LOCKING: * None. * * RETURNS: * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN * the event of failure. */ unsigned int ata_dev_classify(const struct ata_taskfile *tf) { /* Apple's open source Darwin code hints that some devices only * put a proper signature into the LBA mid/high registers, * So, we only check those. It's sufficient for uniqueness. */ if (((tf->lbam == 0) && (tf->lbah == 0)) || ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { DPRINTK("found ATA device by sig\n"); return ATA_DEV_ATA; } if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { DPRINTK("found ATAPI device by sig\n"); return ATA_DEV_ATAPI; } DPRINTK("unknown device\n"); return ATA_DEV_UNKNOWN; } /** * ata_dev_try_classify - Parse returned ATA device signature * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * @r_err: Value of error register on completion * * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, * an ATA/ATAPI-defined set of values is placed in the ATA * shadow registers, indicating the results of device detection * and diagnostics. * * Select the ATA device, and read the values from the ATA shadow * registers. Then parse according to the Error register value, * and the spec-defined values examined by ata_dev_classify(). * * LOCKING: * caller. * * RETURNS: * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. */ unsigned int ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) { struct ata_taskfile tf; unsigned int class; u8 err; ap->ops->dev_select(ap, device); memset(&tf, 0, sizeof(tf)); ap->ops->tf_read(ap, &tf); err = tf.feature; if (r_err) *r_err = err; /* see if device passed diags: if master then continue and warn later */ if (err == 0 && device == 0) /* diagnostic fail : do nothing _YET_ */ ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; else if (err == 1) /* do nothing */ ; else if ((device == 0) && (err == 0x81)) /* do nothing */ ; else return ATA_DEV_NONE; /* determine if device is ATA or ATAPI */ class = ata_dev_classify(&tf); if (class == ATA_DEV_UNKNOWN) return ATA_DEV_NONE; if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) return ATA_DEV_NONE; return class; } /** * ata_id_string - Convert IDENTIFY DEVICE page into string * @id: IDENTIFY DEVICE results we will examine * @s: string into which data is output * @ofs: offset into identify device page * @len: length of string to return. must be an even number. * * The strings in the IDENTIFY DEVICE page are broken up into * 16-bit chunks. Run through the string, and output each * 8-bit chunk linearly, regardless of platform. * * LOCKING: * caller. */ void ata_id_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len) { unsigned int c; while (len > 0) { c = id[ofs] >> 8; *s = c; s++; c = id[ofs] & 0xff; *s = c; s++; ofs++; len -= 2; } } /** * ata_id_c_string - Convert IDENTIFY DEVICE page into C string * @id: IDENTIFY DEVICE results we will examine * @s: string into which data is output * @ofs: offset into identify device page * @len: length of string to return. must be an odd number. * * This function is identical to ata_id_string except that it * trims trailing spaces and terminates the resulting string with * null. @len must be actual maximum length (even number) + 1. * * LOCKING: * caller. */ void ata_id_c_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len) { unsigned char *p; WARN_ON(!(len & 1)); ata_id_string(id, s, ofs, len - 1); p = s + strnlen(s, len - 1); while (p > s && p[-1] == ' ') p--; *p = '\0'; } static u64 ata_tf_to_lba48(struct ata_taskfile *tf) { u64 sectors = 0; sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; sectors |= (tf->hob_lbal & 0xff) << 24; sectors |= (tf->lbah & 0xff) << 16; sectors |= (tf->lbam & 0xff) << 8; sectors |= (tf->lbal & 0xff); return ++sectors; } static u64 ata_tf_to_lba(struct ata_taskfile *tf) { u64 sectors = 0; sectors |= (tf->device & 0x0f) << 24; sectors |= (tf->lbah & 0xff) << 16; sectors |= (tf->lbam & 0xff) << 8; sectors |= (tf->lbal & 0xff); return ++sectors; } /** * ata_read_native_max_address_ext - LBA48 native max query * @dev: Device to query * * Perform an LBA48 size query upon the device in question. Return the * actual LBA48 size or zero if the command fails. */ static u64 ata_read_native_max_address_ext(struct ata_device *dev) { unsigned int err; struct ata_taskfile tf; ata_tf_init(dev, &tf); tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; tf.protocol |= ATA_PROT_NODATA; tf.device |= 0x40; err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); if (err) return 0; return ata_tf_to_lba48(&tf); } /** * ata_read_native_max_address - LBA28 native max query * @dev: Device to query * * Performa an LBA28 size query upon the device in question. Return the * actual LBA28 size or zero if the command fails. */ static u64 ata_read_native_max_address(struct ata_device *dev) { unsigned int err; struct ata_taskfile tf; ata_tf_init(dev, &tf); tf.command = ATA_CMD_READ_NATIVE_MAX; tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; tf.protocol |= ATA_PROT_NODATA; tf.device |= 0x40; err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); if (err) return 0; return ata_tf_to_lba(&tf); } /** * ata_set_native_max_address_ext - LBA48 native max set * @dev: Device to query * * Perform an LBA48 size set max upon the device in question. Return the * actual LBA48 size or zero if the command fails. */ static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors) { unsigned int err; struct ata_taskfile tf; new_sectors--; ata_tf_init(dev, &tf); tf.command = ATA_CMD_SET_MAX_EXT; tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; tf.protocol |= ATA_PROT_NODATA; tf.device |= 0x40; tf.lbal = (new_sectors >> 0) & 0xff; tf.lbam = (new_sectors >> 8) & 0xff; tf.lbah = (new_sectors >> 16) & 0xff; tf.hob_lbal = (new_sectors >> 24) & 0xff; tf.hob_lbam = (new_sectors >> 32) & 0xff; tf.hob_lbah = (new_sectors >> 40) & 0xff; err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); if (err) return 0; return ata_tf_to_lba48(&tf); } /** * ata_set_native_max_address - LBA28 native max set * @dev: Device to query * * Perform an LBA28 size set max upon the device in question. Return the * actual LBA28 size or zero if the command fails. */ static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors) { unsigned int err; struct ata_taskfile tf; new_sectors--; ata_tf_init(dev, &tf); tf.command = ATA_CMD_SET_MAX; tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; tf.protocol |= ATA_PROT_NODATA; tf.lbal = (new_sectors >> 0) & 0xff; tf.lbam = (new_sectors >> 8) & 0xff; tf.lbah = (new_sectors >> 16) & 0xff; tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40; err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); if (err) return 0; return ata_tf_to_lba(&tf); } /** * ata_hpa_resize - Resize a device with an HPA set * @dev: Device to resize * * Read the size of an LBA28 or LBA48 disk with HPA features and resize * it if required to the full size of the media. The caller must check * the drive has the HPA feature set enabled. */ static u64 ata_hpa_resize(struct ata_device *dev) { u64 sectors = dev->n_sectors; u64 hpa_sectors; if (ata_id_has_lba48(dev->id)) hpa_sectors = ata_read_native_max_address_ext(dev); else hpa_sectors = ata_read_native_max_address(dev); /* if no hpa, both should be equal */ ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, hpa_sectors = %lld\n", __FUNCTION__, sectors, hpa_sectors); if (hpa_sectors > sectors) { ata_dev_printk(dev, KERN_INFO, "Host Protected Area detected:\n" "\tcurrent size: %lld sectors\n" "\tnative size: %lld sectors\n", sectors, hpa_sectors); if (ata_ignore_hpa) { if (ata_id_has_lba48(dev->id)) hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors); else hpa_sectors = ata_set_native_max_address(dev, hpa_sectors); if (hpa_sectors) { ata_dev_printk(dev, KERN_INFO, "native size increased to %lld sectors\n", hpa_sectors); return hpa_sectors; } } } return sectors; } static u64 ata_id_n_sectors(const u16 *id) { if (ata_id_has_lba(id)) { if (ata_id_has_lba48(id)) return ata_id_u64(id, 100); else return ata_id_u32(id, 60); } else { if (ata_id_current_chs_valid(id)) return ata_id_u32(id, 57); else return id[1] * id[3] * id[6]; } } /** * ata_id_to_dma_mode - Identify DMA mode from id block * @dev: device to identify * @unknown: mode to assume if we cannot tell * * Set up the timing values for the device based upon the identify * reported values for the DMA mode. This function is used by drivers * which rely upon firmware configured modes, but wish to report the * mode correctly when possible. * * In addition we emit similarly formatted messages to the default * ata_dev_set_mode handler, in order to provide consistency of * presentation. */ void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) { unsigned int mask; u8 mode; /* Pack the DMA modes */ mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; if (dev->id[53] & 0x04) mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; /* Select the mode in use */ mode = ata_xfer_mask2mode(mask); if (mode != 0) { ata_dev_printk(dev, KERN_INFO, "configured for %s\n", ata_mode_string(mask)); } else { /* SWDMA perhaps ? */ mode = unknown; ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); } /* Configure the device reporting */ dev->xfer_mode = mode; dev->xfer_shift = ata_xfer_mode2shift(mode); } /** * ata_noop_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * * This function performs no actual function. * * May be used as the dev_select() entry in ata_port_operations. * * LOCKING: * caller. */ void ata_noop_dev_select (struct ata_port *ap, unsigned int device) { } /** * ata_std_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * * Use the method defined in the ATA specification to * make either device 0, or device 1, active on the * ATA channel. Works with both PIO and MMIO. * * May be used as the dev_select() entry in ata_port_operations. * * LOCKING: * caller. */ void ata_std_dev_select (struct ata_port *ap, unsigned int device) { u8 tmp; if (device == 0) tmp = ATA_DEVICE_OBS; else tmp = ATA_DEVICE_OBS | ATA_DEV1; iowrite8(tmp, ap->ioaddr.device_addr); ata_pause(ap); /* needed; also flushes, for mmio */ } /** * ata_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * @wait: non-zero to wait for Status register BSY bit to clear * @can_sleep: non-zero if context allows sleeping * * Use the method defined in the ATA specification to * make either device 0, or device 1, active on the * ATA channel. * * This is a high-level version of ata_std_dev_select(), * which additionally provides the services of inserting * the proper pauses and status polling, where needed. * * LOCKING: * caller. */ void ata_dev_select(struct ata_port *ap, unsigned int device, unsigned int wait, unsigned int can_sleep) { if (ata_msg_probe(ap)) ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " "device %u, wait %u\n", device, wait); if (wait) ata_wait_idle(ap); ap->ops->dev_select(ap, device); if (wait) { if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) msleep(150); ata_wait_idle(ap); } } /** * ata_dump_id - IDENTIFY DEVICE info debugging output * @id: IDENTIFY DEVICE page to dump * * Dump selected 16-bit words from the given IDENTIFY DEVICE * page. * * LOCKING: * caller. */ static inline void ata_dump_id(const u16 *id) { DPRINTK("49==0x%04x " "53==0x%04x " "63==0x%04x " "64==0x%04x " "75==0x%04x \n", id[49], id[53], id[63], id[64], id[75]); DPRINTK("80==0x%04x " "81==0x%04x " "82==0x%04x " "83==0x%04x " "84==0x%04x \n", id[80], id[81], id[82], id[83], id[84]); DPRINTK("88==0x%04x " "93==0x%04x\n", id[88], id[93]); } /** * ata_id_xfermask - Compute xfermask from the given IDENTIFY data * @id: IDENTIFY data to compute xfer mask from * * Compute the xfermask for this device. This is not as trivial * as it seems if we must consider early devices correctly. * * FIXME: pre IDE drive timing (do we care ?). * * LOCKING: * None. * * RETURNS: * Computed xfermask */ static unsigned int ata_id_xfermask(const u16 *id) { unsigned int pio_mask, mwdma_mask, udma_mask; /* Usual case. Word 53 indicates word 64 is valid */ if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { pio_mask = id[ATA_ID_PIO_MODES] & 0x03; pio_mask <<= 3; pio_mask |= 0x7; } else { /* If word 64 isn't valid then Word 51 high byte holds * the PIO timing number for the maximum. Turn it into * a mask. */ u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; if (mode < 5) /* Valid PIO range */ pio_mask = (2 << mode) - 1; else pio_mask = 1; /* But wait.. there's more. Design your standards by * committee and you too can get a free iordy field to * process. However its the speeds not the modes that * are supported... Note drivers using the timing API * will get this right anyway */ } mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; if (ata_id_is_cfa(id)) { /* * Process compact flash extended modes */ int pio = id[163] & 0x7; int dma = (id[163] >> 3) & 7; if (pio) pio_mask |= (1 << 5); if (pio > 1) pio_mask |= (1 << 6); if (dma) mwdma_mask |= (1 << 3); if (dma > 1) mwdma_mask |= (1 << 4); } udma_mask = 0; if (id[ATA_ID_FIELD_VALID] & (1 << 2)) udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); } /** * ata_port_queue_task - Queue port_task * @ap: The ata_port to queue port_task for * @fn: workqueue function to be scheduled * @data: data for @fn to use * @delay: delay time for workqueue function * * Schedule @fn(@data) for execution after @delay jiffies using * port_task. There is one port_task per port and it's the * user(low level driver)'s responsibility to make sure that only * one task is active at any given time. * * libata core layer takes care of synchronization between * port_task and EH. ata_port_queue_task() may be ignored for EH * synchronization. * * LOCKING: * Inherited from caller. */ void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, unsigned long delay) { int rc; if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK) return; PREPARE_DELAYED_WORK(&ap->port_task, fn); ap->port_task_data = data; rc = queue_delayed_work(ata_wq, &ap->port_task, delay); /* rc == 0 means that another user is using port task */ WARN_ON(rc == 0); } /** * ata_port_flush_task - Flush port_task * @ap: The ata_port to flush port_task for * * After this function completes, port_task is guranteed not to * be running or scheduled. * * LOCKING: * Kernel thread context (may sleep) */ void ata_port_flush_task(struct ata_port *ap) { unsigned long flags; DPRINTK("ENTER\n"); spin_lock_irqsave(ap->lock, flags); ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK; spin_unlock_irqrestore(ap->lock, flags); DPRINTK("flush #1\n"); flush_workqueue(ata_wq); /* * At this point, if a task is running, it's guaranteed to see * the FLUSH flag; thus, it will never queue pio tasks again. * Cancel and flush. */ if (!cancel_delayed_work(&ap->port_task)) { if (ata_msg_ctl(ap)) ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", __FUNCTION__); flush_workqueue(ata_wq); } spin_lock_irqsave(ap->lock, flags); ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK; spin_unlock_irqrestore(ap->lock, flags); if (ata_msg_ctl(ap)) ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); } static void ata_qc_complete_internal(struct ata_queued_cmd *qc) { struct completion *waiting = qc->private_data; complete(waiting); } /** * ata_exec_internal_sg - execute libata internal command * @dev: Device to which the command is sent * @tf: Taskfile registers for the command and the result * @cdb: CDB for packet command * @dma_dir: Data tranfer direction of the command * @sg: sg list for the data buffer of the command * @n_elem: Number of sg entries * * Executes libata internal command with timeout. @tf contains * command on entry and result on return. Timeout and error * conditions are reported via return value. No recovery action * is taken after a command times out. It's caller's duty to * clean up after timeout. * * LOCKING: * None. Should be called with kernel context, might sleep. * * RETURNS: * Zero on success, AC_ERR_* mask on failure */ unsigned ata_exec_internal_sg(struct ata_device *dev, struct ata_taskfile *tf, const u8 *cdb, int dma_dir, struct scatterlist *sg, unsigned int n_elem) { struct ata_port *ap = dev->ap; u8 command = tf->command; struct ata_queued_cmd *qc; unsigned int tag, preempted_tag; u32 preempted_sactive, preempted_qc_active; DECLARE_COMPLETION_ONSTACK(wait); unsigned long flags; unsigned int err_mask; int rc; spin_lock_irqsave(ap->lock, flags); /* no internal command while frozen */ if (ap->pflags & ATA_PFLAG_FROZEN) { spin_unlock_irqrestore(ap->lock, flags); return AC_ERR_SYSTEM; } /* initialize internal qc */ /* XXX: Tag 0 is used for drivers with legacy EH as some * drivers choke if any other tag is given. This breaks * ata_tag_internal() test for those drivers. Don't use new * EH stuff without converting to it. */ if (ap->ops->error_handler) tag = ATA_TAG_INTERNAL; else tag = 0; if (test_and_set_bit(tag, &ap->qc_allocated)) BUG(); qc = __ata_qc_from_tag(ap, tag); qc->tag = tag; qc->scsicmd = NULL; qc->ap = ap; qc->dev = dev; ata_qc_reinit(qc); preempted_tag = ap->active_tag; preempted_sactive = ap->sactive; preempted_qc_active = ap->qc_active; ap->active_tag = ATA_TAG_POISON; ap->sactive = 0; ap->qc_active = 0; /* prepare & issue qc */ qc->tf = *tf; if (cdb) memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); qc->flags |= ATA_QCFLAG_RESULT_TF; qc->dma_dir = dma_dir; if (dma_dir != DMA_NONE) { unsigned int i, buflen = 0; for (i = 0; i < n_elem; i++) buflen += sg[i].length; ata_sg_init(qc, sg, n_elem); qc->nbytes = buflen; } qc->private_data = &wait; qc->complete_fn = ata_qc_complete_internal; ata_qc_issue(qc); spin_unlock_irqrestore(ap->lock, flags); rc = wait_for_completion_timeout(&wait, ata_probe_timeout); ata_port_flush_task(ap); if (!rc) { spin_lock_irqsave(ap->lock, flags); /* We're racing with irq here. If we lose, the * following test prevents us from completing the qc * twice. If we win, the port is frozen and will be * cleaned up by ->post_internal_cmd(). */ if (qc->flags & ATA_QCFLAG_ACTIVE) { qc->err_mask |= AC_ERR_TIMEOUT; if (ap->ops->error_handler) ata_port_freeze(ap); else ata_qc_complete(qc); if (ata_msg_warn(ap)) ata_dev_printk(dev, KERN_WARNING, "qc timeout (cmd 0x%x)\n", command); } spin_unlock_irqrestore(ap->lock, flags); } /* do post_internal_cmd */ if (ap->ops->post_internal_cmd) ap->ops->post_internal_cmd(qc); /* perform minimal error analysis */ if (qc->flags & ATA_QCFLAG_FAILED) { if (qc->result_tf.command & (ATA_ERR | ATA_DF)) qc->err_mask |= AC_ERR_DEV; if (!qc->err_mask) qc->err_mask |= AC_ERR_OTHER; if (qc->err_mask & ~AC_ERR_OTHER) qc->err_mask &= ~AC_ERR_OTHER; } /* finish up */ spin_lock_irqsave(ap->lock, flags); *tf = qc->result_tf; err_mask = qc->err_mask; ata_qc_free(qc); ap->active_tag = preempted_tag; ap->sactive = preempted_sactive; ap->qc_active = preempted_qc_active; /* XXX - Some LLDDs (sata_mv) disable port on command failure. * Until those drivers are fixed, we detect the condition * here, fail the command with AC_ERR_SYSTEM and reenable the * port. * * Note that this doesn't change any behavior as internal * command failure results in disabling the device in the * higher layer for LLDDs without new reset/EH callbacks. * * Kill the following code as soon as those drivers are fixed. */ if (ap->flags & ATA_FLAG_DISABLED) { err_mask |= AC_ERR_SYSTEM; ata_port_probe(ap); } spin_unlock_irqrestore(ap->lock, flags); return err_mask; } /** * ata_exec_internal - execute libata internal command * @dev: Device to which the command is sent * @tf: Taskfile registers for the command and the result * @cdb: CDB for packet command * @dma_dir: Data tranfer direction of the command * @buf: Data buffer of the command * @buflen: Length of data buffer * * Wrapper around ata_exec_internal_sg() which takes simple * buffer instead of sg list. * * LOCKING: * None. Should be called with kernel context, might sleep. * * RETURNS: * Zero on success, AC_ERR_* mask on failure */ unsigned ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf, const u8 *cdb, int dma_dir, void *buf, unsigned int buflen) { struct scatterlist *psg = NULL, sg; unsigned int n_elem = 0; if (dma_dir != DMA_NONE) { WARN_ON(!buf); sg_init_one(&sg, buf, buflen); psg = &sg; n_elem++; } return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem); } /** * ata_do_simple_cmd - execute simple internal command * @dev: Device to which the command is sent * @cmd: Opcode to execute * * Execute a 'simple' command, that only consists of the opcode * 'cmd' itself, without filling any other registers * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * Zero on success, AC_ERR_* mask on failure */ unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) { struct ata_taskfile tf; ata_tf_init(dev, &tf); tf.command = cmd; tf.flags |= ATA_TFLAG_DEVICE; tf.protocol = ATA_PROT_NODATA; return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); } /** * ata_pio_need_iordy - check if iordy needed * @adev: ATA device * * Check if the current speed of the device requires IORDY. Used * by various controllers for chip configuration. */ unsigned int ata_pio_need_iordy(const struct ata_device *adev) { /* Controller doesn't support IORDY. Probably a pointless check as the caller should know this */ if (adev->ap->flags & ATA_FLAG_NO_IORDY) return 0; /* PIO3 and higher it is mandatory */ if (adev->pio_mode > XFER_PIO_2) return 1; /* We turn it on when possible */ if (ata_id_has_iordy(adev->id)) return 1; return 0; } /** * ata_pio_mask_no_iordy - Return the non IORDY mask * @adev: ATA device * * Compute the highest mode possible if we are not using iordy. Return * -1 if no iordy mode is available. */ static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) { /* If we have no drive specific rule, then PIO 2 is non IORDY */ if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ u16 pio = adev->id[ATA_ID_EIDE_PIO]; /* Is the speed faster than the drive allows non IORDY ? */ if (pio) { /* This is cycle times not frequency - watch the logic! */ if (pio > 240) /* PIO2 is 240nS per cycle */ return 3 << ATA_SHIFT_PIO; return 7 << ATA_SHIFT_PIO; } } return 3 << ATA_SHIFT_PIO; } /** * ata_dev_read_id - Read ID data from the specified device * @dev: target device * @p_class: pointer to class of the target device (may be changed) * @flags: ATA_READID_* flags * @id: buffer to read IDENTIFY data into * * Read ID data from the specified device. ATA_CMD_ID_ATA is * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS * for pre-ATA4 drives. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, unsigned int flags, u16 *id) { struct ata_port *ap = dev->ap; unsigned int class = *p_class; struct ata_taskfile tf; unsigned int err_mask = 0; const char *reason; int tried_spinup = 0; int rc; if (ata_msg_ctl(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ retry: ata_tf_init(dev, &tf); switch (class) { case ATA_DEV_ATA: tf.command = ATA_CMD_ID_ATA; break; case ATA_DEV_ATAPI: tf.command = ATA_CMD_ID_ATAPI; break; default: rc = -ENODEV; reason = "unsupported class"; goto err_out; } tf.protocol = ATA_PROT_PIO; /* Some devices choke if TF registers contain garbage. Make * sure those are properly initialized. */ tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; /* Device presence detection is unreliable on some * controllers. Always poll IDENTIFY if available. */ tf.flags |= ATA_TFLAG_POLLING; err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, id, sizeof(id[0]) * ATA_ID_WORDS); if (err_mask) { if (err_mask & AC_ERR_NODEV_HINT) { DPRINTK("ata%u.%d: NODEV after polling detection\n", ap->print_id, dev->devno); return -ENOENT; } rc = -EIO; reason = "I/O error"; goto err_out; } swap_buf_le16(id, ATA_ID_WORDS); /* sanity check */ rc = -EINVAL; reason = "device reports illegal type"; if (class == ATA_DEV_ATA) { if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) goto err_out; } else { if (ata_id_is_ata(id)) goto err_out; } if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { tried_spinup = 1; /* * Drive powered-up in standby mode, and requires a specific * SET_FEATURES spin-up subcommand before it will accept * anything other than the original IDENTIFY command. */ ata_tf_init(dev, &tf); tf.command = ATA_CMD_SET_FEATURES; tf.feature = SETFEATURES_SPINUP; tf.protocol = ATA_PROT_NODATA; tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); if (err_mask) { rc = -EIO; reason = "SPINUP failed"; goto err_out; } /* * If the drive initially returned incomplete IDENTIFY info, * we now must reissue the IDENTIFY command. */ if (id[2] == 0x37c8) goto retry; } if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { /* * The exact sequence expected by certain pre-ATA4 drives is: * SRST RESET * IDENTIFY * INITIALIZE DEVICE PARAMETERS * anything else.. * Some drives were very specific about that exact sequence. */ if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { err_mask = ata_dev_init_params(dev, id[3], id[6]); if (err_mask) { rc = -EIO; reason = "INIT_DEV_PARAMS failed"; goto err_out; } /* current CHS translation info (id[53-58]) might be * changed. reread the identify device info. */ flags &= ~ATA_READID_POSTRESET; goto retry; } } *p_class = class; return 0; err_out: if (ata_msg_warn(ap)) ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " "(%s, err_mask=0x%x)\n", reason, err_mask); return rc; } static inline u8 ata_dev_knobble(struct ata_device *dev) { return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); } static void ata_dev_config_ncq(struct ata_device *dev, char *desc, size_t desc_sz) { struct ata_port *ap = dev->ap; int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); if (!ata_id_has_ncq(dev->id)) { desc[0] = '\0'; return; } if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) { snprintf(desc, desc_sz, "NCQ (not used)"); return; } if (ap->flags & ATA_FLAG_NCQ) { hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); dev->flags |= ATA_DFLAG_NCQ; } if (hdepth >= ddepth) snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); else snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); } /** * ata_dev_configure - Configure the specified ATA/ATAPI device * @dev: Target device to configure * * Configure @dev according to @dev->id. Generic and low-level * driver specific fixups are also applied. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise */ int ata_dev_configure(struct ata_device *dev) { struct ata_port *ap = dev->ap; int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO; const u16 *id = dev->id; unsigned int xfer_mask; char revbuf[7]; /* XYZ-99\0 */ char fwrevbuf[ATA_ID_FW_REV_LEN+1]; char modelbuf[ATA_ID_PROD_LEN+1]; int rc; if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", __FUNCTION__); return 0; } if (ata_msg_probe(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); /* set _SDD */ rc = ata_acpi_push_id(ap, dev->devno); if (rc) { ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n", rc); } /* retrieve and execute the ATA task file of _GTF */ ata_acpi_exec_tfs(ap); /* print device capabilities */ if (ata_msg_probe(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " "85:%04x 86:%04x 87:%04x 88:%04x\n", __FUNCTION__, id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]); /* initialize to-be-configured parameters */ dev->flags &= ~ATA_DFLAG_CFG_MASK; dev->max_sectors = 0; dev->cdb_len = 0; dev->n_sectors = 0; dev->cylinders = 0; dev->heads = 0; dev->sectors = 0; /* * common ATA, ATAPI feature tests */ /* find max transfer mode; for printk only */ xfer_mask = ata_id_xfermask(id); if (ata_msg_probe(ap)) ata_dump_id(id); /* ATA-specific feature tests */ if (dev->class == ATA_DEV_ATA) { if (ata_id_is_cfa(id)) { if (id[162] & 1) /* CPRM may make this media unusable */ ata_dev_printk(dev, KERN_WARNING, "supports DRM functions and may " "not be fully accessable.\n"); snprintf(revbuf, 7, "CFA"); } else snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); dev->n_sectors = ata_id_n_sectors(id); dev->n_sectors_boot = dev->n_sectors; /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, sizeof(fwrevbuf)); ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, sizeof(modelbuf)); if (dev->id[59] & 0x100) dev->multi_count = dev->id[59] & 0xff; if (ata_id_has_lba(id)) { const char *lba_desc; char ncq_desc[20]; lba_desc = "LBA"; dev->flags |= ATA_DFLAG_LBA; if (ata_id_has_lba48(id)) { dev->flags |= ATA_DFLAG_LBA48; lba_desc = "LBA48"; if (dev->n_sectors >= (1UL << 28) && ata_id_has_flush_ext(id)) dev->flags |= ATA_DFLAG_FLUSH_EXT; } if (ata_id_hpa_enabled(dev->id)) dev->n_sectors = ata_hpa_resize(dev); /* config NCQ */ ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); /* print device info to dmesg */ if (ata_msg_drv(ap) && print_info) { ata_dev_printk(dev, KERN_INFO, "%s: %s, %s, max %s\n", revbuf, modelbuf, fwrevbuf, ata_mode_string(xfer_mask)); ata_dev_printk(dev, KERN_INFO, "%Lu sectors, multi %u: %s %s\n", (unsigned long long)dev->n_sectors, dev->multi_count, lba_desc, ncq_desc); } } else { /* CHS */ /* Default translation */ dev->cylinders = id[1]; dev->heads = id[3]; dev->sectors = id[6]; if (ata_id_current_chs_valid(id)) { /* Current CHS translation is valid. */ dev->cylinders = id[54]; dev->heads = id[55]; dev->sectors = id[56]; } /* print device info to dmesg */ if (ata_msg_drv(ap) && print_info) { ata_dev_printk(dev, KERN_INFO, "%s: %s, %s, max %s\n", revbuf, modelbuf, fwrevbuf, ata_mode_string(xfer_mask)); ata_dev_printk(dev, KERN_INFO, "%Lu sectors, multi %u, CHS %u/%u/%u\n", (unsigned long long)dev->n_sectors, dev->multi_count, dev->cylinders, dev->heads, dev->sectors); } } dev->cdb_len = 16; } /* ATAPI-specific feature tests */ else if (dev->class == ATA_DEV_ATAPI) { char *cdb_intr_string = ""; rc = atapi_cdb_len(id); if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { if (ata_msg_warn(ap)) ata_dev_printk(dev, KERN_WARNING, "unsupported CDB len\n"); rc = -EINVAL; goto err_out_nosup; } dev->cdb_len = (unsigned int) rc; if (ata_id_cdb_intr(dev->id)) { dev->flags |= ATA_DFLAG_CDB_INTR; cdb_intr_string = ", CDB intr"; } /* print device info to dmesg */ if (ata_msg_drv(ap) && print_info) ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n", ata_mode_string(xfer_mask), cdb_intr_string); } /* determine max_sectors */ dev->max_sectors = ATA_MAX_SECTORS; if (dev->flags & ATA_DFLAG_LBA48) dev->max_sectors = ATA_MAX_SECTORS_LBA48; if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { /* Let the user know. We don't want to disallow opens for rescue purposes, or in case the vendor is just a blithering idiot */ if (print_info) { ata_dev_printk(dev, KERN_WARNING, "Drive reports diagnostics failure. This may indicate a drive\n"); ata_dev_printk(dev, KERN_WARNING, "fault or invalid emulation. Contact drive vendor for information.\n"); } } /* limit bridge transfers to udma5, 200 sectors */ if (ata_dev_knobble(dev)) { if (ata_msg_drv(ap) && print_info) ata_dev_printk(dev, KERN_INFO, "applying bridge limits\n"); dev->udma_mask &= ATA_UDMA5; dev->max_sectors = ATA_MAX_SECTORS; } if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128) dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, dev->max_sectors); /* limit ATAPI DMA to R/W commands only */ if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY) dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY; if (ap->ops->dev_config) ap->ops->dev_config(dev); if (ata_msg_probe(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", __FUNCTION__, ata_chk_status(ap)); return 0; err_out_nosup: if (ata_msg_probe(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, err\n", __FUNCTION__); return rc; } /** * ata_cable_40wire - return 40 wire cable type * @ap: port * * Helper method for drivers which want to hardwire 40 wire cable * detection. */ int ata_cable_40wire(struct ata_port *ap) { return ATA_CBL_PATA40; } /** * ata_cable_80wire - return 80 wire cable type * @ap: port * * Helper method for drivers which want to hardwire 80 wire cable * detection. */ int ata_cable_80wire(struct ata_port *ap) { return ATA_CBL_PATA80; } /** * ata_cable_unknown - return unknown PATA cable. * @ap: port * * Helper method for drivers which have no PATA cable detection. */ int ata_cable_unknown(struct ata_port *ap) { return ATA_CBL_PATA_UNK; } /** * ata_cable_sata - return SATA cable type * @ap: port * * Helper method for drivers which have SATA cables */ int ata_cable_sata(struct ata_port *ap) { return ATA_CBL_SATA; } /** * ata_bus_probe - Reset and probe ATA bus * @ap: Bus to probe * * Master ATA bus probing function. Initiates a hardware-dependent * bus reset, then attempts to identify any devices found on * the bus. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * Zero on success, negative errno otherwise. */ int ata_bus_probe(struct ata_port *ap) { unsigned int classes[ATA_MAX_DEVICES]; int tries[ATA_MAX_DEVICES]; int i, rc; struct ata_device *dev; ata_port_probe(ap); for (i = 0; i < ATA_MAX_DEVICES; i++) tries[i] = ATA_PROBE_MAX_TRIES; retry: /* reset and determine device classes */ ap->ops->phy_reset(ap); for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (!(ap->flags & ATA_FLAG_DISABLED) && dev->class != ATA_DEV_UNKNOWN) classes[dev->devno] = dev->class; else classes[dev->devno] = ATA_DEV_NONE; dev->class = ATA_DEV_UNKNOWN; } ata_port_probe(ap); /* after the reset the device state is PIO 0 and the controller state is undefined. Record the mode */ for (i = 0; i < ATA_MAX_DEVICES; i++) ap->device[i].pio_mode = XFER_PIO_0; /* read IDENTIFY page and configure devices. We have to do the identify specific sequence bass-ackwards so that PDIAG- is released by the slave device */ for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) { dev = &ap->device[i]; if (tries[i]) dev->class = classes[i]; if (!ata_dev_enabled(dev)) continue; rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, dev->id); if (rc) goto fail; } /* Now ask for the cable type as PDIAG- should have been released */ if (ap->ops->cable_detect) ap->cbl = ap->ops->cable_detect(ap); /* After the identify sequence we can now set up the devices. We do this in the normal order so that the user doesn't get confused */ for(i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (!ata_dev_enabled(dev)) continue; ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; rc = ata_dev_configure(dev); ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; if (rc) goto fail; } /* configure transfer mode */ rc = ata_set_mode(ap, &dev); if (rc) goto fail; for (i = 0; i < ATA_MAX_DEVICES; i++) if (ata_dev_enabled(&ap->device[i])) return 0; /* no device present, disable port */ ata_port_disable(ap); ap->ops->port_disable(ap); return -ENODEV; fail: tries[dev->devno]--; switch (rc) { case -EINVAL: /* eeek, something went very wrong, give up */ tries[dev->devno] = 0; break; case -ENODEV: /* give it just one more chance */ tries[dev->devno] = min(tries[dev->devno], 1); case -EIO: if (tries[dev->devno] == 1) { /* This is the last chance, better to slow * down than lose it. */ sata_down_spd_limit(ap); ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); } } if (!tries[dev->devno]) ata_dev_disable(dev); goto retry; } /** * ata_port_probe - Mark port as enabled * @ap: Port for which we indicate enablement * * Modify @ap data structure such that the system * thinks that the entire port is enabled. * * LOCKING: host lock, or some other form of * serialization. */ void ata_port_probe(struct ata_port *ap) { ap->flags &= ~ATA_FLAG_DISABLED; } /** * sata_print_link_status - Print SATA link status * @ap: SATA port to printk link status about * * This function prints link speed and status of a SATA link. * * LOCKING: * None. */ void sata_print_link_status(struct ata_port *ap) { u32 sstatus, scontrol, tmp; if (sata_scr_read(ap, SCR_STATUS, &sstatus)) return; sata_scr_read(ap, SCR_CONTROL, &scontrol); if (ata_port_online(ap)) { tmp = (sstatus >> 4) & 0xf; ata_port_printk(ap, KERN_INFO, "SATA link up %s (SStatus %X SControl %X)\n", sata_spd_string(tmp), sstatus, scontrol); } else { ata_port_printk(ap, KERN_INFO, "SATA link down (SStatus %X SControl %X)\n", sstatus, scontrol); } } /** * __sata_phy_reset - Wake/reset a low-level SATA PHY * @ap: SATA port associated with target SATA PHY. * * This function issues commands to standard SATA Sxxx * PHY registers, to wake up the phy (and device), and * clear any reset condition. * * LOCKING: * PCI/etc. bus probe sem. * */ void __sata_phy_reset(struct ata_port *ap) { u32 sstatus; unsigned long timeout = jiffies + (HZ * 5); if (ap->flags & ATA_FLAG_SATA_RESET) { /* issue phy wake/reset */ sata_scr_write_flush(ap, SCR_CONTROL, 0x301); /* Couldn't find anything in SATA I/II specs, but * AHCI-1.1 10.4.2 says at least 1 ms. */ mdelay(1); } /* phy wake/clear reset */ sata_scr_write_flush(ap, SCR_CONTROL, 0x300); /* wait for phy to become ready, if necessary */ do { msleep(200); sata_scr_read(ap, SCR_STATUS, &sstatus); if ((sstatus & 0xf) != 1) break; } while (time_before(jiffies, timeout)); /* print link status */ sata_print_link_status(ap); /* TODO: phy layer with polling, timeouts, etc. */ if (!ata_port_offline(ap)) ata_port_probe(ap); else ata_port_disable(ap); if (ap->flags & ATA_FLAG_DISABLED) return; if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { ata_port_disable(ap); return; } ap->cbl = ATA_CBL_SATA; } /** * sata_phy_reset - Reset SATA bus. * @ap: SATA port associated with target SATA PHY. * * This function resets the SATA bus, and then probes * the bus for devices. * * LOCKING: * PCI/etc. bus probe sem. * */ void sata_phy_reset(struct ata_port *ap) { __sata_phy_reset(ap); if (ap->flags & ATA_FLAG_DISABLED) return; ata_bus_reset(ap); } /** * ata_dev_pair - return other device on cable * @adev: device * * Obtain the other device on the same cable, or if none is * present NULL is returned */ struct ata_device *ata_dev_pair(struct ata_device *adev) { struct ata_port *ap = adev->ap; struct ata_device *pair = &ap->device[1 - adev->devno]; if (!ata_dev_enabled(pair)) return NULL; return pair; } /** * ata_port_disable - Disable port. * @ap: Port to be disabled. * * Modify @ap data structure such that the system * thinks that the entire port is disabled, and should * never attempt to probe or communicate with devices * on this port. * * LOCKING: host lock, or some other form of * serialization. */ void ata_port_disable(struct ata_port *ap) { ap->device[0].class = ATA_DEV_NONE; ap->device[1].class = ATA_DEV_NONE; ap->flags |= ATA_FLAG_DISABLED; } /** * sata_down_spd_limit - adjust SATA spd limit downward * @ap: Port to adjust SATA spd limit for * * Adjust SATA spd limit of @ap downward. Note that this * function only adjusts the limit. The change must be applied * using sata_set_spd(). * * LOCKING: * Inherited from caller. * * RETURNS: * 0 on success, negative errno on failure */ int sata_down_spd_limit(struct ata_port *ap) { u32 sstatus, spd, mask; int rc, highbit; rc = sata_scr_read(ap, SCR_STATUS, &sstatus); if (rc) return rc; mask = ap->sata_spd_limit; if (mask <= 1) return -EINVAL; highbit = fls(mask) - 1; mask &= ~(1 << highbit); spd = (sstatus >> 4) & 0xf; if (spd <= 1) return -EINVAL; spd--; mask &= (1 << spd) - 1; if (!mask) return -EINVAL; ap->sata_spd_limit = mask; ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", sata_spd_string(fls(mask))); return 0; } static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) { u32 spd, limit; if (ap->sata_spd_limit == UINT_MAX) limit = 0; else limit = fls(ap->sata_spd_limit); spd = (*scontrol >> 4) & 0xf; *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); return spd != limit; } /** * sata_set_spd_needed - is SATA spd configuration needed * @ap: Port in question * * Test whether the spd limit in SControl matches * @ap->sata_spd_limit. This function is used to determine * whether hardreset is necessary to apply SATA spd * configuration. * * LOCKING: * Inherited from caller. * * RETURNS: * 1 if SATA spd configuration is needed, 0 otherwise. */ int sata_set_spd_needed(struct ata_port *ap) { u32 scontrol; if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) return 0; return __sata_set_spd_needed(ap, &scontrol); } /** * sata_set_spd - set SATA spd according to spd limit * @ap: Port to set SATA spd for * * Set SATA spd of @ap according to sata_spd_limit. * * LOCKING: * Inherited from caller. * * RETURNS: * 0 if spd doesn't need to be changed, 1 if spd has been * changed. Negative errno if SCR registers are inaccessible. */ int sata_set_spd(struct ata_port *ap) { u32 scontrol; int rc; if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) return rc; if (!__sata_set_spd_needed(ap, &scontrol)) return 0; if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) return rc; return 1; } /* * This mode timing computation functionality is ported over from * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik */ /* * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). * These were taken from ATA/ATAPI-6 standard, rev 0a, except * for UDMA6, which is currently supported only by Maxtor drives. * * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. */ static const struct ata_timing ata_timing[] = { { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ { 0xFF } }; #define ENOUGH(v,unit) (((v)-1)/(unit)+1) #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) { q->setup = EZ(t->setup * 1000, T); q->act8b = EZ(t->act8b * 1000, T); q->rec8b = EZ(t->rec8b * 1000, T); q->cyc8b = EZ(t->cyc8b * 1000, T); q->active = EZ(t->active * 1000, T); q->recover = EZ(t->recover * 1000, T); q->cycle = EZ(t->cycle * 1000, T); q->udma = EZ(t->udma * 1000, UT); } void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, struct ata_timing *m, unsigned int what) { if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); } static const struct ata_timing* ata_timing_find_mode(unsigned short speed) { const struct ata_timing *t; for (t = ata_timing; t->mode != speed; t++) if (t->mode == 0xFF) return NULL; return t; } int ata_timing_compute(struct ata_device *adev, unsigned short speed, struct ata_timing *t, int T, int UT) { const struct ata_timing *s; struct ata_timing p; /* * Find the mode. */ if (!(s = ata_timing_find_mode(speed))) return -EINVAL; memcpy(t, s, sizeof(*s)); /* * If the drive is an EIDE drive, it can tell us it needs extended * PIO/MW_DMA cycle timing. */ if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ memset(&p, 0, sizeof(p)); if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; } ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); } /* * Convert the timing to bus clock counts. */ ata_timing_quantize(t, t, T, UT); /* * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, * S.M.A.R.T * and some other commands. We have to ensure that the * DMA cycle timing is slower/equal than the fastest PIO timing. */ if (speed > XFER_PIO_6) { ata_timing_compute(adev, adev->pio_mode, &p, T, UT); ata_timing_merge(&p, t, t, ATA_TIMING_ALL); } /* * Lengthen active & recovery time so that cycle time is correct. */ if (t->act8b + t->rec8b < t->cyc8b) { t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; t->rec8b = t->cyc8b - t->act8b; } if (t->active + t->recover < t->cycle) { t->active += (t->cycle - (t->active + t->recover)) / 2; t->recover = t->cycle - t->active; } return 0; } /** * ata_down_xfermask_limit - adjust dev xfer masks downward * @dev: Device to adjust xfer masks * @sel: ATA_DNXFER_* selector * * Adjust xfer masks of @dev downward. Note that this function * does not apply the change. Invoking ata_set_mode() afterwards * will apply the limit. * * LOCKING: * Inherited from caller. * * RETURNS: * 0 on success, negative errno on failure */ int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) { char buf[32]; unsigned int orig_mask, xfer_mask; unsigned int pio_mask, mwdma_mask, udma_mask; int quiet, highbit; quiet = !!(sel & ATA_DNXFER_QUIET); sel &= ~ATA_DNXFER_QUIET; xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask, dev->udma_mask); ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); switch (sel) { case ATA_DNXFER_PIO: highbit = fls(pio_mask) - 1; pio_mask &= ~(1 << highbit); break; case ATA_DNXFER_DMA: if (udma_mask) { highbit = fls(udma_mask) - 1; udma_mask &= ~(1 << highbit); if (!udma_mask) return -ENOENT; } else if (mwdma_mask) { highbit = fls(mwdma_mask) - 1; mwdma_mask &= ~(1 << highbit); if (!mwdma_mask) return -ENOENT; } break; case ATA_DNXFER_40C: udma_mask &= ATA_UDMA_MASK_40C; break; case ATA_DNXFER_FORCE_PIO0: pio_mask &= 1; case ATA_DNXFER_FORCE_PIO: mwdma_mask = 0; udma_mask = 0; break; default: BUG(); } xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) return -ENOENT; if (!quiet) { if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) snprintf(buf, sizeof(buf), "%s:%s", ata_mode_string(xfer_mask), ata_mode_string(xfer_mask & ATA_MASK_PIO)); else snprintf(buf, sizeof(buf), "%s", ata_mode_string(xfer_mask)); ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n", buf); } ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, &dev->udma_mask); return 0; } static int ata_dev_set_mode(struct ata_device *dev) { struct ata_eh_context *ehc = &dev->ap->eh_context; unsigned int err_mask; int rc; dev->flags &= ~ATA_DFLAG_PIO; if (dev->xfer_shift == ATA_SHIFT_PIO) dev->flags |= ATA_DFLAG_PIO; err_mask = ata_dev_set_xfermode(dev); /* Old CFA may refuse this command, which is just fine */ if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) err_mask &= ~AC_ERR_DEV; if (err_mask) { ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " "(err_mask=0x%x)\n", err_mask); return -EIO; } ehc->i.flags |= ATA_EHI_POST_SETMODE; rc = ata_dev_revalidate(dev, 0); ehc->i.flags &= ~ATA_EHI_POST_SETMODE; if (rc) return rc; DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", dev->xfer_shift, (int)dev->xfer_mode); ata_dev_printk(dev, KERN_INFO, "configured for %s\n", ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); return 0; } /** * ata_do_set_mode - Program timings and issue SET FEATURES - XFER * @ap: port on which timings will be programmed * @r_failed_dev: out paramter for failed device * * Standard implementation of the function used to tune and set * ATA device disk transfer mode (PIO3, UDMA6, etc.). If * ata_dev_set_mode() fails, pointer to the failing device is * returned in @r_failed_dev. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * 0 on success, negative errno otherwise */ int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) { struct ata_device *dev; int i, rc = 0, used_dma = 0, found = 0; /* step 1: calculate xfer_mask */ for (i = 0; i < ATA_MAX_DEVICES; i++) { unsigned int pio_mask, dma_mask; dev = &ap->device[i]; if (!ata_dev_enabled(dev)) continue; ata_dev_xfermask(dev); pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); dev->pio_mode = ata_xfer_mask2mode(pio_mask); dev->dma_mode = ata_xfer_mask2mode(dma_mask); found = 1; if (dev->dma_mode) used_dma = 1; } if (!found) goto out; /* step 2: always set host PIO timings */ for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (!ata_dev_enabled(dev)) continue; if (!dev->pio_mode) { ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); rc = -EINVAL; goto out; } dev->xfer_mode = dev->pio_mode; dev->xfer_shift = ATA_SHIFT_PIO; if (ap->ops->set_piomode) ap->ops->set_piomode(ap, dev); } /* step 3: set host DMA timings */ for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (!ata_dev_enabled(dev) || !dev->dma_mode) continue; dev->xfer_mode = dev->dma_mode; dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); if (ap->ops->set_dmamode) ap->ops->set_dmamode(ap, dev); } /* step 4: update devices' xfer mode */ for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; /* don't update suspended devices' xfer mode */ if (!ata_dev_ready(dev)) continue; rc = ata_dev_set_mode(dev); if (rc) goto out; } /* Record simplex status. If we selected DMA then the other * host channels are not permitted to do so. */ if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) ap->host->simplex_claimed = ap; /* step5: chip specific finalisation */ if (ap->ops->post_set_mode) ap->ops->post_set_mode(ap); out: if (rc) *r_failed_dev = dev; return rc; } /** * ata_set_mode - Program timings and issue SET FEATURES - XFER * @ap: port on which timings will be programmed * @r_failed_dev: out paramter for failed device * * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If * ata_set_mode() fails, pointer to the failing device is * returned in @r_failed_dev. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * 0 on success, negative errno otherwise */ int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) { /* has private set_mode? */ if (ap->ops->set_mode) return ap->ops->set_mode(ap, r_failed_dev); return ata_do_set_mode(ap, r_failed_dev); } /** * ata_tf_to_host - issue ATA taskfile to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues ATA taskfile register set to ATA host controller, * with proper synchronization with interrupt handler and * other threads. * * LOCKING: * spin_lock_irqsave(host lock) */ static inline void ata_tf_to_host(struct ata_port *ap, const struct ata_taskfile *tf) { ap->ops->tf_load(ap, tf); ap->ops->exec_command(ap, tf); } /** * ata_busy_sleep - sleep until BSY clears, or timeout * @ap: port containing status register to be polled * @tmout_pat: impatience timeout * @tmout: overall timeout * * Sleep until ATA Status register bit BSY clears, * or a timeout occurs. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_busy_sleep(struct ata_port *ap, unsigned long tmout_pat, unsigned long tmout) { unsigned long timer_start, timeout; u8 status; status = ata_busy_wait(ap, ATA_BUSY, 300); timer_start = jiffies; timeout = timer_start + tmout_pat; while (status != 0xff && (status & ATA_BUSY) && time_before(jiffies, timeout)) { msleep(50); status = ata_busy_wait(ap, ATA_BUSY, 3); } if (status != 0xff && (status & ATA_BUSY)) ata_port_printk(ap, KERN_WARNING, "port is slow to respond, please be patient " "(Status 0x%x)\n", status); timeout = timer_start + tmout; while (status != 0xff && (status & ATA_BUSY) && time_before(jiffies, timeout)) { msleep(50); status = ata_chk_status(ap); } if (status == 0xff) return -ENODEV; if (status & ATA_BUSY) { ata_port_printk(ap, KERN_ERR, "port failed to respond " "(%lu secs, Status 0x%x)\n", tmout / HZ, status); return -EBUSY; } return 0; } static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int dev0 = devmask & (1 << 0); unsigned int dev1 = devmask & (1 << 1); unsigned long timeout; /* if device 0 was found in ata_devchk, wait for its * BSY bit to clear */ if (dev0) ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); /* if device 1 was found in ata_devchk, wait for * register access, then wait for BSY to clear */ timeout = jiffies + ATA_TMOUT_BOOT; while (dev1) { u8 nsect, lbal; ap->ops->dev_select(ap, 1); nsect = ioread8(ioaddr->nsect_addr); lbal = ioread8(ioaddr->lbal_addr); if ((nsect == 1) && (lbal == 1)) break; if (time_after(jiffies, timeout)) { dev1 = 0; break; } msleep(50); /* give drive a breather */ } if (dev1) ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); /* is all this really necessary? */ ap->ops->dev_select(ap, 0); if (dev1) ap->ops->dev_select(ap, 1); if (dev0) ap->ops->dev_select(ap, 0); } static unsigned int ata_bus_softreset(struct ata_port *ap, unsigned int devmask) { struct ata_ioports *ioaddr = &ap->ioaddr; DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); /* software reset. causes dev0 to be selected */ iowrite8(ap->ctl, ioaddr->ctl_addr); udelay(20); /* FIXME: flush */ iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); udelay(20); /* FIXME: flush */ iowrite8(ap->ctl, ioaddr->ctl_addr); /* spec mandates ">= 2ms" before checking status. * We wait 150ms, because that was the magic delay used for * ATAPI devices in Hale Landis's ATADRVR, for the period of time * between when the ATA command register is written, and then * status is checked. Because waiting for "a while" before * checking status is fine, post SRST, we perform this magic * delay here as well. * * Old drivers/ide uses the 2mS rule and then waits for ready */ msleep(150); /* Before we perform post reset processing we want to see if * the bus shows 0xFF because the odd clown forgets the D7 * pulldown resistor. */ if (ata_check_status(ap) == 0xFF) return 0; ata_bus_post_reset(ap, devmask); return 0; } /** * ata_bus_reset - reset host port and associated ATA channel * @ap: port to reset * * This is typically the first time we actually start issuing * commands to the ATA channel. We wait for BSY to clear, then * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its * result. Determine what devices, if any, are on the channel * by looking at the device 0/1 error register. Look at the signature * stored in each device's taskfile registers, to determine if * the device is ATA or ATAPI. * * LOCKING: * PCI/etc. bus probe sem. * Obtains host lock. * * SIDE EFFECTS: * Sets ATA_FLAG_DISABLED if bus reset fails. */ void ata_bus_reset(struct ata_port *ap) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; u8 err; unsigned int dev0, dev1 = 0, devmask = 0; DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); /* determine if device 0/1 are present */ if (ap->flags & ATA_FLAG_SATA_RESET) dev0 = 1; else { dev0 = ata_devchk(ap, 0); if (slave_possible) dev1 = ata_devchk(ap, 1); } if (dev0) devmask |= (1 << 0); if (dev1) devmask |= (1 << 1); /* select device 0 again */ ap->ops->dev_select(ap, 0); /* issue bus reset */ if (ap->flags & ATA_FLAG_SRST) if (ata_bus_softreset(ap, devmask)) goto err_out; /* * determine by signature whether we have ATA or ATAPI devices */ ap->device[0].class = ata_dev_try_classify(ap, 0, &err); if ((slave_possible) && (err != 0x81)) ap->device[1].class = ata_dev_try_classify(ap, 1, &err); /* re-enable interrupts */ ap->ops->irq_on(ap); /* is double-select really necessary? */ if (ap->device[1].class != ATA_DEV_NONE) ap->ops->dev_select(ap, 1); if (ap->device[0].class != ATA_DEV_NONE) ap->ops->dev_select(ap, 0); /* if no devices were detected, disable this port */ if ((ap->device[0].class == ATA_DEV_NONE) && (ap->device[1].class == ATA_DEV_NONE)) goto err_out; if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { /* set up device control for ATA_FLAG_SATA_RESET */ iowrite8(ap->ctl, ioaddr->ctl_addr); } DPRINTK("EXIT\n"); return; err_out: ata_port_printk(ap, KERN_ERR, "disabling port\n"); ap->ops->port_disable(ap); DPRINTK("EXIT\n"); } /** * sata_phy_debounce - debounce SATA phy status * @ap: ATA port to debounce SATA phy status for * @params: timing parameters { interval, duratinon, timeout } in msec * * Make sure SStatus of @ap reaches stable state, determined by * holding the same value where DET is not 1 for @duration polled * every @interval, before @timeout. Timeout constraints the * beginning of the stable state. Because, after hot unplugging, * DET gets stuck at 1 on some controllers, this functions waits * until timeout then returns 0 if DET is stable at 1. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno on failure. */ int sata_phy_debounce(struct ata_port *ap, const unsigned long *params) { unsigned long interval_msec = params[0]; unsigned long duration = params[1] * HZ / 1000; unsigned long timeout = jiffies + params[2] * HZ / 1000; unsigned long last_jiffies; u32 last, cur; int rc; if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) return rc; cur &= 0xf; last = cur; last_jiffies = jiffies; while (1) { msleep(interval_msec); if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) return rc; cur &= 0xf; /* DET stable? */ if (cur == last) { if (cur == 1 && time_before(jiffies, timeout)) continue; if (time_after(jiffies, last_jiffies + duration)) return 0; continue; } /* unstable, start over */ last = cur; last_jiffies = jiffies; /* check timeout */ if (time_after(jiffies, timeout)) return -EBUSY; } } /** * sata_phy_resume - resume SATA phy * @ap: ATA port to resume SATA phy for * @params: timing parameters { interval, duratinon, timeout } in msec * * Resume SATA phy of @ap and debounce it. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno on failure. */ int sata_phy_resume(struct ata_port *ap, const unsigned long *params) { u32 scontrol; int rc; if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) return rc; scontrol = (scontrol & 0x0f0) | 0x300; if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) return rc; /* Some PHYs react badly if SStatus is pounded immediately * after resuming. Delay 200ms before debouncing. */ msleep(200); return sata_phy_debounce(ap, params); } static void ata_wait_spinup(struct ata_port *ap) { struct ata_eh_context *ehc = &ap->eh_context; unsigned long end, secs; int rc; /* first, debounce phy if SATA */ if (ap->cbl == ATA_CBL_SATA) { rc = sata_phy_debounce(ap, sata_deb_timing_hotplug); /* if debounced successfully and offline, no need to wait */ if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap)) return; } /* okay, let's give the drive time to spin up */ end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000; secs = ((end - jiffies) + HZ - 1) / HZ; if (time_after(jiffies, end)) return; if (secs > 5) ata_port_printk(ap, KERN_INFO, "waiting for device to spin up " "(%lu secs)\n", secs); schedule_timeout_uninterruptible(end - jiffies); } /** * ata_std_prereset - prepare for reset * @ap: ATA port to be reset * * @ap is about to be reset. Initialize it. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int ata_std_prereset(struct ata_port *ap) { struct ata_eh_context *ehc = &ap->eh_context; const unsigned long *timing = sata_ehc_deb_timing(ehc); int rc; /* handle link resume & hotplug spinup */ if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && (ap->flags & ATA_FLAG_HRST_TO_RESUME)) ehc->i.action |= ATA_EH_HARDRESET; if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) && (ap->flags & ATA_FLAG_SKIP_D2H_BSY)) ata_wait_spinup(ap); /* if we're about to do hardreset, nothing more to do */ if (ehc->i.action & ATA_EH_HARDRESET) return 0; /* if SATA, resume phy */ if (ap->cbl == ATA_CBL_SATA) { rc = sata_phy_resume(ap, timing); if (rc && rc != -EOPNOTSUPP) { /* phy resume failed */ ata_port_printk(ap, KERN_WARNING, "failed to resume " "link for reset (errno=%d)\n", rc); return rc; } } /* Wait for !BSY if the controller can wait for the first D2H * Reg FIS and we don't know that no device is attached. */ if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); return 0; } /** * ata_std_softreset - reset host port via ATA SRST * @ap: port to reset * @classes: resulting classes of attached devices * * Reset host port using ATA SRST. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int ata_std_softreset(struct ata_port *ap, unsigned int *classes) { unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; unsigned int devmask = 0, err_mask; u8 err; DPRINTK("ENTER\n"); if (ata_port_offline(ap)) { classes[0] = ATA_DEV_NONE; goto out; } /* determine if device 0/1 are present */ if (ata_devchk(ap, 0)) devmask |= (1 << 0); if (slave_possible && ata_devchk(ap, 1)) devmask |= (1 << 1); /* select device 0 again */ ap->ops->dev_select(ap, 0); /* issue bus reset */ DPRINTK("about to softreset, devmask=%x\n", devmask); err_mask = ata_bus_softreset(ap, devmask); if (err_mask) { ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n", err_mask); return -EIO; } /* determine by signature whether we have ATA or ATAPI devices */ classes[0] = ata_dev_try_classify(ap, 0, &err); if (slave_possible && err != 0x81) classes[1] = ata_dev_try_classify(ap, 1, &err); out: DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); return 0; } /** * sata_port_hardreset - reset port via SATA phy reset * @ap: port to reset * @timing: timing parameters { interval, duratinon, timeout } in msec * * SATA phy-reset host port using DET bits of SControl register. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing) { u32 scontrol; int rc; DPRINTK("ENTER\n"); if (sata_set_spd_needed(ap)) { /* SATA spec says nothing about how to reconfigure * spd. To be on the safe side, turn off phy during * reconfiguration. This works for at least ICH7 AHCI * and Sil3124. */ if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) goto out; scontrol = (scontrol & 0x0f0) | 0x304; if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) goto out; sata_set_spd(ap); } /* issue phy wake/reset */ if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) goto out; scontrol = (scontrol & 0x0f0) | 0x301; if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) goto out; /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 * 10.4.2 says at least 1 ms. */ msleep(1); /* bring phy back */ rc = sata_phy_resume(ap, timing); out: DPRINTK("EXIT, rc=%d\n", rc); return rc; } /** * sata_std_hardreset - reset host port via SATA phy reset * @ap: port to reset * @class: resulting class of attached device * * SATA phy-reset host port using DET bits of SControl register, * wait for !BSY and classify the attached device. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int sata_std_hardreset(struct ata_port *ap, unsigned int *class) { const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); int rc; DPRINTK("ENTER\n"); /* do hardreset */ rc = sata_port_hardreset(ap, timing); if (rc) { ata_port_printk(ap, KERN_ERR, "COMRESET failed (errno=%d)\n", rc); return rc; } /* TODO: phy layer with polling, timeouts, etc. */ if (ata_port_offline(ap)) { *class = ATA_DEV_NONE; DPRINTK("EXIT, link offline\n"); return 0; } /* wait a while before checking status, see SRST for more info */ msleep(150); if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { ata_port_printk(ap, KERN_ERR, "COMRESET failed (device not ready)\n"); return -EIO; } ap->ops->dev_select(ap, 0); /* probably unnecessary */ *class = ata_dev_try_classify(ap, 0, NULL); DPRINTK("EXIT, class=%u\n", *class); return 0; } /** * ata_std_postreset - standard postreset callback * @ap: the target ata_port * @classes: classes of attached devices * * This function is invoked after a successful reset. Note that * the device might have been reset more than once using * different reset methods before postreset is invoked. * * LOCKING: * Kernel thread context (may sleep) */ void ata_std_postreset(struct ata_port *ap, unsigned int *classes) { u32 serror; DPRINTK("ENTER\n"); /* print link status */ sata_print_link_status(ap); /* clear SError */ if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) sata_scr_write(ap, SCR_ERROR, serror); /* re-enable interrupts */ if (!ap->ops->error_handler) ap->ops->irq_on(ap); /* is double-select really necessary? */ if (classes[0] != ATA_DEV_NONE) ap->ops->dev_select(ap, 1); if (classes[1] != ATA_DEV_NONE) ap->ops->dev_select(ap, 0); /* bail out if no device is present */ if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { DPRINTK("EXIT, no device\n"); return; } /* set up device control */ if (ap->ioaddr.ctl_addr) iowrite8(ap->ctl, ap->ioaddr.ctl_addr); DPRINTK("EXIT\n"); } /** * ata_dev_same_device - Determine whether new ID matches configured device * @dev: device to compare against * @new_class: class of the new device * @new_id: IDENTIFY page of the new device * * Compare @new_class and @new_id against @dev and determine * whether @dev is the device indicated by @new_class and * @new_id. * * LOCKING: * None. * * RETURNS: * 1 if @dev matches @new_class and @new_id, 0 otherwise. */ static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, const u16 *new_id) { const u16 *old_id = dev->id; unsigned char model[2][ATA_ID_PROD_LEN + 1]; unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; u64 new_n_sectors; if (dev->class != new_class) { ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", dev->class, new_class); return 0; } ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); new_n_sectors = ata_id_n_sectors(new_id); if (strcmp(model[0], model[1])) { ata_dev_printk(dev, KERN_INFO, "model number mismatch " "'%s' != '%s'\n", model[0], model[1]); return 0; } if (strcmp(serial[0], serial[1])) { ata_dev_printk(dev, KERN_INFO, "serial number mismatch " "'%s' != '%s'\n", serial[0], serial[1]); return 0; } if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) { ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " "%llu != %llu\n", (unsigned long long)dev->n_sectors, (unsigned long long)new_n_sectors); /* Are we the boot time size - if so we appear to be the same disk at this point and our HPA got reapplied */ if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors && ata_id_hpa_enabled(new_id)) return 1; return 0; } return 1; } /** * ata_dev_revalidate - Revalidate ATA device * @dev: device to revalidate * @readid_flags: read ID flags * * Re-read IDENTIFY page and make sure @dev is still attached to * the port. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, negative errno otherwise */ int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) { unsigned int class = dev->class; u16 *id = (void *)dev->ap->sector_buf; int rc; if (!ata_dev_enabled(dev)) { rc = -ENODEV; goto fail; } /* read ID data */ rc = ata_dev_read_id(dev, &class, readid_flags, id); if (rc) goto fail; /* is the device still there? */ if (!ata_dev_same_device(dev, class, id)) { rc = -ENODEV; goto fail; } memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); /* configure device according to the new ID */ rc = ata_dev_configure(dev); if (rc == 0) return 0; fail: ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); return rc; } struct ata_blacklist_entry { const char *model_num; const char *model_rev; unsigned long horkage; }; static const struct ata_blacklist_entry ata_device_blacklist [] = { /* Devices with DMA related problems under Linux */ { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, { "CRD-84", NULL, ATA_HORKAGE_NODMA }, { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, /* Weird ATAPI devices */ { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 | ATA_HORKAGE_DMA_RW_ONLY }, /* Devices we expect to fail diagnostics */ /* Devices where NCQ should be avoided */ /* NCQ is slow */ { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, /* http://thread.gmane.org/gmane.linux.ide/14907 */ { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, /* NCQ is broken */ { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ }, /* NCQ hard hangs device under heavier load, needs hard power cycle */ { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ }, /* Blacklist entries taken from Silicon Image 3124/3132 Windows driver .inf file - also several Linux problem reports */ { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, /* Devices with NCQ limits */ /* End Marker */ { } }; unsigned long ata_device_blacklisted(const struct ata_device *dev) { unsigned char model_num[ATA_ID_PROD_LEN + 1]; unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; const struct ata_blacklist_entry *ad = ata_device_blacklist; ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); while (ad->model_num) { if (!strcmp(ad->model_num, model_num)) { if (ad->model_rev == NULL) return ad->horkage; if (!strcmp(ad->model_rev, model_rev)) return ad->horkage; } ad++; } return 0; } static int ata_dma_blacklisted(const struct ata_device *dev) { /* We don't support polling DMA. * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) * if the LLDD handles only interrupts in the HSM_ST_LAST state. */ if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && (dev->flags & ATA_DFLAG_CDB_INTR)) return 1; return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0; } /** * ata_dev_xfermask - Compute supported xfermask of the given device * @dev: Device to compute xfermask for * * Compute supported xfermask of @dev and store it in * dev->*_mask. This function is responsible for applying all * known limits including host controller limits, device * blacklist, etc... * * LOCKING: * None. */ static void ata_dev_xfermask(struct ata_device *dev) { struct ata_port *ap = dev->ap; struct ata_host *host = ap->host; unsigned long xfer_mask; /* controller modes available */ xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, ap->udma_mask); /* drive modes available */ xfer_mask &= ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask, dev->udma_mask); xfer_mask &= ata_id_xfermask(dev->id); /* * CFA Advanced TrueIDE timings are not allowed on a shared * cable */ if (ata_dev_pair(dev)) { /* No PIO5 or PIO6 */ xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); /* No MWDMA3 or MWDMA 4 */ xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); } if (ata_dma_blacklisted(dev)) { xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); ata_dev_printk(dev, KERN_WARNING, "device is on DMA blacklist, disabling DMA\n"); } if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed && host->simplex_claimed != ap) { xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " "other device, disabling DMA\n"); } if (ap->flags & ATA_FLAG_NO_IORDY) xfer_mask &= ata_pio_mask_no_iordy(dev); if (ap->ops->mode_filter) xfer_mask = ap->ops->mode_filter(dev, xfer_mask); /* Apply cable rule here. Don't apply it early because when * we handle hot plug the cable type can itself change. * Check this last so that we know if the transfer rate was * solely limited by the cable. * Unknown or 80 wire cables reported host side are checked * drive side as well. Cases where we know a 40wire cable * is used safely for 80 are not checked here. */ if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) /* UDMA/44 or higher would be available */ if((ap->cbl == ATA_CBL_PATA40) || (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))) { ata_dev_printk(dev, KERN_WARNING, "limited to UDMA/33 due to 40-wire cable\n"); xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); } ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, &dev->udma_mask); } /** * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command * @dev: Device to which command will be sent * * Issue SET FEATURES - XFER MODE command to device @dev * on port @ap. