/*****************************************************************************/ /* * stallion.c -- stallion multiport serial driver. * * Copyright (C) 1996-1999 Stallion Technologies * Copyright (C) 1994-1996 Greg Ungerer. * * This code is loosely based on the Linux serial driver, written by * Linus Torvalds, Theodore T'so and others. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /*****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*****************************************************************************/ /* * Define different board types. Use the standard Stallion "assigned" * board numbers. Boards supported in this driver are abbreviated as * EIO = EasyIO and ECH = EasyConnection 8/32. */ #define BRD_EASYIO 20 #define BRD_ECH 21 #define BRD_ECHMC 22 #define BRD_ECHPCI 26 #define BRD_ECH64PCI 27 #define BRD_EASYIOPCI 28 struct stlconf { int brdtype; int ioaddr1; int ioaddr2; unsigned long memaddr; int irq; int irqtype; }; static unsigned int stl_nrbrds; /*****************************************************************************/ /* * Define some important driver characteristics. Device major numbers * allocated as per Linux Device Registry. */ #ifndef STL_SIOMEMMAJOR #define STL_SIOMEMMAJOR 28 #endif #ifndef STL_SERIALMAJOR #define STL_SERIALMAJOR 24 #endif #ifndef STL_CALLOUTMAJOR #define STL_CALLOUTMAJOR 25 #endif /* * Set the TX buffer size. Bigger is better, but we don't want * to chew too much memory with buffers! */ #define STL_TXBUFLOW 512 #define STL_TXBUFSIZE 4096 /*****************************************************************************/ /* * Define our local driver identity first. Set up stuff to deal with * all the local structures required by a serial tty driver. */ static char *stl_drvtitle = "Stallion Multiport Serial Driver"; static char *stl_drvname = "stallion"; static char *stl_drvversion = "5.6.0"; static struct tty_driver *stl_serial; /* * Define a local default termios struct. All ports will be created * with this termios initially. Basically all it defines is a raw port * at 9600, 8 data bits, 1 stop bit. */ static struct ktermios stl_deftermios = { .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL), .c_cc = INIT_C_CC, .c_ispeed = 9600, .c_ospeed = 9600, }; /* * Define global stats structures. Not used often, and can be * re-used for each stats call. */ static comstats_t stl_comstats; static combrd_t stl_brdstats; static struct stlbrd stl_dummybrd; static struct stlport stl_dummyport; /* * Define global place to put buffer overflow characters. */ static char stl_unwanted[SC26198_RXFIFOSIZE]; /*****************************************************************************/ static DEFINE_MUTEX(stl_brdslock); static struct stlbrd *stl_brds[STL_MAXBRDS]; /* * Per board state flags. Used with the state field of the board struct. * Not really much here! */ #define BRD_FOUND 0x1 #define STL_PROBED 0x2 /* * Define the port structure istate flags. These set of flags are * modified at interrupt time - so setting and reseting them needs * to be atomic. Use the bit clear/setting routines for this. */ #define ASYI_TXBUSY 1 #define ASYI_TXLOW 2 #define ASYI_DCDCHANGE 3 #define ASYI_TXFLOWED 4 /* * Define an array of board names as printable strings. Handy for * referencing boards when printing trace and stuff. */ static char *stl_brdnames[] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "EasyIO", "EC8/32-AT", "EC8/32-MC", NULL, NULL, NULL, "EC8/32-PCI", "EC8/64-PCI", "EasyIO-PCI", }; /*****************************************************************************/ /* * Define some string labels for arguments passed from the module * load line. These allow for easy board definitions, and easy * modification of the io, memory and irq resoucres. */ static int stl_nargs = 0; static char *board0[4]; static char *board1[4]; static char *board2[4]; static char *board3[4]; static char **stl_brdsp[] = { (char **) &board0, (char **) &board1, (char **) &board2, (char **) &board3 }; /* * Define a set of common board names, and types. This is used to * parse any module arguments. */ static struct { char *name; int type; } stl_brdstr[] = { { "easyio", BRD_EASYIO }, { "eio", BRD_EASYIO }, { "20", BRD_EASYIO }, { "ec8/32", BRD_ECH }, { "ec8/32-at", BRD_ECH }, { "ec8/32-isa", BRD_ECH }, { "ech", BRD_ECH }, { "echat", BRD_ECH }, { "21", BRD_ECH }, { "ec8/32-mc", BRD_ECHMC }, { "ec8/32-mca", BRD_ECHMC }, { "echmc", BRD_ECHMC }, { "echmca", BRD_ECHMC }, { "22", BRD_ECHMC }, { "ec8/32-pc", BRD_ECHPCI }, { "ec8/32-pci", BRD_ECHPCI }, { "26", BRD_ECHPCI }, { "ec8/64-pc", BRD_ECH64PCI }, { "ec8/64-pci", BRD_ECH64PCI }, { "ech-pci", BRD_ECH64PCI }, { "echpci", BRD_ECH64PCI }, { "echpc", BRD_ECH64PCI }, { "27", BRD_ECH64PCI }, { "easyio-pc", BRD_EASYIOPCI }, { "easyio-pci", BRD_EASYIOPCI }, { "eio-pci", BRD_EASYIOPCI }, { "eiopci", BRD_EASYIOPCI }, { "28", BRD_EASYIOPCI }, }; /* * Define the module agruments. */ module_param_array(board0, charp, &stl_nargs, 0); MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]"); module_param_array(board1, charp, &stl_nargs, 0); MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]"); module_param_array(board2, charp, &stl_nargs, 0); MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]"); module_param_array(board3, charp, &stl_nargs, 0); MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]"); /*****************************************************************************/ /* * Hardware ID bits for the EasyIO and ECH boards. These defines apply * to the directly accessible io ports of these boards (not the uarts - * they are in cd1400.h and sc26198.h). */ #define EIO_8PORTRS 0x04 #define EIO_4PORTRS 0x05 #define EIO_8PORTDI 0x00 #define EIO_8PORTM 0x06 #define EIO_MK3 0x03 #define EIO_IDBITMASK 0x07 #define EIO_BRDMASK 0xf0 #define ID_BRD4 0x10 #define ID_BRD8 0x20 #define ID_BRD16 0x30 #define EIO_INTRPEND 0x08 #define EIO_INTEDGE 0x00 #define EIO_INTLEVEL 0x08 #define EIO_0WS 0x10 #define ECH_ID 0xa0 #define ECH_IDBITMASK 0xe0 #define ECH_BRDENABLE 0x08 #define ECH_BRDDISABLE 0x00 #define ECH_INTENABLE 0x01 #define ECH_INTDISABLE 0x00 #define ECH_INTLEVEL 0x02 #define ECH_INTEDGE 0x00 #define ECH_INTRPEND 0x01 #define ECH_BRDRESET 0x01 #define ECHMC_INTENABLE 0x01 #define ECHMC_BRDRESET 0x02 #define ECH_PNLSTATUS 2 #define ECH_PNL16PORT 0x20 #define ECH_PNLIDMASK 0x07 #define ECH_PNLXPID 0x40 #define ECH_PNLINTRPEND 0x80 #define ECH_ADDR2MASK 0x1e0 /* * Define the vector mapping bits for the programmable interrupt board * hardware. These bits encode the interrupt for the board to use - it * is software selectable (except the EIO-8M). */ static unsigned char stl_vecmap[] = { 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07, 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03 }; /* * Lock ordering is that you may not take stallion_lock holding * brd_lock. */ static spinlock_t brd_lock; /* Guard the board mapping */ static spinlock_t stallion_lock; /* Guard the tty driver */ /* * Set up enable and disable macros for the ECH boards. They require * the secondary io address space to be activated and deactivated. * This way all ECH boards can share their secondary io region. * If this is an ECH-PCI board then also need to set the page pointer * to point to the correct page. */ #define BRDENABLE(brdnr,pagenr) \ if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \ outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \ stl_brds[(brdnr)]->ioctrl); \ else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \ outb((pagenr), stl_brds[(brdnr)]->ioctrl); #define BRDDISABLE(brdnr) \ if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \ outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \ stl_brds[(brdnr)]->ioctrl); #define STL_CD1400MAXBAUD 230400 #define STL_SC26198MAXBAUD 460800 #define STL_BAUDBASE 115200 #define STL_CLOSEDELAY (5 * HZ / 10) /*****************************************************************************/ /* * Define the Stallion PCI vendor and device IDs. */ #ifndef PCI_VENDOR_ID_STALLION #define PCI_VENDOR_ID_STALLION 0x124d #endif #ifndef PCI_DEVICE_ID_ECHPCI832 #define PCI_DEVICE_ID_ECHPCI832 0x0000 #endif #ifndef PCI_DEVICE_ID_ECHPCI864 #define PCI_DEVICE_ID_ECHPCI864 0x0002 #endif #ifndef PCI_DEVICE_ID_EIOPCI #define PCI_DEVICE_ID_EIOPCI 0x0003 #endif /* * Define structure to hold all Stallion PCI boards. */ static struct pci_device_id stl_pcibrds[] = { { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864), .driver_data = BRD_ECH64PCI }, { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI), .driver_data = BRD_EASYIOPCI }, { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832), .driver_data = BRD_ECHPCI }, { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410), .driver_data = BRD_ECHPCI }, { } }; MODULE_DEVICE_TABLE(pci, stl_pcibrds); /*****************************************************************************/ /* * Define macros to extract a brd/port number from a minor number. */ #define MINOR2BRD(min) (((min) & 0xc0) >> 6) #define MINOR2PORT(min) ((min) & 0x3f) /* * Define a baud rate table that converts termios baud rate selector * into the actual baud rate value. All baud rate calculations are * based on the actual baud rate required. */ static unsigned int stl_baudrates[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 }; /*****************************************************************************/ /* * Declare all those functions in this driver! */ static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg); static int stl_brdinit(struct stlbrd *brdp); static int stl_getportstats(struct stlport *portp, comstats_t __user *cp); static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp); static int stl_waitcarrier(struct stlport *portp, struct file *filp); /* * CD1400 uart specific handling functions. */ static void stl_cd1400setreg(struct stlport *portp, int regnr, int value); static int stl_cd1400getreg(struct stlport *portp, int regnr); static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value); static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp); static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp); static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp); static int stl_cd1400getsignals(struct stlport *portp); static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts); static void stl_cd1400ccrwait(struct stlport *portp); static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx); static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx); static void stl_cd1400disableintrs(struct stlport *portp); static void stl_cd1400sendbreak(struct stlport *portp, int len); static void stl_cd1400flowctrl(struct stlport *portp, int state); static void stl_cd1400sendflow(struct stlport *portp, int state); static void stl_cd1400flush(struct stlport *portp); static int stl_cd1400datastate(struct stlport *portp); static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase); static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase); static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr); static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr); static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr); static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr); /* * SC26198 uart specific handling functions. */ static void stl_sc26198setreg(struct stlport *portp, int regnr, int value); static int stl_sc26198getreg(struct stlport *portp, int regnr); static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value); static int stl_sc26198getglobreg(struct stlport *portp, int regnr); static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp); static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp); static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp); static int stl_sc26198getsignals(struct stlport *portp); static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts); static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx); static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx); static void stl_sc26198disableintrs(struct stlport *portp); static void stl_sc26198sendbreak(struct stlport *portp, int len); static void stl_sc26198flowctrl(struct stlport *portp, int state); static void stl_sc26198sendflow(struct stlport *portp, int state); static void stl_sc26198flush(struct stlport *portp); static int stl_sc26198datastate(struct stlport *portp); static void stl_sc26198wait(struct stlport *portp); static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty); static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase); static void stl_sc26198txisr(struct stlport *port); static void stl_sc26198rxisr(struct stlport *port, unsigned int iack); static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch); static void stl_sc26198rxbadchars(struct stlport *portp); static void stl_sc26198otherisr(struct stlport *port, unsigned int iack); /*****************************************************************************/ /* * Generic UART support structure. */ typedef struct uart { int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp); void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp); void (*setport)(struct stlport *portp, struct ktermios *tiosp); int (*getsignals)(struct stlport *portp); void (*setsignals)(struct stlport *portp, int dtr, int rts); void (*enablerxtx)(struct stlport *portp, int rx, int tx); void (*startrxtx)(struct stlport *portp, int rx, int tx); void (*disableintrs)(struct stlport *portp); void (*sendbreak)(struct stlport *portp, int len); void (*flowctrl)(struct stlport *portp, int state); void (*sendflow)(struct stlport *portp, int state); void (*flush)(struct stlport *portp); int (*datastate)(struct stlport *portp); void (*intr)(struct stlpanel *panelp, unsigned int iobase); } uart_t; /* * Define some macros to make calling these functions