/* * Nvidia AGPGART routines. * Based upon a 2.4 agpgart diff by the folks from NVIDIA, and hacked up * to work in 2.5 by Dave Jones <davej@codemonkey.org.uk> */ #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/agp_backend.h> #include <linux/gfp.h> #include <linux/page-flags.h> #include <linux/mm.h> #include <linux/jiffies.h> #include "agp.h" /* NVIDIA registers */ #define NVIDIA_0_APSIZE 0x80 #define NVIDIA_1_WBC 0xf0 #define NVIDIA_2_GARTCTRL 0xd0 #define NVIDIA_2_APBASE 0xd8 #define NVIDIA_2_APLIMIT 0xdc #define NVIDIA_2_ATTBASE(i) (0xe0 + (i) * 4) #define NVIDIA_3_APBASE 0x50 #define NVIDIA_3_APLIMIT 0x54 static struct _nvidia_private { struct pci_dev *dev_1; struct pci_dev *dev_2; struct pci_dev *dev_3; volatile u32 __iomem *aperture; int num_active_entries; off_t pg_offset; u32 wbc_mask; } nvidia_private; static int nvidia_fetch_size(void) { int i; u8 size_value; struct aper_size_info_8 *values; pci_read_config_byte(agp_bridge->dev, NVIDIA_0_APSIZE, &size_value); size_value &= 0x0f; values = A_SIZE_8(agp_bridge->driver->aperture_sizes); for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { if (size_value == values[i].size_value) { agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i); agp_bridge->aperture_size_idx = i; return values[i].size; } } return 0; } #define SYSCFG 0xC0010010 #define IORR_BASE0 0xC0010016 #define IORR_MASK0 0xC0010017 #define AMD_K7_NUM_IORR 2 static int nvidia_init_iorr(u32 base, u32 size) { u32 base_hi, base_lo; u32 mask_hi, mask_lo; u32 sys_hi, sys_lo; u32 iorr_addr, free_iorr_addr; /* Find the iorr that is already used for the base */ /* If not found, determine the uppermost available iorr */ free_iorr_addr = AMD_K7_NUM_IORR; for (iorr_addr = 0; iorr_addr < AMD_K7_NUM_IORR; iorr_addr++) { rdmsr(IORR_BASE0 + 2 * iorr_addr, base_lo, base_hi); rdmsr(IORR_MASK0 + 2 * iorr_addr, mask_lo, mask_hi); if ((base_lo & 0xfffff000) == (base & 0xfffff000)) break; if ((mask_lo & 0x00000800) == 0) free_iorr_addr = iorr_addr; } if (iorr_addr >= AMD_K7_NUM_IORR) { iorr_addr = free_iorr_addr; if (iorr_addr >= AMD_K7_NUM_IORR) return -EINVAL; } base_hi = 0x0; base_lo = (base & ~0xfff) | 0x18; mask_hi = 0xf; mask_lo = ((~(size - 1)) & 0xfffff000) | 0x800; wrmsr(IORR_BASE0 + 2 * iorr_addr, base_lo, base_hi); wrmsr(IORR_MASK0 + 2 * iorr_addr, mask_lo, mask_hi); rdmsr(SYSCFG, sys_lo, sys_hi); sys_lo |= 0x00100000; wrmsr(SYSCFG, sys_lo, sys_hi); return 0; } static int nvidia_configure(void) { int i, rc, num_dirs; u32 apbase, aplimit; struct aper_size_info_8 *current_size; u32 temp; current_size = A_SIZE_8(agp_bridge->current_size); /* aperture size */ pci_write_config_byte(agp_bridge->dev, NVIDIA_0_APSIZE, current_size->size_value); /* address to map to */ pci_read_config_dword(agp_bridge->dev, AGP_APBASE, &apbase); apbase &= PCI_BASE_ADDRESS_MEM_MASK; agp_bridge->gart_bus_addr = apbase; aplimit = apbase + (current_size->size * 1024 * 1024) - 1; pci_write_config_dword(nvidia_private.dev_2, NVIDIA_2_APBASE, apbase); pci_write_config_dword(nvidia_private.dev_2, NVIDIA_2_APLIMIT, aplimit); pci_write_config_dword(nvidia_private.dev_3, NVIDIA_3_APBASE, apbase); pci_write_config_dword(nvidia_private.dev_3, NVIDIA_3_APLIMIT, aplimit); if (0 != (rc = nvidia_init_iorr(apbase, current_size->size * 1024 * 1024))) return rc; /* directory size is 64k */ num_dirs = current_size->size / 64; nvidia_private.num_active_entries = current_size->num_entries; nvidia_private.pg_offset = 0; if (num_dirs == 0) { num_dirs = 1; nvidia_private.num_active_entries /= (64 / current_size->size); nvidia_private.pg_offset = (apbase & (64 * 1024 * 1024 - 1) & ~(current_size->size * 1024 * 1024 - 1)) / PAGE_SIZE; } /* attbase */ for (i = 0; i < 8; i++) { pci_write_config_dword(nvidia_private.dev_2, NVIDIA_2_ATTBASE(i), (agp_bridge->gatt_bus_addr + (i % num_dirs) * 64 * 1024) | 1); } /* gtlb control */ pci_read_config_dword(nvidia_private.dev_2, NVIDIA_2_GARTCTRL, &temp); pci_write_config_dword(nvidia_private.dev_2, NVIDIA_2_GARTCTRL, temp | 0x11); /* gart control */ pci_read_config_dword(agp_bridge->dev, NVIDIA_0_APSIZE, &temp); pci_write_config_dword(agp_bridge->dev, NVIDIA_0_APSIZE, temp | 0x100); /* map aperture */ nvidia_private.aperture = (volatile u32 __iomem *) ioremap(apbase, 33 * PAGE_SIZE); if (!nvidia_private.aperture) return -ENOMEM; return 0; } static void nvidia_cleanup(void) { struct aper_size_info_8 *previous_size; u32 temp; /* gart control */ pci_read_config_dword(agp_bridge->dev, NVIDIA_0_APSIZE, &temp); pci_write_config_dword(agp_bridge->dev, NVIDIA_0_APSIZE, temp & ~(0x100)); /* gtlb control */ pci_read_config_dword(nvidia_private.dev_2, NVIDIA_2_GARTCTRL, &temp); pci_write_config_dword(nvidia_private.dev_2, NVIDIA_2_GARTCTRL, temp & ~(0x11)); /* unmap aperture */ iounmap((void __iomem *) nvidia_private.aperture); /* restore previous aperture size */ previous_size = A_SIZE_8(agp_bridge->previous_size); pci_write_config_byte(agp_bridge->dev, NVIDIA_0_APSIZE, previous_size->size_value); /* restore iorr for previous aperture size */ nvidia_init_iorr(agp_bridge->gart_bus_addr, previous_size->size * 1024 * 1024); } /* * Note we can't use the generic routines, even though they are 99% the same. * Aperture sizes <64M still requires a full 64k GART directory, but * only use the portion of the TLB entries that correspond to the apertures * alignment inside the surrounding 64M block. */ extern int agp_memory_reserved; static int nvidia_insert_memory(struct agp_memory *mem, off_t pg_start, int type) { int i, j; if ((type != 0) || (mem->type != 0)) return -EINVAL; if ((pg_start + mem->page_count) > (nvidia_private.num_active_entries - agp_memory_reserved/PAGE_SIZE)) return -EINVAL; for (j = pg_start; j < (pg_start + mem->page_count); j++) { if (!PGE_EMPTY(agp_bridge, readl(agp_bridge->gatt_table+nvidia_private.pg_offset+j))) return -EBUSY; } if (mem->is_flushed == FALSE) { global_cache_flush(); mem->is_flushed = TRUE; } for (i = 0, j = pg_start; i < mem->page_count; i++, j++) { writel(agp_bridge->driver->mask_memory(agp_bridge, mem->memory[i], mem->type), agp_bridge->gatt_table+nvidia_private.pg_offset+j); readl(agp_bridge->gatt_table+nvidia_private.pg_offset+j); /* PCI Posting. */ } agp_bridge->driver->tlb_flush(mem); return 0; } static int nvidia_remove_memory(struct agp_memory *mem, off_t pg_start, int type) { int i; if ((type != 0) || (mem->type != 0)) return -EINVAL; for (i = pg_start; i < (mem->page_count + pg_start); i++) writel(agp_bridge->scratch_page, agp_bridge->gatt_table+nvidia_private.pg_offset+i); agp_bridge->driver->tlb_flush(mem); return 0; } static void nvidia_tlbflush(struct agp_memory *mem) { unsigned long end; u32 wbc_reg, temp; int i; /* flush chipset */ if (nvidia_private.wbc_mask) { pci_read_config_dword(nvidia_private.dev_1, NVIDIA_1_WBC, &wbc_reg); wbc_reg |= nvidia_private.wbc_mask; pci_write_config_dword(nvidia_private.dev_1, NVIDIA_1_WBC, wbc_reg); end = jiffies + 3*HZ; do { pci_read_config_dword(nvidia_private.dev_1, NVIDIA_1_WBC, &wbc_reg); if (time_before_eq(end, jiffies)) { printk(KERN_ERR PFX "TLB flush took more than 3 seconds.\n"); } } while (wbc_reg & nvidia_private.wbc_mask); } /* flush TLB entries */ for (i = 0; i < 32 + 1; i++) temp = readl(nvidia_private.aperture+(i * PAGE_SIZE / sizeof(u32))); for (i = 0; i < 32 + 1; i++) temp = readl(nvidia_private.aperture+(i * PAGE_SIZE / sizeof(u32))); } static const struct aper_size_info_8 nvidia_generic_sizes[5] = { {512, 131072, 7, 0}, {256, 65536, 6, 8}, {128, 32768, 5, 12}, {64, 16384, 4, 14}, /* The 32M mode still requires a 64k gatt */ {32, 16384, 4, 15} }; static const struct gatt_mask nvidia_generic_masks[] = { { .mask = 1, .type = 0} }; static const struct agp_bridge_driver nvidia_driver = { .owner = THIS_MODULE, .aperture_sizes = nvidia_generic_sizes, .size_type = U8_APER_SIZE, .num_aperture_sizes = 5, .configure = nvidia_configure, .fetch_size = nvidia_fetch_size, .cleanup = nvidia_cleanup, .tlb_flush = nvidia_tlbflush, .mask_memory = agp_generic_mask_memory, .masks = nvidia_generic_masks, .agp_enable = agp_generic_enable, .cache_flush = global_cache_flush, .create_gatt_table = agp_generic_create_gatt_table, .free_gatt_table = agp_generic_free_gatt_table, .insert_memory = nvidia_insert_memory, .remove_memory = nvidia_remove_memory, .alloc_by_type = agp_generic_alloc_by_type, .free_by_type = agp_generic_free_by_type, .agp_alloc_page = agp_generic_alloc_page, .agp_destroy_page = agp_generic_destroy_page, .agp_type_to_mask_type = agp_generic_type_to_mask_type, }; static int __devinit agp_nvidia_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct agp_bridge_data *bridge; u8 cap_ptr; nvidia_private.dev_1 = pci_get_bus_and_slot((unsigned int)pdev->bus->number, PCI_DEVFN(0, 1)); nvidia_private.dev_2 = pci_get_bus_and_slot((unsigned int)pdev->bus->number, PCI_DEVFN(0, 2)); nvidia_private.dev_3 = pci_get_bus_and_slot((unsigned int)pdev->bus->number, PCI_DEVFN(30, 0)); if (!nvidia_private.dev_1 || !nvidia_private.dev_2 || !nvidia_private.dev_3) { printk(KERN_INFO PFX "Detected an NVIDIA nForce/nForce2 " "chipset, but could not find the secondary devices.\n"); return -ENODEV; } cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP); if (!cap_ptr) return -ENODEV; switch (pdev->device) { case PCI_DEVICE_ID_NVIDIA_NFORCE: printk(KERN_INFO PFX "Detected NVIDIA nForce chipset\n"); nvidia_private.wbc_mask = 0x00010000; break; case PCI_DEVICE_ID_NVIDIA_NFORCE2: printk(KERN_INFO PFX "Detected NVIDIA nForce2 chipset\n"); nvidia_private.wbc_mask = 0x80000000; break; default: printk(KERN_ERR PFX "Unsupported NVIDIA chipset (device id: %04x)\n", pdev->device); return -ENODEV; } bridge = agp_alloc_bridge(); if (!bridge) return -ENOMEM; bridge->driver = &nvidia_driver; bridge->dev_private_data = &nvidia_private, bridge->dev = pdev; bridge->capndx = cap_ptr; /* Fill in the mode register */ pci_read_config_dword(pdev, bridge->capndx+PCI_AGP_STATUS, &bridge->mode); pci_set_drvdata(pdev, bridge); return agp_add_bridge(bridge); } static void __devexit agp_nvidia_remove(struct pci_dev *pdev) { struct agp_bridge_data *bridge = pci_get_drvdata(pdev); agp_remove_bridge(bridge); agp_put_bridge(bridge); } #ifdef CONFIG_PM static int agp_nvidia_suspend(struct pci_dev *pdev, pm_message_t state) { pci_save_state (pdev); pci_set_power_state (pdev, 3); return 0; } static int agp_nvidia_resume(struct pci_dev *pdev) { /* set power state 0 and restore PCI space */ pci_set_power_state (pdev, 0); pci_restore_state(pdev); /* reconfigure AGP hardware again */ nvidia_configure(); return 0; } #endif static struct pci_device_id agp_nvidia_pci_table[] = { { .class = (PCI_CLASS_BRIDGE_HOST << 8), .class_mask = ~0, .vendor = PCI_VENDOR_ID_NVIDIA, .device = PCI_DEVICE_ID_NVIDIA_NFORCE, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { .class = (PCI_CLASS_BRIDGE_HOST << 8), .class_mask = ~0, .vendor = PCI_VENDOR_ID_NVIDIA, .device = PCI_DEVICE_ID_NVIDIA_NFORCE2, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { } }; MODULE_DEVICE_TABLE(pci, agp_nvidia_pci_table); static struct pci_driver agp_nvidia_pci_driver = { .name = "agpgart-nvidia", .id_table = agp_nvidia_pci_table, .probe = agp_nvidia_probe, .remove = agp_nvidia_remove, #ifdef CONFIG_PM .suspend = agp_nvidia_suspend, .resume = agp_nvidia_resume, #endif }; static int __init agp_nvidia_init(void) { if (agp_off) return -EINVAL; return pci_register_driver(&agp_nvidia_pci_driver); } static void __exit agp_nvidia_cleanup(void) { pci_unregister_driver(&agp_nvidia_pci_driver); pci_dev_put(nvidia_private.dev_1); pci_dev_put(nvidia_private.dev_2); pci_dev_put(nvidia_private.dev_3); } module_init(agp_nvidia_init); module_exit(agp_nvidia_cleanup); MODULE_LICENSE("GPL and additional rights"); MODULE_AUTHOR("NVIDIA Corporation");