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * 0 on success, AC_ERR_* mask otherwise. */ static unsigned int ata_dev_set_xfermode(struct ata_device *dev) { struct ata_taskfile tf; unsigned int err_mask; /* set up set-features taskfile */ DPRINTK("set features - xfer mode\n"); ata_tf_init(dev, &tf); tf.command = ATA_CMD_SET_FEATURES; tf.feature = SETFEATURES_XFER; tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf.protocol = ATA_PROT_NODATA; tf.nsect = dev->xfer_mode; err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); DPRINTK("EXIT, err_mask=%x\n", err_mask); return err_mask; } /** * ata_dev_init_params - Issue INIT DEV PARAMS command * @dev: Device to which command will be sent * @heads: Number of heads (taskfile parameter) * @sectors: Number of sectors (taskfile parameter) * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, AC_ERR_* mask otherwise. */ static unsigned int ata_dev_init_params(struct ata_device *dev, u16 heads, u16 sectors) { struct ata_taskfile tf; unsigned int err_mask; /* Number of sectors per track 1-255. Number of heads 1-16 */ if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) return AC_ERR_INVALID; /* set up init dev params taskfile */ DPRINTK("init dev params \n"); ata_tf_init(dev, &tf); tf.command = ATA_CMD_INIT_DEV_PARAMS; tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf.protocol = ATA_PROT_NODATA; tf.nsect = sectors; tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); DPRINTK("EXIT, err_mask=%x\n", err_mask); return err_mask; } /** * ata_sg_clean - Unmap DMA memory associated with command * @qc: Command containing DMA memory to be released * * Unmap all mapped DMA memory associated with this command. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_sg_clean(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg = qc->__sg; int dir = qc->dma_dir; void *pad_buf = NULL; WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); WARN_ON(sg == NULL); if (qc->flags & ATA_QCFLAG_SINGLE) WARN_ON(qc->n_elem > 1); VPRINTK("unmapping %u sg elements\n", qc->n_elem); /* if we padded the buffer out to 32-bit bound, and data * xfer direction is from-device, we must copy from the * pad buffer back into the supplied buffer */ if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); if (qc->flags & ATA_QCFLAG_SG) { if (qc->n_elem) dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); /* restore last sg */ sg[qc->orig_n_elem - 1].length += qc->pad_len; if (pad_buf) { struct scatterlist *psg = &qc->pad_sgent; void *addr = kmap_atomic(psg->page, KM_IRQ0); memcpy(addr + psg->offset, pad_buf, qc->pad_len); kunmap_atomic(addr, KM_IRQ0); } } else { if (qc->n_elem) dma_unmap_single(ap->dev, sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), dir); /* restore sg */ sg->length += qc->pad_len; if (pad_buf) memcpy(qc->buf_virt + sg->length - qc->pad_len, pad_buf, qc->pad_len); } qc->flags &= ~ATA_QCFLAG_DMAMAP; qc->__sg = NULL; } /** * ata_fill_sg - Fill PCI IDE PRD table * @qc: Metadata associated with taskfile to be transferred * * Fill PCI IDE PRD (scatter-gather) table with segments * associated with the current disk command. * * LOCKING: * spin_lock_irqsave(host lock) * */ static void ata_fill_sg(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg; unsigned int idx; WARN_ON(qc->__sg == NULL); WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); idx = 0; ata_for_each_sg(sg, qc) { u32 addr, offset; u32 sg_len, len; /* determine if physical DMA addr spans 64K boundary. * Note h/w doesn't support 64-bit, so we unconditionally * truncate dma_addr_t to u32. */ addr = (u32) sg_dma_address(sg); sg_len = sg_dma_len(sg); while (sg_len) { offset = addr & 0xffff; len = sg_len; if ((offset + sg_len) > 0x10000) len = 0x10000 - offset; ap->prd[idx].addr = cpu_to_le32(addr); ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); idx++; sg_len -= len; addr += len; } } if (idx) ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); } /** * ata_check_atapi_dma - Check whether ATAPI DMA can be supported * @qc: Metadata associated with taskfile to check * * Allow low-level driver to filter ATA PACKET commands, returning * a status indicating whether or not it is OK to use DMA for the * supplied PACKET command. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: 0 when ATAPI DMA can be used * nonzero otherwise */ int ata_check_atapi_dma(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; int rc = 0; /* Assume ATAPI DMA is OK by default */ /* some drives can only do ATAPI DMA on read/write */ if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) { struct scsi_cmnd *cmd = qc->scsicmd; u8 *scsicmd = cmd->cmnd; switch (scsicmd[0]) { case READ_10: case WRITE_10: case READ_12: case WRITE_12: case READ_6: case WRITE_6: /* atapi dma maybe ok */ break; default: /* turn off atapi dma */ return 1; } } if (ap->ops->check_atapi_dma) rc = ap->ops->check_atapi_dma(qc); return rc; } /** * ata_qc_prep - Prepare taskfile for submission * @qc: Metadata associated with taskfile to be prepared * * Prepare ATA taskfile for submission. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_qc_prep(struct ata_queued_cmd *qc) { if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; ata_fill_sg(qc); } void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } /** * ata_sg_init_one - Associate command with memory buffer * @qc: Command to be associated * @buf: Memory buffer * @buflen: Length of memory buffer, in bytes. * * Initialize the data-related elements of queued_cmd @qc * to point to a single memory buffer, @buf of byte length @buflen. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) { qc->flags |= ATA_QCFLAG_SINGLE; qc->__sg = &qc->sgent; qc->n_elem = 1; qc->orig_n_elem = 1; qc->buf_virt = buf; qc->nbytes = buflen; sg_init_one(&qc->sgent, buf, buflen); } /** * ata_sg_init - Associate command with scatter-gather table. * @qc: Command to be associated * @sg: Scatter-gather table. * @n_elem: Number of elements in s/g table. * * Initialize the data-related elements of queued_cmd @qc * to point to a scatter-gather table @sg, containing @n_elem * elements. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, unsigned int n_elem) { qc->flags |= ATA_QCFLAG_SG; qc->__sg = sg; qc->n_elem = n_elem; qc->orig_n_elem = n_elem; } /** * ata_sg_setup_one - DMA-map the memory buffer associated with a command. * @qc: Command with memory buffer to be mapped. * * DMA-map the memory buffer associated with queued_cmd @qc. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, negative on error. */ static int ata_sg_setup_one(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; int dir = qc->dma_dir; struct scatterlist *sg = qc->__sg; dma_addr_t dma_address; int trim_sg = 0; /* we must lengthen transfers to end on a 32-bit boundary */ qc->pad_len = sg->length & 3; if (qc->pad_len) { void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); struct scatterlist *psg = &qc->pad_sgent; WARN_ON(qc->dev->class != ATA_DEV_ATAPI); memset(pad_buf, 0, ATA_DMA_PAD_SZ); if (qc->tf.flags & ATA_TFLAG_WRITE) memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, qc->pad_len); sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); sg_dma_len(psg) = ATA_DMA_PAD_SZ; /* trim sg */ sg->length -= qc->pad_len; if (sg->length == 0) trim_sg = 1; DPRINTK("padding done, sg->length=%u pad_len=%u\n", sg->length, qc->pad_len); } if (trim_sg) { qc->n_elem--; goto skip_map; } dma_address = dma_map_single(ap->dev, qc->buf_virt, sg->length, dir); if (dma_mapping_error(dma_address)) { /* restore sg */ sg->length += qc->pad_len; return -1; } sg_dma_address(sg) = dma_address; sg_dma_len(sg) = sg->length; skip_map: DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); return 0; } /** * ata_sg_setup - DMA-map the scatter-gather table associated with a command. * @qc: Command with scatter-gather table to be mapped. * * DMA-map the scatter-gather table associated with queued_cmd @qc. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, negative on error. * */ static int ata_sg_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg = qc->__sg; struct scatterlist *lsg = &sg[qc->n_elem - 1]; int n_elem, pre_n_elem, dir, trim_sg = 0; VPRINTK("ENTER, ata%u\n", ap->print_id); WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); /* we must lengthen transfers to end on a 32-bit boundary */ qc->pad_len = lsg->length & 3; if (qc->pad_len) { void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); struct scatterlist *psg = &qc->pad_sgent; unsigned int offset; WARN_ON(qc->dev->class != ATA_DEV_ATAPI); memset(pad_buf, 0, ATA_DMA_PAD_SZ); /* * psg->page/offset are used to copy to-be-written * data in this function or read data in ata_sg_clean. */ offset = lsg->offset + lsg->length - qc->pad_len; psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); psg->offset = offset_in_page(offset); if (qc->tf.flags & ATA_TFLAG_WRITE) { void *addr = kmap_atomic(psg->page, KM_IRQ0); memcpy(pad_buf, addr + psg->offset, qc->pad_len); kunmap_atomic(addr, KM_IRQ0); } sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); sg_dma_len(psg) = ATA_DMA_PAD_SZ; /* trim last sg */ lsg->length -= qc->pad_len; if (lsg->length == 0) trim_sg = 1; DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", qc->n_elem - 1, lsg->length, qc->pad_len); } pre_n_elem = qc->n_elem; if (trim_sg && pre_n_elem) pre_n_elem--; if (!pre_n_elem) { n_elem = 0; goto skip_map; } dir = qc->dma_dir; n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); if (n_elem < 1) { /* restore last sg */ lsg->length += qc->pad_len; return -1; } DPRINTK("%d sg elements mapped\n", n_elem); skip_map: qc->n_elem = n_elem; return 0; } /** * swap_buf_le16 - swap halves of 16-bit words in place * @buf: Buffer to swap * @buf_words: Number of 16-bit words in buffer. * * Swap halves of 16-bit words if needed to convert from * little-endian byte order to native cpu byte order, or * vice-versa. * * LOCKING: * Inherited from caller. */ void swap_buf_le16(u16 *buf, unsigned int buf_words) { #ifdef __BIG_ENDIAN unsigned int i; for (i = 0; i < buf_words; i++) buf[i] = le16_to_cpu(buf[i]); #endif /* __BIG_ENDIAN */ } /** * ata_data_xfer - Transfer data by PIO * @adev: device to target * @buf: data buffer * @buflen: buffer length * @write_data: read/write * * Transfer data from/to the device data register by PIO. * * LOCKING: * Inherited from caller. */ void ata_data_xfer(struct ata_device *adev, unsigned char *buf, unsigned int buflen, int write_data) { struct ata_port *ap = adev->ap; unsigned int words = buflen >> 1; /* Transfer multiple of 2 bytes */ if (write_data) iowrite16_rep(ap->ioaddr.data_addr, buf, words); else ioread16_rep(ap->ioaddr.data_addr, buf, words); /* Transfer trailing 1 byte, if any. */ if (unlikely(buflen & 0x01)) { u16 align_buf[1] = { 0 }; unsigned char *trailing_buf = buf + buflen - 1; if (write_data) { memcpy(align_buf, trailing_buf, 1); iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); } else { align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); memcpy(trailing_buf, align_buf, 1); } } } /** * ata_data_xfer_noirq - Transfer data by PIO * @adev: device to target * @buf: data buffer * @buflen: buffer length * @write_data: read/write * * Transfer data from/to the device data register by PIO. Do the * transfer with interrupts disabled. * * LOCKING: * Inherited from caller. */ void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, unsigned int buflen, int write_data) { unsigned long flags; local_irq_save(flags); ata_data_xfer(adev, buf, buflen, write_data); local_irq_restore(flags); } /** * ata_pio_sector - Transfer a sector of data. * @qc: Command on going * * Transfer qc->sect_size bytes of data from/to the ATA device. * * LOCKING: * Inherited from caller. */ static void ata_pio_sector(struct ata_queued_cmd *qc) { int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); struct scatterlist *sg = qc->__sg; struct ata_port *ap = qc->ap; struct page *page; unsigned int offset; unsigned char *buf; if (qc->curbytes == qc->nbytes - qc->sect_size) ap->hsm_task_state = HSM_ST_LAST; page = sg[qc->cursg].page; offset = sg[qc->cursg].offset + qc->cursg_ofs; /* get the current page and offset */ page = nth_page(page, (offset >> PAGE_SHIFT)); offset %= PAGE_SIZE; DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); if (PageHighMem(page)) { unsigned long flags; /* FIXME: use a bounce buffer */ local_irq_save(flags); buf = kmap_atomic(page, KM_IRQ0); /* do the actual data transfer */ ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); kunmap_atomic(buf, KM_IRQ0); local_irq_restore(flags); } else { buf = page_address(page); ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); } qc->curbytes += qc->sect_size; qc->cursg_ofs += qc->sect_size; if (qc->cursg_ofs == (&sg[qc->cursg])->length) { qc->cursg++; qc->cursg_ofs = 0; } } /** * ata_pio_sectors - Transfer one or many sectors. * @qc: Command on going * * Transfer one or many sectors of data from/to the * ATA device for the DRQ request. * * LOCKING: * Inherited from caller. */ static void ata_pio_sectors(struct ata_queued_cmd *qc) { if (is_multi_taskfile(&qc->tf)) { /* READ/WRITE MULTIPLE */ unsigned int nsect; WARN_ON(qc->dev->multi_count == 0); nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, qc->dev->multi_count); while (nsect--) ata_pio_sector(qc); } else ata_pio_sector(qc); } /** * atapi_send_cdb - Write CDB bytes to hardware * @ap: Port to which ATAPI device is attached. * @qc: Taskfile currently active * * When device has indicated its readiness to accept * a CDB, this function is called. Send the CDB. * * LOCKING: * caller. */ static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) { /* send SCSI cdb */ DPRINTK("send cdb\n"); WARN_ON(qc->dev->cdb_len < 12); ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); ata_altstatus(ap); /* flush */ switch (qc->tf.protocol) { case ATA_PROT_ATAPI: ap->hsm_task_state = HSM_ST; break; case ATA_PROT_ATAPI_NODATA: ap->hsm_task_state = HSM_ST_LAST; break; case ATA_PROT_ATAPI_DMA: ap->hsm_task_state = HSM_ST_LAST; /* initiate bmdma */ ap->ops->bmdma_start(qc); break; } } /** * __atapi_pio_bytes - Transfer data from/to the ATAPI device. * @qc: Command on going * @bytes: number of bytes * * Transfer Transfer data from/to the ATAPI device. * * LOCKING: * Inherited from caller. * */ static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) { int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); struct scatterlist *sg = qc->__sg; struct ata_port *ap = qc->ap; struct page *page; unsigned char *buf; unsigned int offset, count; if (qc->curbytes + bytes >= qc->nbytes) ap->hsm_task_state = HSM_ST_LAST; next_sg: if (unlikely(qc->cursg >= qc->n_elem)) { /* * The end of qc->sg is reached and the device expects * more data to transfer. In order not to overrun qc->sg * and fulfill length specified in the byte count register, * - for read case, discard trailing data from the device * - for write case, padding zero data to the device */ u16 pad_buf[1] = { 0 }; unsigned int words = bytes >> 1; unsigned int i; if (words) /* warning if bytes > 1 */ ata_dev_printk(qc->dev, KERN_WARNING, "%u bytes trailing data\n", bytes); for (i = 0; i < words; i++) ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); ap->hsm_task_state = HSM_ST_LAST; return; } sg = &qc->__sg[qc->cursg]; page = sg->page; offset = sg->offset + qc->cursg_ofs; /* get the current page and offset */ page = nth_page(page, (offset >> PAGE_SHIFT)); offset %= PAGE_SIZE; /* don't overrun current sg */ count = min(sg->length - qc->cursg_ofs, bytes); /* don't cross page boundaries */ count = min(count, (unsigned int)PAGE_SIZE - offset); DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); if (PageHighMem(page)) { unsigned long flags; /* FIXME: use bounce buffer */ local_irq_save(flags); buf = kmap_atomic(page, KM_IRQ0); /* do the actual data transfer */ ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); kunmap_atomic(buf, KM_IRQ0); local_irq_restore(flags); } else { buf = page_address(page); ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); } bytes -= count; qc->curbytes += count; qc->cursg_ofs += count; if (qc->cursg_ofs == sg->length) { qc->cursg++; qc->cursg_ofs = 0; } if (bytes) goto next_sg; } /** * atapi_pio_bytes - Transfer data from/to the ATAPI device. * @qc: Command on going * * Transfer Transfer data from/to the ATAPI device. * * LOCKING: * Inherited from caller. */ static void atapi_pio_bytes(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct ata_device *dev = qc->dev; unsigned int ireason, bc_lo, bc_hi, bytes; int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; /* Abuse qc->result_tf for temp storage of intermediate TF * here to save some kernel stack usage. * For normal completion, qc->result_tf is not relevant. For * error, qc->result_tf is later overwritten by ata_qc_complete(). * So, the correctness of qc->result_tf is not affected. */ ap->ops->tf_read(ap, &qc->result_tf); ireason = qc->result_tf.nsect; bc_lo = qc->result_tf.lbam; bc_hi = qc->result_tf.lbah; bytes = (bc_hi << 8) | bc_lo; /* shall be cleared to zero, indicating xfer of data */ if (ireason & (1 << 0)) goto err_out; /* make sure transfer direction matches expected */ i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; if (do_write != i_write) goto err_out; VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); __atapi_pio_bytes(qc, bytes); return; err_out: ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; } /** * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. * @ap: the target ata_port * @qc: qc on going * * RETURNS: * 1 if ok in workqueue, 0 otherwise. */ static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) { if (qc->tf.flags & ATA_TFLAG_POLLING) return 1; if (ap->hsm_task_state == HSM_ST_FIRST) { if (qc->tf.protocol == ATA_PROT_PIO && (qc->tf.flags & ATA_TFLAG_WRITE)) return 1; if (is_atapi_taskfile(&qc->tf) && !