nice and clean. */ #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit) #define stl_portinit (* ((uart_t *) portp->uartp)->portinit) #define stl_setport (* ((uart_t *) portp->uartp)->setport) #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals) #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals) #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx) #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx) #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs) #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak) #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl) #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow) #define stl_flush (* ((uart_t *) portp->uartp)->flush) #define stl_datastate (* ((uart_t *) portp->uartp)->datastate) /*****************************************************************************/ /* * CD1400 UART specific data initialization. */ static uart_t stl_cd1400uart = { stl_cd1400panelinit, stl_cd1400portinit, stl_cd1400setport, stl_cd1400getsignals, stl_cd1400setsignals, stl_cd1400enablerxtx, stl_cd1400startrxtx, stl_cd1400disableintrs, stl_cd1400sendbreak, stl_cd1400flowctrl, stl_cd1400sendflow, stl_cd1400flush, stl_cd1400datastate, stl_cd1400eiointr }; /* * Define the offsets within the register bank of a cd1400 based panel. * These io address offsets are common to the EasyIO board as well. */ #define EREG_ADDR 0 #define EREG_DATA 4 #define EREG_RXACK 5 #define EREG_TXACK 6 #define EREG_MDACK 7 #define EREG_BANKSIZE 8 #define CD1400_CLK 25000000 #define CD1400_CLK8M 20000000 /* * Define the cd1400 baud rate clocks. These are used when calculating * what clock and divisor to use for the required baud rate. Also * define the maximum baud rate allowed, and the default base baud. */ static int stl_cd1400clkdivs[] = { CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4 }; /*****************************************************************************/ /* * SC26198 UART specific data initization. */ static uart_t stl_sc26198uart = { stl_sc26198panelinit, stl_sc26198portinit, stl_sc26198setport, stl_sc26198getsignals, stl_sc26198setsignals, stl_sc26198enablerxtx, stl_sc26198startrxtx, stl_sc26198disableintrs, stl_sc26198sendbreak, stl_sc26198flowctrl, stl_sc26198sendflow, stl_sc26198flush, stl_sc26198datastate, stl_sc26198intr }; /* * Define the offsets within the register bank of a sc26198 based panel. */ #define XP_DATA 0 #define XP_ADDR 1 #define XP_MODID 2 #define XP_STATUS 2 #define XP_IACK 3 #define XP_BANKSIZE 4 /* * Define the sc26198 baud rate table. Offsets within the table * represent the actual baud rate selector of sc26198 registers. */ static unsigned int sc26198_baudtable[] = { 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200, 230400, 460800, 921600 }; #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable) /*****************************************************************************/ /* * Define the driver info for a user level control device. Used mainly * to get at port stats - only not using the port device itself. */ static const struct file_operations stl_fsiomem = { .owner = THIS_MODULE, .ioctl = stl_memioctl, }; static struct class *stallion_class; /* * Check for any arguments passed in on the module load command line. */ /*****************************************************************************/ /* * Parse the supplied argument string, into the board conf struct. */ static int __init stl_parsebrd(struct stlconf *confp, char **argp) { char *sp; int i; pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp); if ((argp[0] == NULL) || (*argp[0] == 0)) return 0; for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++) *sp = tolower(*sp); for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) if (strcmp(stl_brdstr[i].name, argp[0]) == 0) break; if (i == ARRAY_SIZE(stl_brdstr)) { printk("STALLION: unknown board name, %s?\n", argp[0]); return 0; } confp->brdtype = stl_brdstr[i].type; i = 1; if ((argp[i] != NULL) && (*argp[i] != 0)) confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0); i++; if (confp->brdtype == BRD_ECH) { if ((argp[i] != NULL) && (*argp[i] != 0)) confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0); i++; } if ((argp[i] != NULL) && (*argp[i] != 0)) confp->irq = simple_strtoul(argp[i], NULL, 0); return 1; } /*****************************************************************************/ /* * Allocate a new board structure. Fill out the basic info in it. */ static struct stlbrd *stl_allocbrd(void) { struct stlbrd *brdp; brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL); if (!brdp) { printk("STALLION: failed to allocate memory (size=%Zd)\n", sizeof(struct stlbrd)); return NULL; } brdp->magic = STL_BOARDMAGIC; return brdp; } /*****************************************************************************/ static int stl_open(struct tty_struct *tty, struct file *filp) { struct stlport *portp; struct stlbrd *brdp; unsigned int minordev; int brdnr, panelnr, portnr, rc; pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name); minordev = tty->index; brdnr = MINOR2BRD(minordev); if (brdnr >= stl_nrbrds) return -ENODEV; brdp = stl_brds[brdnr]; if (brdp == NULL) return -ENODEV; minordev = MINOR2PORT(minordev); for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) { if (brdp->panels[panelnr] == NULL) break; if (minordev < brdp->panels[panelnr]->nrports) { portnr = minordev; break; } minordev -= brdp->panels[panelnr]->nrports; } if (portnr < 0) return -ENODEV; portp = brdp->panels[panelnr]->ports[portnr]; if (portp == NULL) return -ENODEV; /* * On the first open of the device setup the port hardware, and * initialize the per port data structure. */ portp->tty = tty; tty->driver_data = portp; portp->refcount++; if ((portp->flags & ASYNC_INITIALIZED) == 0) { if (!portp->tx.buf) { portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL); if (!portp->tx.buf) return -ENOMEM; portp->tx.head = portp->tx.buf; portp->tx.tail = portp->tx.buf; } stl_setport(portp, tty->termios); portp->sigs = stl_getsignals(portp); stl_setsignals(portp, 1, 1); stl_enablerxtx(portp, 1, 1); stl_startrxtx(portp, 1, 0); clear_bit(TTY_IO_ERROR, &tty->flags); portp->flags |= ASYNC_INITIALIZED; } /* * Check if this port is in the middle of closing. If so then wait * until it is closed then return error status, based on flag settings. * The sleep here does not need interrupt protection since the wakeup * for it is done with the same context. */ if (portp->flags & ASYNC_CLOSING) { interruptible_sleep_on(&portp->close_wait); if (portp->flags & ASYNC_HUP_NOTIFY) return -EAGAIN; return -ERESTARTSYS; } /* * Based on type of open being done check if it can overlap with any * previous opens still in effect. If we are a normal serial device * then also we might have to wait for carrier. */ if (!(filp->f_flags & O_NONBLOCK)) if ((rc = stl_waitcarrier(portp, filp)) != 0) return rc; portp->flags |= ASYNC_NORMAL_ACTIVE; return 0; } /*****************************************************************************/ /* * Possibly need to wait for carrier (DCD signal) to come high. Say * maybe because if we are clocal then we don't need to wait... */ static int stl_waitcarrier(struct stlport *portp, struct file *filp) { unsigned long flags; int rc, doclocal; pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp); rc = 0; doclocal = 0; spin_lock_irqsave(&stallion_lock, flags); if (portp->tty->termios->c_cflag & CLOCAL) doclocal++; portp->openwaitcnt++; if (! tty_hung_up_p(filp)) portp->refcount--; for (;;) { /* Takes brd_lock internally */ stl_setsignals(portp, 1, 1); if (tty_hung_up_p(filp) || ((portp->flags & ASYNC_INITIALIZED) == 0)) { if (portp->flags & ASYNC_HUP_NOTIFY) rc = -EBUSY; else rc = -ERESTARTSYS; break; } if (((portp->flags & ASYNC_CLOSING) == 0) && (doclocal || (portp->sigs & TIOCM_CD))) break; if (signal_pending(current)) { rc = -ERESTARTSYS; break; } /* FIXME */ interruptible_sleep_on(&portp->open_wait); } if (! tty_hung_up_p(filp)) portp->refcount++; portp->openwaitcnt--; spin_unlock_irqrestore(&stallion_lock, flags); return rc; } /*****************************************************************************/ static void stl_flushbuffer(struct tty_struct *tty) { struct stlport *portp; pr_debug("stl_flushbuffer(tty=%p)\n", tty); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; stl_flush(portp); tty_wakeup(tty); } /*****************************************************************************/ static void stl_waituntilsent(struct tty_struct *tty, int timeout) { struct stlport *portp; unsigned long tend; pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; if (timeout == 0) timeout = HZ; tend = jiffies + timeout; while (stl_datastate(portp)) { if (signal_pending(current)) break; msleep_interruptible(20); if (time_after_eq(jiffies, tend)) break; } } /*****************************************************************************/ static void stl_close(struct tty_struct *tty, struct file *filp) { struct stlport *portp; unsigned long flags; pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp); portp = tty->driver_data; if (portp == NULL) return; spin_lock_irqsave(&stallion_lock, flags); if (tty_hung_up_p(filp)) { spin_unlock_irqrestore(&stallion_lock, flags); return; } if ((tty->count == 1) && (portp->refcount != 1)) portp->refcount = 1; if (portp->refcount-- > 1) { spin_unlock_irqrestore(&stallion_lock, flags); return; } portp->refcount = 0; portp->flags |= ASYNC_CLOSING; /* * May want to wait for any data to drain before closing. The BUSY * flag keeps track of whether we are still sending or not - it is * very accurate for the cd1400, not quite so for the sc26198. * (The sc26198 has no "end-of-data" interrupt only empty FIFO) */ tty->closing = 1; spin_unlock_irqrestore(&stallion_lock, flags); if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, portp->closing_wait); stl_waituntilsent(tty, (HZ / 2)); spin_lock_irqsave(&stallion_lock, flags); portp->flags &= ~ASYNC_INITIALIZED; spin_unlock_irqrestore(&stallion_lock, flags); stl_disableintrs(portp); if (tty->termios->c_cflag & HUPCL) stl_setsignals(portp, 0, 0); stl_enablerxtx(portp, 0, 0); stl_flushbuffer(tty); portp->istate = 0; if (portp->tx.buf != NULL) { kfree(portp->tx.buf); portp->tx.buf = NULL; portp->tx.head = NULL; portp->tx.tail = NULL; } set_bit(TTY_IO_ERROR, &tty->flags); tty_ldisc_flush(tty); tty->closing = 0; portp->tty = NULL; if (portp->openwaitcnt) { if (portp->close_delay) msleep_interruptible(jiffies_to_msecs(portp->close_delay)); wake_up_interruptible(&portp->open_wait); } portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING); wake_up_interruptible(&portp->close_wait); } /*****************************************************************************/ /* * Write routine. Take data and stuff it in to the TX ring queue. * If transmit interrupts are not running then start them. */ static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count) { struct stlport *portp; unsigned int len, stlen; unsigned char *chbuf; char *head, *tail; pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count); portp = tty->driver_data; if (portp == NULL) return 0; if (portp->tx.buf == NULL) return 0; /* * If copying direct from user space we must cater for page faults, * causing us to "sleep" here for a while. To handle this copy in all * the data we need now, into a local buffer. Then when we got it all * copy it into the TX buffer. */ chbuf = (unsigned char *) buf; head = portp->tx.head; tail = portp->tx.tail; if (head >= tail) { len = STL_TXBUFSIZE - (head - tail) - 1; stlen = STL_TXBUFSIZE - (head - portp->tx.buf); } else { len = tail - head - 1; stlen = len; } len = min(len, (unsigned int)count); count = 0; while (len > 0) { stlen = min(len, stlen); memcpy(head, chbuf, stlen); len -= stlen; chbuf += stlen; count += stlen; head += stlen; if (head >= (portp->tx.buf + STL_TXBUFSIZE)) { head = portp->tx.buf; stlen = tail - head; } } portp->tx.head = head; clear_bit(ASYI_TXLOW, &portp->istate); stl_startrxtx(portp, -1, 1); return count; } /*****************************************************************************/ static void stl_putchar(struct tty_struct *tty, unsigned char ch) { struct stlport *portp; unsigned int len; char *head, *tail; pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; if (portp->tx.buf == NULL) return; head = portp->tx.head; tail = portp->tx.tail; len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head); len--; if (len > 0) { *head++ = ch; if (head >= (portp->tx.buf + STL_TXBUFSIZE)) head = portp->tx.buf; } portp->tx.head = head; } /*****************************************************************************/ /* * If there are any characters in the buffer then make sure that TX * interrupts are on and get'em out. Normally used after the putchar * routine has been called. */ static void stl_flushchars(struct tty_struct *tty) { struct stlport *portp; pr_debug("stl_flushchars(tty=%p)\n", tty); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; if (portp->tx.buf == NULL) return; stl_startrxtx(portp, -1, 1); } /*****************************************************************************/ static int stl_writeroom(struct tty_struct *tty) { struct stlport *portp; char *head, *tail; pr_debug("stl_writeroom(tty=%p)\n", tty); if (tty == NULL) return 0; portp = tty->driver_data; if (portp == NULL) return 0; if (portp->tx.buf == NULL) return 0; head = portp->tx.head; tail = portp->tx.tail; return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1); } /*****************************************************************************/ /* * Return number of chars in the TX buffer. Normally we would just * calculate the number of chars in the buffer and return that, but if * the buffer is empty and TX interrupts are still on then we return * that the buffer still has 1 char in it. This way