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) return 1; } return 0; } /** * ata_hsm_qc_complete - finish a qc running on standard HSM * @qc: Command to complete * @in_wq: 1 if called from workqueue, 0 otherwise * * Finish @qc which is running on standard HSM. * * LOCKING: * If @in_wq is zero, spin_lock_irqsave(host lock). * Otherwise, none on entry and grabs host lock. */ static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) { struct ata_port *ap = qc->ap; unsigned long flags; if (ap->ops->error_handler) { if (in_wq) { spin_lock_irqsave(ap->lock, flags); /* EH might have kicked in while host lock is * released. */ qc = ata_qc_from_tag(ap, qc->tag); if (qc) { if (likely(!(qc->err_mask & AC_ERR_HSM))) { ap->ops->irq_on(ap); ata_qc_complete(qc); } else ata_port_freeze(ap); } spin_unlock_irqrestore(ap->lock, flags); } else { if (likely(!(qc->err_mask & AC_ERR_HSM))) ata_qc_complete(qc); else ata_port_freeze(ap); } } else { if (in_wq) { spin_lock_irqsave(ap->lock, flags); ap->ops->irq_on(ap); ata_qc_complete(qc); spin_unlock_irqrestore(ap->lock, flags); } else ata_qc_complete(qc); } ata_altstatus(ap); /* flush */ } /** * ata_hsm_move - move the HSM to the next state. * @ap: the target ata_port * @qc: qc on going * @status: current device status * @in_wq: 1 if called from workqueue, 0 otherwise * * RETURNS: * 1 when poll next status needed, 0 otherwise. */ int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, u8 status, int in_wq) { unsigned long flags = 0; int poll_next; WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); /* Make sure ata_qc_issue_prot() does not throw things * like DMA polling into the workqueue. Notice that * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). */ WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); fsm_start: DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); switch (ap->hsm_task_state) { case HSM_ST_FIRST: /* Send first data block or PACKET CDB */ /* If polling, we will stay in the work queue after * sending the data. Otherwise, interrupt handler * takes over after sending the data. */ poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); /* check device status */ if (unlikely((status & ATA_DRQ) == 0)) { /* handle BSY=0, DRQ=0 as error */ if (likely(status & (ATA_ERR | ATA_DF))) /* device stops HSM for abort/error */ qc->err_mask |= AC_ERR_DEV; else /* HSM violation. Let EH handle this */ qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } /* Device should not ask for data transfer (DRQ=1) * when it finds something wrong. * We ignore DRQ here and stop the HSM by * changing hsm_task_state to HSM_ST_ERR and * let the EH abort the command or reset the device. */ if (unlikely(status & (ATA_ERR | ATA_DF))) { ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " "error, dev_stat 0x%X\n", status); qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } /* Send the CDB (atapi) or the first data block (ata pio out). * During the state transition, interrupt handler shouldn't * be invoked before the data transfer is complete and * hsm_task_state is changed. Hence, the following locking. */ if (in_wq) spin_lock_irqsave(ap->lock, flags); if (qc->tf.protocol == ATA_PROT_PIO) { /* PIO data out protocol. * send first data block. */ /* ata_pio_sectors() might change the state * to HSM_ST_LAST. so, the state is changed here * before ata_pio_sectors(). */ ap->hsm_task_state = HSM_ST; ata_pio_sectors(qc); ata_altstatus(ap); /* flush */ } else /* send CDB */ atapi_send_cdb(ap, qc); if (in_wq) spin_unlock_irqrestore(ap->lock, flags); /* if polling, ata_pio_task() handles the rest. * otherwise, interrupt handler takes over from here. */ break; case HSM_ST: /* complete command or read/write the data register */ if (qc->tf.protocol == ATA_PROT_ATAPI) { /* ATAPI PIO protocol */ if ((status & ATA_DRQ) == 0) { /* No more data to transfer or device error. * Device error will be tagged in HSM_ST_LAST. */ ap->hsm_task_state = HSM_ST_LAST; goto fsm_start; } /* Device should not ask for data transfer (DRQ=1) * when it finds something wrong. * We ignore DRQ here and stop the HSM by * changing hsm_task_state to HSM_ST_ERR and * let the EH abort the command or reset the device. */ if (unlikely(status & (ATA_ERR | ATA_DF))) { ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " "device error, dev_stat 0x%X\n", status); qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } atapi_pio_bytes(qc); if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) /* bad ireason reported by device */ goto fsm_start; } else { /* ATA PIO protocol */ if (unlikely((status & ATA_DRQ) == 0)) { /* handle BSY=0, DRQ=0 as error */ if (likely(status & (ATA_ERR | ATA_DF))) /* device stops HSM for abort/error */ qc->err_mask |= AC_ERR_DEV; else /* HSM violation. Let EH handle this. * Phantom devices also trigger this * condition. Mark hint. */ qc->err_mask |= AC_ERR_HSM | AC_ERR_NODEV_HINT; ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } /* For PIO reads, some devices may ask for * data transfer (DRQ=1) alone with ERR=1. * We respect DRQ here and transfer one * block of junk data before changing the * hsm_task_state to HSM_ST_ERR. * * For PIO writes, ERR=1 DRQ=1 doesn't make * sense since the data block has been * transferred to the device. */ if (unlikely(status & (ATA_ERR | ATA_DF))) { /* data might be corrputed */ qc->err_mask |= AC_ERR_DEV; if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { ata_pio_sectors(qc); ata_altstatus(ap); status = ata_wait_idle(ap); } if (status & (ATA_BUSY | ATA_DRQ)) qc->err_mask |= AC_ERR_HSM; /* ata_pio_sectors() might change the * state to HSM_ST_LAST. so, the state * is changed after ata_pio_sectors(). */ ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } ata_pio_sectors(qc); if (ap->hsm_task_state == HSM_ST_LAST && (!(qc->tf.flags & ATA_TFLAG_WRITE))) { /* all data read */ ata_altstatus(ap); status = ata_wait_idle(ap); goto fsm_start; } } ata_altstatus(ap); /* flush */ poll_next = 1; break; case HSM_ST_LAST: if (unlikely(!ata_ok(status))) { qc->err_mask |= __ac_err_mask(status); ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } /* no more data to transfer */ DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", ap->print_id, qc->dev->devno, status); WARN_ON(qc->err_mask); ap->hsm_task_state = HSM_ST_IDLE; /* complete taskfile transaction */ ata_hsm_qc_complete(qc, in_wq); poll_next = 0; break; case HSM_ST_ERR: /* make sure qc->err_mask is available to * know what's wrong and recover */ WARN_ON(qc->err_mask == 0); ap->hsm_task_state = HSM_ST_IDLE; /* complete taskfile transaction */ ata_hsm_qc_complete(qc, in_wq); poll_next = 0; break; default: poll_next = 0; BUG(); } return poll_next; } static void ata_pio_task(struct work_struct *work) { struct ata_port *ap = container_of(work, struct ata_port, port_task.work); struct ata_queued_cmd *qc = ap->port_task_data; u8 status; int poll_next; fsm_start: WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); /* * This is purely heuristic. This is a fast path. * Sometimes when we enter, BSY will be cleared in * a chk-status or two. If not, the drive is probably seeking * or something. Snooze for a couple msecs, then * chk-status again. If still busy, queue delayed work. */ status = ata_busy_wait(ap, ATA_BUSY, 5); if (status & ATA_BUSY) { msleep(2); status = ata_busy_wait(ap, ATA_BUSY, 10); if (status & ATA_BUSY) { ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); return; } } /* move the HSM */ poll_next = ata_hsm_move(ap, qc, status, 1); /* another command or interrupt handler * may be running at this point. */ if (poll_next) goto fsm_start; } /** * ata_qc_new - Request an available ATA command, for queueing * @ap: Port associated with device @dev * @dev: Device from whom we request an available command structure * * LOCKING: * None. */ static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) { struct ata_queued_cmd *qc = NULL; unsigned int i; /* no command while frozen */ if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) return NULL; /* the last tag is reserved for internal command. */ for (i = 0; i < ATA_MAX_QUEUE - 1; i++) if (!test_and_set_bit(i, &ap->qc_allocated)) { qc = __ata_qc_from_tag(ap, i); break; } if (qc) qc->tag = i; return qc; } /** * ata_qc_new_init - Request an available ATA command, and initialize it * @dev: Device from whom we request an available command structure * * LOCKING: * None. */ struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) { struct ata_port *ap = dev->ap; struct ata_queued_cmd *qc; qc = ata_qc_new(ap); if (qc) { qc->scsicmd = NULL; qc->ap = ap; qc->dev = dev; ata_qc_reinit(qc); } return qc; } /** * ata_qc_free - free unused ata_queued_cmd * @qc: Command to complete * * Designed to free unused ata_queued_cmd object * in case something prevents using it. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_qc_free(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int tag; WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ qc->flags = 0; tag = qc->tag; if (likely(ata_tag_valid(tag))) { qc->tag = ATA_TAG_POISON; clear_bit(tag, &ap->qc_allocated); } } void __ata_qc_complete(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) ata_sg_clean(qc); /* command should be marked inactive atomically with qc completion */ if (qc->tf.protocol == ATA_PROT_NCQ) ap->sactive &= ~(1 << qc->tag); else ap->active_tag = ATA_TAG_POISON; /* atapi: mark qc as inactive to prevent the interrupt handler * from completing the command twice later, before the error handler * is called. (when rc != 0 and atapi request sense is needed) */ qc->flags &= ~ATA_QCFLAG_ACTIVE; ap->qc_active &= ~(1 << qc->tag); /* call completion callback */ qc->complete_fn(qc); } static void fill_result_tf(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; qc->result_tf.flags = qc->tf.flags; ap->ops->tf_read(ap, &qc->result_tf); } /** * ata_qc_complete - Complete an active ATA command * @qc: Command to complete * @err_mask: ATA Status register contents * * Indicate to the mid and upper layers that an ATA * command has completed, with either an ok or not-ok status. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_qc_complete(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; /* XXX: New EH and old EH use different mechanisms to * synchronize EH with regular execution path. * * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. * Normal execution path is responsible for not accessing a * failed qc. libata core enforces the rule by returning NULL * from ata_qc_from_tag() for failed qcs. * * Old EH depends on ata_qc_complete() nullifying completion * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does * not synchronize with interrupt handler. Only PIO task is * taken care of. */ if (ap->ops->error_handler) { WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); if (unlikely(qc->err_mask)) qc->flags |= ATA_QCFLAG_FAILED; if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { if (!ata_tag_internal(qc->tag)) { /* always fill result TF for failed qc */ fill_result_tf(qc); ata_qc_schedule_eh(qc); return; } } /* read result TF if requested */ if (qc->flags & ATA_QCFLAG_RESULT_TF) fill_result_tf(qc); __ata_qc_complete(qc); } else { if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) return; /* read result TF if failed or requested */ if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) fill_result_tf(qc); __ata_qc_complete(qc); } } /** * ata_qc_complete_multiple - Complete multiple qcs successfully * @ap: port in question * @qc_active: new qc_active mask * @finish_qc: LLDD callback invoked before completing a qc * * Complete in-flight commands. This functions is meant to be * called from low-level driver's interrupt routine to complete * requests normally. ap->qc_active and @qc_active is compared * and commands are completed accordingly. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Number of completed commands on success, -errno otherwise. */ int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, void (*finish_qc)(struct ata_queued_cmd *)) { int nr_done = 0; u32 done_mask; int i; done_mask = ap->qc_active ^ qc_active; if (unlikely(done_mask & qc_active)) { ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " "(%08x->%08x)\n", ap->qc_active, qc_active); return -EINVAL; } for (i = 0; i < ATA_MAX_QUEUE; i++) { struct ata_queued_cmd *qc; if (!(done_mask & (1 << i))) continue; if ((qc = ata_qc_from_tag(ap, i))) { if (finish_qc) finish_qc(qc); ata_qc_complete(qc); nr_done++; } } return nr_done; } static inline int ata_should_dma_map(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; switch (qc->tf.protocol) { case ATA_PROT_NCQ: case ATA_PROT_DMA: case ATA_PROT_ATAPI_DMA: return 1; case ATA_PROT_ATAPI: case ATA_PROT_PIO: if (ap->flags & ATA_FLAG_PIO_DMA) return 1; /* fall through */ default: return 0; } /* never reached */ } /** * ata_qc_issue - issue taskfile to device * @qc: command to issue to device * * Prepare an ATA command to submission to device. * This includes mapping the data into a DMA-able * area, filling in the S/G table, and finally * writing the taskfile to hardware, starting the command. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_qc_issue(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; /* Make sure only one non-NCQ command is outstanding. The * check is skipped for old EH because it reuses active qc to * request ATAPI sense. */ WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); if (qc->tf.protocol == ATA_PROT_NCQ) { WARN_ON(ap->sactive & (1 << qc->tag)); ap->sactive |= 1 << qc->tag; } else { WARN_ON(ap->sactive); ap->active_tag = qc->tag; } qc->flags |= ATA_QCFLAG_ACTIVE; ap->qc_active |= 1 << qc->tag; if (ata_should_dma_map(qc)) { if (qc->flags & ATA_QCFLAG_SG) { if (ata_sg_setup(qc)) goto sg_err; } else if (qc->flags & ATA_QCFLAG_SINGLE) { if (ata_sg_setup_one(qc)) goto sg_err; } } else { qc->flags &= ~ATA_QCFLAG_DMAMAP; } ap->ops->qc_prep(qc); qc->err_mask |= ap->ops->qc_issue(qc); if (unlikely(qc->err_mask)) goto err; return; sg_err: qc->flags &= ~ATA_QCFLAG_DMAMAP; qc->err_mask |= AC_ERR_SYSTEM; err: ata_qc_complete(qc); } /** * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner * @qc: command to issue to device * * Using various libata functions and hooks, this function * starts an ATA command. ATA commands are grouped into * classes called "protocols", and issuing each type of protocol * is slightly different. * * May be used as the qc_issue() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, AC_ERR_* mask on failure */ unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; /* Use polling pio if the LLD doesn't handle * interrupt driven pio and atapi CDB interrupt. */ if (ap->flags & ATA_FLAG_PIO_POLLING) { switch (qc->tf.protocol) { case ATA_PROT_PIO: case ATA_PROT_NODATA: case ATA_PROT_ATAPI: case ATA_PROT_ATAPI_NODATA: qc->tf.flags |= ATA_TFLAG_POLLING; break; case ATA_PROT_ATAPI_DMA: if (qc->dev->flags & ATA_DFLAG_CDB_INTR) /* see ata_dma_blacklisted() */ BUG(); break; default: break; } } /* Some controllers show flaky interrupt behavior after * setting xfer mode. Use polling instead. */ if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES && qc->tf.feature == SETFEATURES_XFER) && (ap->flags & ATA_FLAG_SETXFER_POLLING)) qc->tf.flags |= ATA_TFLAG_POLLING; /* select the device */ ata_dev_select(ap, qc->dev->devno, 1, 0); /* start the command */ switch (qc->tf.protocol) { case ATA_PROT_NODATA: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); ap->hsm_task_state = HSM_ST_LAST; if (qc->tf.flags & ATA_TFLAG_POLLING) ata_port_queue_task(ap, ata_pio_task, qc, 0); break; case ATA_PROT_DMA: WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->bmdma_setup(qc); /* set up bmdma */ ap->ops->bmdma_start(qc); /* initiate bmdma */ ap->hsm_task_state = HSM_ST_LAST; break; case ATA_PROT_PIO: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); if (qc->tf.flags & ATA_TFLAG_WRITE) { /* PIO data out protocol */ ap->hsm_task_state = HSM_ST_FIRST; ata_port_queue_task(ap, ata_pio_task, qc, 0); /* always send first data block using * the ata_pio_task() codepath. */ } else { /* PIO data in protocol */ ap->hsm_task_state = HSM_ST; if (qc->tf.flags & ATA_TFLAG_POLLING) ata_port_queue_task(ap, ata_pio_task, qc, 0); /* if polling, ata_pio_task() handles the rest. * otherwise, interrupt handler takes over from here. */ } break; case ATA_PROT_ATAPI: case ATA_PROT_ATAPI_NODATA: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); ap->hsm_task_state = HSM_ST_FIRST; /* send cdb by polling if no cdb interrupt */ if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || (qc->tf.flags & ATA_TFLAG_POLLING)) ata_port_queue_task(ap, ata_pio_task, qc, 0); break; case ATA_PROT_ATAPI_DMA: WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->bmdma_setup(qc); /* set up bmdma */ ap->hsm_task_state = HSM_ST_FIRST; /* send cdb by polling if no cdb interrupt */ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ata_port_queue_task(ap, ata_pio_task, qc, 0); break; default: WARN_ON(1); return AC_ERR_SYSTEM; } return 0; } /** * ata_host_intr - Handle host interrupt for given (port, task) * @ap: Port on which interrupt arrived (possibly...) * @qc: Taskfile currently active in engine * * Handle host interrupt for given queued command. Currently, * only DMA interrupts are handled. All other commands are * handled via polling with interrupts disabled (nIEN bit). * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * One if interrupt was handled, zero if not (shared irq). */ inline unsigned int ata_host_intr (struct ata_port *ap, struct ata_queued_cmd *qc) { struct ata_eh_info *ehi = &ap->eh_info; u8 status, host_stat = 0; VPRINTK("ata%u: protocol %d task_state %d\n", ap->print_id, qc->tf.protocol, ap->hsm_task_state); /* Check whether we are expecting interrupt in this state */ switch (ap->hsm_task_state) { case HSM_ST_FIRST: /* Some pre-ATAPI-4 devices assert INTRQ * at this state when ready to receive CDB. */ /* Check the ATA_DFLAG_CDB_INTR flag is enough here. * The flag was turned on only for atapi devices. * No need to check is_atapi_taskfile(&qc->tf) again. */ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) goto idle_irq; break; case HSM_ST_LAST: if (qc->tf.protocol == ATA_PROT_DMA || qc->tf.protocol == ATA_PROT_ATAPI_DMA) { /* check status of DMA engine */ host_stat = ap->ops->bmdma_status(ap); VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); /* if it's not our irq... */ if (!(host_stat & ATA_DMA_INTR)) goto idle_irq; /* before we do anything else, clear DMA-Start bit */ ap->ops->bmdma_stop(qc); if (unlikely(host_stat & ATA_DMA_ERR)) { /* error when transfering data to/from memory */ qc->err_mask |= AC_ERR_HOST_BUS; ap->hsm_task_state = HSM_ST_ERR; } } break; case HSM_ST: break; default: goto idle_irq; } /* check altstatus */ status = ata_altstatus(ap); if (status & ATA_BUSY) goto idle_irq; /* check main status, clearing INTRQ */ status = ata_chk_status(ap); if (unlikely(status & ATA_BUSY)) goto idle_irq; /* ack bmdma irq events */ ap->ops->irq_clear(ap); ata_hsm_move(ap, qc, status, 0); if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || qc->tf.protocol == ATA_PROT_ATAPI_DMA)) ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); return 1; /* irq handled */ idle_irq: ap->stats.idle_irq++; #ifdef ATA_IRQ_TRAP if ((ap->stats.idle_irq % 1000) == 0) { ap->ops->irq_ack(ap, 0); /* debug trap */ ata_port_printk(ap, KERN_WARNING, "irq trap\n"); return 1; } #endif return 0; /* irq not handled */ } /** * ata_interrupt - Default ATA host interrupt handler * @irq: irq line (unused) * @dev_instance: pointer to our ata_host information structure * * Default interrupt handler for PCI IDE devices. Calls * ata_host_intr() for each port that is not disabled. * * LOCKING: * Obtains host lock during operation. * * RETURNS: * IRQ_NONE or IRQ_HANDLED. */ irqreturn_t ata_interrupt (int irq, void *dev_instance) { struct ata_host *host = dev_instance; unsigned int i; unsigned int handled = 0; unsigned long flags; /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ spin_lock_irqsave(&host->lock, flags); for (i = 0; i < host->n_ports; i++) { struct ata_port *ap; ap = host->ports[i]; if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { struct ata_queued_cmd *qc; qc = ata_qc_from_tag(ap, ap->active_tag); if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && (qc->flags & ATA_QCFLAG_ACTIVE)) handled |= ata_host_intr(ap, qc); } } spin_unlock_irqrestore(&host->lock, flags); return IRQ_RETVAL(handled); } /** * sata_scr_valid - test whether SCRs are accessible * @ap: ATA port to test SCR accessibility for * * Test whether SCRs are accessible for @ap. * * LOCKING: * None. * * RETURNS: * 1 if SCRs are accessible, 0 otherwise. */ int sata_scr_valid(struct ata_port *ap) { return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read; } /** * sata_scr_read - read SCR register of the specified port * @ap: ATA port to read SCR for * @reg: SCR to read * @val: Place to store read value * * Read SCR register @reg of @ap into *@val. This function is * guaranteed to succeed if the cable type of the port is SATA * and the port implements ->scr_read. * * LOCKING: * None. * * RETURNS: * 0 on success, negative errno on failure. */ int sata_scr_read(struct ata_port *ap, int reg, u32 *val) { if (sata_scr_valid(ap)) { *val = ap->ops->scr_read(ap, reg); return 0; } return -EOPNOTSUPP; } /** * sata_scr_write - write SCR register of the specified port * @ap: ATA port to write SCR for * @reg: SCR to write * @val: value to write * * Write @val to SCR register @reg of @ap. This function is * guaranteed to succeed if the cable type of the port is SATA * and the port implements ->scr_read. * * LOCKING: * None. * * RETURNS: * 0 on success, negative errno on failure. */ int sata_scr_write(struct ata_port *ap, int reg, u32 val) { if (sata_scr_valid(ap)) { ap->ops->scr_write(ap, reg, val); return 0; } return -EOPNOTSUPP; } /** * sata_scr_write_flush - write SCR register of the specified port and flush * @ap: ATA port to write SCR for * @reg: SCR to write * @val: value to write * * This function is identical to sata_scr_write() except that this * function performs flush after writing to the register. * * LOCKING: * None. * * RETURNS: * 0 on success, negative errno on failure. */ int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) { if (sata_scr_valid(ap)) { ap->ops->scr_write(ap, reg, val); ap->ops->scr_read(ap, reg); return 0; } return -EOPNOTSUPP; } /** * ata_port_online - test whether the given port is online * @ap: ATA port to test * * Test whether @ap is online. Note that this function returns 0 * if online status of @ap cannot be obtained, so * ata_port_online(ap) != !ata_port_offline(ap). * * LOCKING: * None. * * RETURNS: * 1 if the port online status is available and online. */ int ata_port_online(struct ata_port *ap) { u32 sstatus; if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) return 1; return 0; } /** * ata_port_offline - test whether the given port is offline * @ap: ATA port to test * * Test whether @ap is offline. Note that this function returns * 0 if offline status of @ap cannot be obtained, so * ata_port_online(ap) != !ata_port_offline(ap). * * LOCKING: * None. * * RETURNS: * 1 if the port offline status is available and offline. */ int ata_port_offline(struct ata_port *ap) { u32 sstatus; if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) return 1; return 0; } int ata_flush_cache(struct ata_device *dev) { unsigned int err_mask; u8 cmd; if (!ata_try_flush_cache(dev)) return 0; if (dev->flags & ATA_DFLAG_FLUSH_EXT) cmd = ATA_CMD_FLUSH_EXT; else cmd = ATA_CMD_FLUSH; err_mask = ata_do_simple_cmd(dev, cmd); if (err_mask) { ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); return -EIO; } return 0; } #ifdef CONFIG_PM static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, unsigned int action, unsigned int ehi_flags, int wait) { unsigned long flags; int i, rc; for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; /* Previous resume operation might still be in * progress. Wait for PM_PENDING to clear. */ if (ap->pflags & ATA_PFLAG_PM_PENDING) { ata_port_wait_eh(ap); WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); } /* request PM ops to EH */ spin_lock_irqsave(ap->lock, flags); ap->pm_mesg = mesg; if (wait) { rc = 0; ap->pm_result = &rc; } ap->pflags |= ATA_PFLAG_PM_PENDING; ap->eh_info.action |= action; ap->eh_info.flags |= ehi_flags; ata_port_schedule_eh(ap); spin_unlock_irqrestore(ap->lock, flags); /* wait and check result */ if (wait) { ata_port_wait_eh(ap); WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); if (rc) return rc; } } return 0; } /** * ata_host_suspend - suspend host * @host: host to suspend * @mesg: PM message * * Suspend @host. Actual operation is performed by EH. This * function requests EH to perform PM operations and waits for EH * to finish. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, -errno on failure. */ int ata_host_suspend(struct ata_host *host, pm_message_t mesg) { int i, j, rc; rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); if (rc) goto fail; /* EH is quiescent now. Fail if we have any ready device. * This happens if hotplug occurs between completion of device * suspension and here. */ for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; for (j = 0; j < ATA_MAX_DEVICES; j++) { struct ata_device *dev = &ap->device[j]; if (ata_dev_ready(dev)) { ata_port_printk(ap, KERN_WARNING, "suspend failed, device %d " "still active\n", dev->devno); rc = -EBUSY; goto fail; } } } host->dev->power.power_state = mesg; return 0; fail: ata_host_resume(host); return rc; } /** * ata_host_resume - resume host * @host: host to resume * * Resume @host. Actual operation is performed by EH. This * function requests EH to perform PM operations and returns. * Note that all resume operations are performed parallely. * * LOCKING: * Kernel thread context (may sleep). */ void ata_host_resume(struct ata_host *host) { ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); host->dev->power.power_state = PMSG_ON; } #endif /** * ata_port_start - Set port up for dma. * @ap: Port to initialize * * Called just after data structures for each port are * initialized. Allocates space for PRD table. * * May be used as the port_start() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ int ata_port_start(struct ata_port *ap) { struct device *dev = ap->dev; int rc; ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL); if (!ap->prd) return -ENOMEM; rc = ata_pad_alloc(ap, dev); if (rc) return rc; DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long)ap->prd_dma); return 0; } /** * ata_dev_init - Initialize an ata_device structure * @dev: Device structure to initialize * * Initialize @dev in preparation for probing. * * LOCKING: * Inherited from caller. */ void ata_dev_init(struct ata_device *dev) { struct ata_port *ap = dev->ap; unsigned long flags; /* SATA spd limit is bound to the first device */ ap->sata_spd_limit = ap->hw_sata_spd_limit; /* High bits of dev->flags are used to record warm plug * requests which occur asynchronously. Synchronize using * host lock. */ spin_lock_irqsave(ap->lock, flags); dev->flags &= ~ATA_DFLAG_INIT_MASK; spin_unlock_irqrestore(ap->lock, flags); memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); dev->pio_mask = UINT_MAX; dev->mwdma_mask = UINT_MAX; dev->udma_mask = UINT_MAX; } /** * ata_port_alloc - allocate and initialize basic ATA port resources * @host: ATA host this allocated port belongs to * * Allocate and initialize basic ATA port resources. * * RETURNS: * Allocate ATA port on success, NULL on failure. * * LOCKING: * Inherited from calling layer (may sleep). */ struct ata_port *ata_port_alloc(struct ata_host *host) { struct ata_port *ap; unsigned int i; DPRINTK("ENTER\n"); ap = kzalloc(sizeof(*ap), GFP_KERNEL); if (!ap) return NULL; ap->lock = &host->lock; ap->flags = ATA_FLAG_DISABLED; ap->print_id = -1; ap->ctl = ATA_DEVCTL_OBS; ap->host = host; ap->dev = host->dev; ap->hw_sata_spd_limit = UINT_MAX; ap->active_tag = ATA_TAG_POISON; ap->last_ctl = 0xFF; #if defined(ATA_VERBOSE_DEBUG) /* turn on all debugging levels */ ap->msg_enable = 0x00FF; #elif defined(ATA_DEBUG) ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; #else ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; #endif INIT_DELAYED_WORK(&ap->port_task, NULL); INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); INIT_LIST_HEAD(&ap->eh_done_q); init_waitqueue_head(&ap->eh_wait_q); ap->cbl = ATA_CBL_NONE; for (i = 0; i < ATA_MAX_DEVICES; i++) { struct ata_device *dev = &ap->device[i]; dev->ap = ap; dev->devno = i; ata_dev_init(dev); } #ifdef ATA_IRQ_TRAP ap->stats.unhandled_irq = 1; ap->stats.idle_irq = 1; #endif return ap; } static void ata_host_release(struct device *gendev, void *res) { struct ata_host *host = dev_get_drvdata(gendev); int i; for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; if (!ap) continue; if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop) ap->ops->port_stop(ap); } if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop) host->ops->host_stop(host); for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; if (!ap) continue; if (ap->scsi_host) scsi_host_put(ap->scsi_host); kfree(ap); host->ports[i] = NULL; } dev_set_drvdata(gendev, NULL); } /** * ata_host_alloc - allocate and init basic ATA host resources * @dev: generic device this host is associated with * @max_ports: maximum number of ATA ports associated with this host * * Allocate and initialize basic ATA host resources. LLD calls * this function to allocate a host, initializes it fully and * attaches it using ata_host_register(). * * @max_ports ports are allocated and host->n_ports is * initialized to @max_ports. The caller is allowed to decrease * host->n_ports before calling ata_host_register(). The unused * ports will be automatically freed on registration. * * RETURNS: * Allocate ATA host on success, NULL on failure. * * LOCKING: * Inherited from calling layer (may sleep). */ struct ata_host *ata_host_alloc(struct device *dev, int max_ports) { struct ata_host *host; size_t sz; int i; DPRINTK("ENTER\n"); if (!devres_open_group(dev, NULL, GFP_KERNEL)) return NULL; /* alloc a container for our list of ATA ports (buses) */ sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); /* alloc a container for our list of ATA ports (buses) */ host = devres_alloc(ata_host_release, sz, GFP_KERNEL); if (!host) goto err_out; devres_add(dev, host); dev_set_drvdata(dev, host); spin_lock_init(&host->lock); host->dev = dev; host->n_ports = max_ports; /* allocate ports bound to this host */ for (i = 0; i < max_ports; i++) { struct ata_port *ap; ap = ata_port_alloc(host); if (!ap) goto err_out; ap->port_no = i; host->ports[i] = ap; } devres_remove_group(dev, NULL); return host; err_out: devres_release_group(dev, NULL); return NULL; } /** * ata_host_alloc_pinfo - alloc host and init with port_info array * @dev: generic device this host is associated with * @ppi: array of ATA port_info to initialize host with * @n_ports: number of ATA ports attached to this host * * Allocate ATA host and initialize with info from @ppi. If NULL * terminated, @ppi may contain fewer entries than @n_ports. The * last entry will be used for the remaining ports. * * RETURNS: * Allocate ATA host on success, NULL on failure. * * LOCKING: * Inherited from calling layer (may sleep). */ struct ata_host *ata_host_alloc_pinfo(struct device *dev, const struct ata_port_info * const * ppi, int n_ports) { const struct ata_port_info *pi; struct ata_host *host; int i, j; host = ata_host_alloc(dev, n_ports); if (!host) return NULL; for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; if (ppi[j]) pi = ppi[j++]; ap->pio_mask = pi->pio_mask; ap->mwdma_mask = pi->mwdma_mask; ap->udma_mask = pi->udma_mask; ap->flags |= pi->flags; ap->ops = pi->port_ops; if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) host->ops = pi->port_ops; if (!host->private_data && pi->private_data) host->private_data = pi->private_data; } return host; } /** * ata_host_start - start and freeze ports of an ATA host * @host: ATA host to start ports for * * Start and then freeze ports of @host. Started status is * recorded in host->flags, so this function can be called * multiple times. Ports are guaranteed to get started only * once. If host->ops isn't initialized yet, its set to the * first non-dummy port ops. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 if all ports are started successfully, -errno otherwise. */ int ata_host_start(struct ata_host *host) { int i, rc; if (host->flags & ATA_HOST_STARTED) return 0; for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; if (!host->ops && !ata_port_is_dummy(ap)) host->ops = ap->ops; if (ap->ops->port_start) { rc = ap->ops->port_start(ap); if (rc) { ata_port_printk(ap, KERN_ERR, "failed to " "start port (errno=%d)\n", rc); goto err_out; } } ata_eh_freeze_port(ap); } host->flags |= ATA_HOST_STARTED; return 0; err_out: while (--i >= 0) { struct ata_port *ap = host->ports[i]; if (ap->ops->port_stop) ap->ops->port_stop(ap); } return rc; } /** * ata_sas_host_init - Initialize a host struct * @host: host to initialize * @dev: device host is attached to * @flags: host flags * @ops: port_ops * * LOCKING: * PCI/etc. bus probe sem. * */ /* KILLME - the only user left is ipr */ void ata_host_init(struct ata_host *host, struct device *dev, unsigned long flags, const struct ata_port_operations *ops) { spin_lock_init(&host->lock); host->dev = dev; host->flags = flags; host->ops = ops; } /** * ata_host_register - register initialized ATA host * @host: ATA host to register * @sht: template for SCSI host * * Register initialized ATA host. @host is allocated using * ata_host_alloc() and fully initialized by LLD. This function * starts ports, registers @host with ATA and SCSI layers and * probe registered devices. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) { int i, rc; /* host must have been started */ if (!(host->flags & ATA_HOST_STARTED)) { dev_printk(KERN_ERR, host->dev, "BUG: trying to register unstarted host\n"); WARN_ON(1); return -EINVAL; } /* Blow away unused ports. This happens when LLD can't * determine the exact number of ports to allocate at * allocation time. */ for (i = host->n_ports; host->ports[i]; i++) kfree(host->ports[i]); /* give ports names and add SCSI hosts */ for (i = 0; i < host->n_ports; i++) host->ports[i]->print_id = ata_print_id++; rc = ata_scsi_add_hosts(host, sht); if (rc) return rc; /* set cable, sata_spd_limit and report */ for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; int irq_line; u32 scontrol; unsigned long xfer_mask; /* set SATA cable type if still unset */ if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) ap->cbl = ATA_CBL_SATA; /* init sata_spd_limit to the current value */ if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { int spd = (scontrol >> 4) & 0xf; ap->hw_sata_spd_limit &= (1 << spd) - 1; } ap->sata_spd_limit = ap->hw_sata_spd_limit; /* report the secondary IRQ for second channel legacy */ irq_line = host->irq; if (i == 1 && host->irq2) irq_line = host->irq2; xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, ap->udma_mask); /* print per-port info to dmesg */ if (!ata_port_is_dummy(ap)) ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p " "ctl 0x%p bmdma 0x%p irq %d\n", ap->cbl == ATA_CBL_SATA ? 'S' : 'P', ata_mode_string(xfer_mask), ap->ioaddr.cmd_addr, ap->ioaddr.ctl_addr, ap->ioaddr.bmdma_addr, irq_line); else ata_port_printk(ap, KERN_INFO, "DUMMY\n"); } /* perform each probe synchronously */ DPRINTK("probe begin\n"); for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; int rc; /* probe */ if (ap->ops->error_handler) { struct ata_eh_info *ehi = &ap->eh_info; unsigned long flags; ata_port_probe(ap); /* kick EH for boot probing */ spin_lock_irqsave(ap->lock, flags); ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; ehi->action |= ATA_EH_SOFTRESET; ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; ap->pflags |= ATA_PFLAG_LOADING; ata_port_schedule_eh(ap); spin_unlock_irqrestore(ap->lock, flags); /* wait for EH to finish */ ata_port_wait_eh(ap); } else { DPRINTK("ata%u: bus probe begin\n", ap->print_id); rc = ata_bus_probe(ap); DPRINTK("ata%u: bus probe end\n", ap->print_id); if (rc) { /* FIXME: do something useful here? * Current libata behavior will * tear down everything when * the module is removed * or the h/w is unplugged. */ } } } /* probes are done, now scan each port's disk(s) */ DPRINTK("host probe begin\n"); for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; ata_scsi_scan_host(ap); } return 0; } /** * ata_host_activate - start host, request IRQ and register it * @host: target ATA host * @irq: IRQ to request * @irq_handler: irq_handler used when requesting IRQ * @irq_flags: irq_flags used when requesting IRQ * @sht: scsi_host_template to use when registering the host * * After allocating an ATA host and initializing it, most libata * LLDs perform three steps to activate the host - start host, * request IRQ and register it. This helper takes necessasry * arguments and performs the three steps in one go. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_host_activate(struct ata_host *host, int irq, irq_handler_t irq_handler, unsigned long irq_flags, struct scsi_host_template *sht) { int rc; rc = ata_host_start(host); if (rc) return rc; rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, dev_driver_string(host->dev), host); if (rc) return rc; rc = ata_host_register(host, sht); /* if failed, just free the IRQ and leave ports alone */ if (rc) devm_free_irq(host->dev, irq, host); return rc; } /** * ata_port_detach - Detach ATA port in prepration of device removal * @ap: ATA port to be detached * * Detach all ATA devices and the associated SCSI devices of @ap; * then, remove the associated SCSI host. @ap is guaranteed to * be quiescent on return from this function. * * LOCKING: * Kernel thread context (may sleep). */ void ata_port_detach(struct ata_port *ap) { unsigned long flags; int i; if (!ap->ops->error_handler) goto skip_eh; /* tell EH we're leaving & flush EH */ spin_lock_irqsave(ap->lock, flags); ap->pflags |= ATA_PFLAG_UNLOADING; spin_unlock_irqrestore(ap->lock, flags); ata_port_wait_eh(ap); /* EH is now guaranteed to see UNLOADING, so no new device * will be attached. Disable all existing devices. */ spin_lock_irqsave(ap->lock, flags); for (i = 0; i < ATA_MAX_DEVICES; i++) ata_dev_disable(&ap->device[i]); spin_unlock_irqrestore(ap->lock, flags); /* Final freeze & EH. All in-flight commands are aborted. EH * will be skipped and retrials will be terminated with bad * target. */ spin_lock_irqsave(ap->lock, flags); ata_port_freeze(ap); /* won't be thawed */ spin_unlock_irqrestore(ap->lock, flags); ata_port_wait_eh(ap); /* Flush hotplug task. The sequence is similar to * ata_port_flush_task(). */ flush_workqueue(ata_aux_wq); cancel_delayed_work(&ap->hotplug_task); flush_workqueue(ata_aux_wq); skip_eh: /* remove the associated SCSI host */ scsi_remove_host(ap->scsi_host); } /** * ata_host_detach - Detach all ports of an ATA host * @host: Host to detach * * Detach all ports of @host. * * LOCKING: * Kernel thread context (may sleep). */ void ata_host_detach(struct ata_host *host) { int i; for (i = 0; i < host->n_ports; i++) ata_port_detach(host->ports[i]); } /** * ata_std_ports - initialize ioaddr with standard port offsets. * @ioaddr: IO address structure to be initialized * * Utility function which initializes data_addr, error_addr, * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, * device_addr, status_addr, and command_addr to standard offsets * relative to cmd_addr. * * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. */ void ata_std_ports(struct ata_ioports *ioaddr) { ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; } #ifdef CONFIG_PCI /** * ata_pci_remove_one - PCI layer callback for device removal * @pdev: PCI device that was removed * * PCI layer indicates to libata via this hook that hot-unplug or * module unload event has occurred. Detach all ports. Resource * release is handled via devres. * * LOCKING: * Inherited from PCI layer (may sleep). */ void ata_pci_remove_one(struct pci_dev *pdev) { struct device *dev = pci_dev_to_dev(pdev); struct ata_host *host = dev_get_drvdata(dev); ata_host_detach(host); } /* move to PCI subsystem */ int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) { unsigned long tmp = 0; switch (bits->width) { case 1: { u8 tmp8 = 0; pci_read_config_byte(pdev, bits->reg, &tmp8); tmp = tmp8; break; } case 2: { u16 tmp16 = 0; pci_read_config_word(pdev, bits->reg, &tmp16); tmp = tmp16; break; } case 4: { u32 tmp32 = 0; pci_read_config_dword(pdev, bits->reg, &tmp32); tmp = tmp32; break; } default: return -EINVAL; } tmp &= bits->mask; return (tmp == bits->val) ? 1 : 0; } #ifdef CONFIG_PM void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) { pci_save_state(pdev); pci_disable_device(pdev); if (mesg.event == PM_EVENT_SUSPEND) pci_set_power_state(pdev, PCI_D3hot); } int ata_pci_device_do_resume(struct pci_dev *pdev) { int rc; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); rc = pcim_enable_device(pdev); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "failed to enable device after resume (%d)\n", rc); return rc; } pci_set_master(pdev); return 0; } int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) { struct ata_host *host = dev_get_drvdata(&pdev->dev); int rc = 0; rc = ata_host_suspend(host, mesg); if (rc) return rc; ata_pci_device_do_suspend(pdev, mesg); return 0; } int ata_pci_device_resume(struct pci_dev *pdev) { struct ata_host *host = dev_get_drvdata(&pdev->dev); int rc; rc = ata_pci_device_do_resume(pdev); if (rc == 0) ata_host_resume(host); return rc; } #endif /* CONFIG_PM */ #endif /* CONFIG_PCI */ static int __init ata_init(void) { ata_probe_timeout *= HZ; ata_wq = create_workqueue("ata"); if (!ata_wq) return -ENOMEM; ata_aux_wq = create_singlethread_workqueue("ata_aux"); if (!ata_aux_wq) { destroy_workqueue(ata_wq); return -ENOMEM; } printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); return 0; } static void __exit ata_exit(void) { destroy_workqueue(ata_wq); destroy_workqueue(ata_aux_wq); } subsys_initcall(ata_init); module_exit(ata_exit); static unsigned long ratelimit_time; static DEFINE_SPINLOCK(ata_ratelimit_lock); int ata_ratelimit(void) { int rc; unsigned long flags; spin_lock_irqsave(&ata_ratelimit_lock, flags); if (time_after(jiffies, ratelimit_time)) { rc = 1; ratelimit_time = jiffies + (HZ/5); } else rc = 0; spin_unlock_irqrestore(&ata_ratelimit_lock, flags); return rc; } /** * ata_wait_register - wait until register value changes * @reg: IO-mapped register * @mask: Mask to apply to read register value * @val: Wait condition * @interval_msec: polling interval in milliseconds * @timeout_msec: timeout in milliseconds * * Waiting for some bits of register to change is a common * operation for ATA controllers. This function reads 32bit LE * IO-mapped register @reg and tests for the following condition. * * (*@reg & mask) != val * * If the condition is met, it returns; otherwise, the process is * repeated after @interval_msec until timeout. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * The final register value. */ u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, unsigned long interval_msec, unsigned long timeout_msec) { unsigned long timeout; u32 tmp; tmp = ioread32(reg); /* Calculate timeout _after_ the first read to make sure * preceding writes reach the controller before starting to * eat away the timeout. */ timeout = jiffies + (timeout_msec * HZ) / 1000; while ((tmp & mask) == val && time_before(jiffies, timeout)) { msleep(interval_msec); tmp = ioread32(reg); } return tmp; } /* * Dummy port_ops */ static void ata_dummy_noret(struct ata_port *ap) { } static int ata_dummy_ret0(struct ata_port *ap) { return 0; } static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } static u8 ata_dummy_check_status(struct ata_port *ap) { return ATA_DRDY; } static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) { return AC_ERR_SYSTEM; } const struct ata_port_operations ata_dummy_port_ops = { .port_disable = ata_port_disable, .check_status = ata_dummy_check_status, .check_altstatus = ata_dummy_check_status, .dev_select = ata_noop_dev_select, .qc_prep = ata_noop_qc_prep, .qc_issue = ata_dummy_qc_issue, .freeze = ata_dummy_noret, .thaw = ata_dummy_noret, .error_handler = ata_dummy_noret, .post_internal_cmd = ata_dummy_qc_noret, .irq_clear = ata_dummy_noret, .port_start = ata_dummy_ret0, .port_stop = ata_dummy_noret, }; const struct ata_port_info ata_dummy_port_info = { .port_ops = &ata_dummy_port_ops, }; /* * libata is essentially a library of internal helper functions for * low-level ATA host controller drivers. As such, the API/ABI is * likely to change as new drivers are added and updated. * Do not depend on ABI/API stability. */ EXPORT_SYMBOL_GPL(sata_deb_timing_normal); EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); EXPORT_SYMBOL_GPL(sata_deb_timing_long); EXPORT_SYMBOL_GPL(ata_dummy_port_ops); EXPORT_SYMBOL_GPL(ata_dummy_port_info); EXPORT_SYMBOL_GPL(ata_std_bios_param); EXPORT_SYMBOL_GPL(ata_std_ports); EXPORT_SYMBOL_GPL(ata_host_init); EXPORT_SYMBOL_GPL(ata_host_alloc); EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); EXPORT_SYMBOL_GPL(ata_host_start); EXPORT_SYMBOL_GPL(ata_host_register); EXPORT_SYMBOL_GPL(ata_host_activate); EXPORT_SYMBOL_GPL(ata_host_detach); EXPORT_SYMBOL_GPL(ata_sg_init); EXPORT_SYMBOL_GPL(ata_sg_init_one); EXPORT_SYMBOL_GPL(ata_hsm_move); EXPORT_SYMBOL_GPL(ata_qc_complete); EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); EXPORT_SYMBOL_GPL(ata_qc_issue_prot); EXPORT_SYMBOL_GPL(ata_tf_load); EXPORT_SYMBOL_GPL(ata_tf_read); EXPORT_SYMBOL_GPL(ata_noop_dev_select); EXPORT_SYMBOL_GPL(ata_std_dev_select); EXPORT_SYMBOL_GPL(sata_print_link_status); EXPORT_SYMBOL_GPL(ata_tf_to_fis); EXPORT_SYMBOL_GPL(ata_tf_from_fis); EXPORT_SYMBOL_GPL(ata_check_status); EXPORT_SYMBOL_GPL(ata_altstatus); EXPORT_SYMBOL_GPL(ata_exec_command); EXPORT_SYMBOL_GPL(ata_port_start); EXPORT_SYMBOL_GPL(ata_interrupt); EXPORT_SYMBOL_GPL(ata_do_set_mode); EXPORT_SYMBOL_GPL(ata_data_xfer); EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); EXPORT_SYMBOL_GPL(ata_qc_prep); EXPORT_SYMBOL_GPL(ata_noop_qc_prep); EXPORT_SYMBOL_GPL(ata_bmdma_setup); EXPORT_SYMBOL_GPL(ata_bmdma_start); EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); EXPORT_SYMBOL_GPL(ata_bmdma_status); EXPORT_SYMBOL_GPL(ata_bmdma_stop); EXPORT_SYMBOL_GPL(ata_bmdma_freeze); EXPORT_SYMBOL_GPL(ata_bmdma_thaw); EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); EXPORT_SYMBOL_GPL(ata_port_probe); EXPORT_SYMBOL_GPL(ata_dev_disable); EXPORT_SYMBOL_GPL(sata_set_spd); EXPORT_SYMBOL_GPL(sata_phy_debounce); EXPORT_SYMBOL_GPL(sata_phy_resume); EXPORT_SYMBOL_GPL(sata_phy_reset); EXPORT_SYMBOL_GPL(__sata_phy_reset); EXPORT_SYMBOL_GPL(ata_bus_reset); EXPORT_SYMBOL_GPL(ata_std_prereset); EXPORT_SYMBOL_GPL(ata_std_softreset); EXPORT_SYMBOL_GPL(sata_port_hardreset); EXPORT_SYMBOL_GPL(sata_std_hardreset); EXPORT_SYMBOL_GPL(ata_std_postreset); EXPORT_SYMBOL_GPL(ata_dev_classify); EXPORT_SYMBOL_GPL(ata_dev_pair); EXPORT_SYMBOL_GPL(ata_port_disable); EXPORT_SYMBOL_GPL(ata_ratelimit); EXPORT_SYMBOL_GPL(ata_wait_register); EXPORT_SYMBOL_GPL(ata_busy_sleep); EXPORT_SYMBOL_GPL(ata_port_queue_task); EXPORT_SYMBOL_GPL(ata_scsi_ioctl); EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); EXPORT_SYMBOL_GPL(ata_scsi_slave_config); EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); EXPORT_SYMBOL_GPL(ata_host_intr); EXPORT_SYMBOL_GPL(sata_scr_valid); EXPORT_SYMBOL_GPL(sata_scr_read); EXPORT_SYMBOL_GPL(sata_scr_write); EXPORT_SYMBOL_GPL(sata_scr_write_flush); EXPORT_SYMBOL_GPL(ata_port_online); EXPORT_SYMBOL_GPL(ata_port_offline); #ifdef CONFIG_PM EXPORT_SYMBOL_GPL(ata_host_suspend); EXPORT_SYMBOL_GPL(ata_host_resume); #endif /* CONFIG_PM */ EXPORT_SYMBOL_GPL(ata_id_string); EXPORT_SYMBOL_GPL(ata_id_c_string); EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); EXPORT_SYMBOL_GPL(ata_device_blacklisted); EXPORT_SYMBOL_GPL(ata_scsi_simulate); EXPORT_SYMBOL_GPL(ata_pio_need_iordy); EXPORT_SYMBOL_GPL(ata_timing_compute); EXPORT_SYMBOL_GPL(ata_timing_merge); #ifdef CONFIG_PCI EXPORT_SYMBOL_GPL(pci_test_config_bits); EXPORT_SYMBOL_GPL(ata_pci_init_native_host); EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host); EXPORT_SYMBOL_GPL(ata_pci_init_one); EXPORT_SYMBOL_GPL(ata_pci_remove_one); #ifdef CONFIG_PM EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); EXPORT_SYMBOL_GPL(ata_pci_device_suspend); EXPORT_SYMBOL_GPL(ata_pci_device_resume); #endif /* CONFIG_PM */ EXPORT_SYMBOL_GPL(ata_pci_default_filter); EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); #endif /* CONFIG_PCI */ #ifdef CONFIG_PM EXPORT_SYMBOL_GPL(ata_scsi_device_suspend); EXPORT_SYMBOL_GPL(ata_scsi_device_resume); #endif /* CONFIG_PM */ EXPORT_SYMBOL_GPL(ata_eng_timeout); EXPORT_SYMBOL_GPL(ata_port_schedule_eh); EXPORT_SYMBOL_GPL(ata_port_abort); EXPORT_SYMBOL_GPL(ata_port_freeze); EXPORT_SYMBOL_GPL(ata_eh_freeze_port); EXPORT_SYMBOL_GPL(ata_eh_thaw_port); EXPORT_SYMBOL_GPL(ata_eh_qc_complete); EXPORT_SYMBOL_GPL(ata_eh_qc_retry); EXPORT_SYMBOL_GPL(ata_do_eh); EXPORT_SYMBOL_GPL(ata_irq_on); EXPORT_SYMBOL_GPL(ata_dummy_irq_on); EXPORT_SYMBOL_GPL(ata_irq_ack); EXPORT_SYMBOL_GPL(ata_dummy_irq_ack); EXPORT_SYMBOL_GPL(ata_dev_try_classify); EXPORT_SYMBOL_GPL(ata_cable_40wire); EXPORT_SYMBOL_GPL(ata_cable_80wire); EXPORT_SYMBOL_GPL(ata_cable_unknown); EXPORT_SYMBOL_GPL(ata_cable_sata);