whoever called us * will not think that ALL chars have drained - since the UART still * must have some chars in it (we are busy after all). */ static int stl_charsinbuffer(struct tty_struct *tty) { struct stlport *portp; unsigned int size; char *head, *tail; pr_debug("stl_charsinbuffer(tty=%p)\n", tty); if (tty == NULL) return 0; portp = tty->driver_data; if (portp == NULL) return 0; if (portp->tx.buf == NULL) return 0; head = portp->tx.head; tail = portp->tx.tail; size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head)); if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate)) size = 1; return size; } /*****************************************************************************/ /* * Generate the serial struct info. */ static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp) { struct serial_struct sio; struct stlbrd *brdp; pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp); memset(&sio, 0, sizeof(struct serial_struct)); sio.line = portp->portnr; sio.port = portp->ioaddr; sio.flags = portp->flags; sio.baud_base = portp->baud_base; sio.close_delay = portp->close_delay; sio.closing_wait = portp->closing_wait; sio.custom_divisor = portp->custom_divisor; sio.hub6 = 0; if (portp->uartp == &stl_cd1400uart) { sio.type = PORT_CIRRUS; sio.xmit_fifo_size = CD1400_TXFIFOSIZE; } else { sio.type = PORT_UNKNOWN; sio.xmit_fifo_size = SC26198_TXFIFOSIZE; } brdp = stl_brds[portp->brdnr]; if (brdp != NULL) sio.irq = brdp->irq; return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0; } /*****************************************************************************/ /* * Set port according to the serial struct info. * At this point we do not do any auto-configure stuff, so we will * just quietly ignore any requests to change irq, etc. */ static int stl_setserial(struct stlport *portp, struct serial_struct __user *sp) { struct serial_struct sio; pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp); if (copy_from_user(&sio, sp, sizeof(struct serial_struct))) return -EFAULT; if (!capable(CAP_SYS_ADMIN)) { if ((sio.baud_base != portp->baud_base) || (sio.close_delay != portp->close_delay) || ((sio.flags & ~ASYNC_USR_MASK) != (portp->flags & ~ASYNC_USR_MASK))) return -EPERM; } portp->flags = (portp->flags & ~ASYNC_USR_MASK) | (sio.flags & ASYNC_USR_MASK); portp->baud_base = sio.baud_base; portp->close_delay = sio.close_delay; portp->closing_wait = sio.closing_wait; portp->custom_divisor = sio.custom_divisor; stl_setport(portp, portp->tty->termios); return 0; } /*****************************************************************************/ static int stl_tiocmget(struct tty_struct *tty, struct file *file) { struct stlport *portp; if (tty == NULL) return -ENODEV; portp = tty->driver_data; if (portp == NULL) return -ENODEV; if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; return stl_getsignals(portp); } static int stl_tiocmset(struct tty_struct *tty, struct file *file, unsigned int set, unsigned int clear) { struct stlport *portp; int rts = -1, dtr = -1; if (tty == NULL) return -ENODEV; portp = tty->driver_data; if (portp == NULL) return -ENODEV; if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; if (set & TIOCM_RTS) rts = 1; if (set & TIOCM_DTR) dtr = 1; if (clear & TIOCM_RTS) rts = 0; if (clear & TIOCM_DTR) dtr = 0; stl_setsignals(portp, dtr, rts); return 0; } static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg) { struct stlport *portp; unsigned int ival; int rc; void __user *argp = (void __user *)arg; pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd, arg); if (tty == NULL) return -ENODEV; portp = tty->driver_data; if (portp == NULL) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; rc = 0; switch (cmd) { case TIOCGSOFTCAR: rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0), (unsigned __user *) argp); break; case TIOCSSOFTCAR: if (get_user(ival, (unsigned int __user *) arg)) return -EFAULT; tty->termios->c_cflag = (tty->termios->c_cflag & ~CLOCAL) | (ival ? CLOCAL : 0); break; case TIOCGSERIAL: rc = stl_getserial(portp, argp); break; case TIOCSSERIAL: rc = stl_setserial(portp, argp); break; case COM_GETPORTSTATS: rc = stl_getportstats(portp, argp); break; case COM_CLRPORTSTATS: rc = stl_clrportstats(portp, argp); break; case TIOCSERCONFIG: case TIOCSERGWILD: case TIOCSERSWILD: case TIOCSERGETLSR: case TIOCSERGSTRUCT: case TIOCSERGETMULTI: case TIOCSERSETMULTI: default: rc = -ENOIOCTLCMD; break; } return rc; } /*****************************************************************************/ /* * Start the transmitter again. Just turn TX interrupts back on. */ static void stl_start(struct tty_struct *tty) { struct stlport *portp; pr_debug("stl_start(tty=%p)\n", tty); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; stl_startrxtx(portp, -1, 1); } /*****************************************************************************/ static void stl_settermios(struct tty_struct *tty, struct ktermios *old) { struct stlport *portp; struct ktermios *tiosp; pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; tiosp = tty->termios; if ((tiosp->c_cflag == old->c_cflag) && (tiosp->c_iflag == old->c_iflag)) return; stl_setport(portp, tiosp); stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0), -1); if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) { tty->hw_stopped = 0; stl_start(tty); } if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL)) wake_up_interruptible(&portp->open_wait); } /*****************************************************************************/ /* * Attempt to flow control who ever is sending us data. Based on termios * settings use software or/and hardware flow control. */ static void stl_throttle(struct tty_struct *tty) { struct stlport *portp; pr_debug("stl_throttle(tty=%p)\n", tty); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; stl_flowctrl(portp, 0); } /*****************************************************************************/ /* * Unflow control the device sending us data... */ static void stl_unthrottle(struct tty_struct *tty) { struct stlport *portp; pr_debug("stl_unthrottle(tty=%p)\n", tty); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; stl_flowctrl(portp, 1); } /*****************************************************************************/ /* * Stop the transmitter. Basically to do this we will just turn TX * interrupts off. */ static void stl_stop(struct tty_struct *tty) { struct stlport *portp; pr_debug("stl_stop(tty=%p)\n", tty); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; stl_startrxtx(portp, -1, 0); } /*****************************************************************************/ /* * Hangup this port. This is pretty much like closing the port, only * a little more brutal. No waiting for data to drain. Shutdown the * port and maybe drop signals. */ static void stl_hangup(struct tty_struct *tty) { struct stlport *portp; pr_debug("stl_hangup(tty=%p)\n", tty); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; portp->flags &= ~ASYNC_INITIALIZED; stl_disableintrs(portp); if (tty->termios->c_cflag & HUPCL) stl_setsignals(portp, 0, 0); stl_enablerxtx(portp, 0, 0); stl_flushbuffer(tty); portp->istate = 0; set_bit(TTY_IO_ERROR, &tty->flags); if (portp->tx.buf != NULL) { kfree(portp->tx.buf); portp->tx.buf = NULL; portp->tx.head = NULL; portp->tx.tail = NULL; } portp->tty = NULL; portp->flags &= ~ASYNC_NORMAL_ACTIVE; portp->refcount = 0; wake_up_interruptible(&portp->open_wait); } /*****************************************************************************/ static void stl_breakctl(struct tty_struct *tty, int state) { struct stlport *portp; pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; stl_sendbreak(portp, ((state == -1) ? 1 : 2)); } /*****************************************************************************/ static void stl_sendxchar(struct tty_struct *tty, char ch) { struct stlport *portp; pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch); if (tty == NULL) return; portp = tty->driver_data; if (portp == NULL) return; if (ch == STOP_CHAR(tty)) stl_sendflow(portp, 0); else if (ch == START_CHAR(tty)) stl_sendflow(portp, 1); else stl_putchar(tty, ch); } /*****************************************************************************/ #define MAXLINE 80 /* * Format info for a specified port. The line is deliberately limited * to 80 characters. (If it is too long it will be truncated, if too * short then padded with spaces). */ static int stl_portinfo(struct stlport *portp, int portnr, char *pos) { char *sp; int sigs, cnt; sp = pos; sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d", portnr, (portp->hwid == 1) ? "SC26198" : "CD1400", (int) portp->stats.txtotal, (int) portp->stats.rxtotal); if (portp->stats.rxframing) sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing); if (portp->stats.rxparity) sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity); if (portp->stats.rxbreaks) sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks); if (portp->stats.rxoverrun) sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun); sigs = stl_getsignals(portp); cnt = sprintf(sp, "%s%s%s%s%s ", (sigs & TIOCM_RTS) ? "|RTS" : "", (sigs & TIOCM_CTS) ? "|CTS" : "", (sigs & TIOCM_DTR) ? "|DTR" : "", (sigs & TIOCM_CD) ? "|DCD" : "", (sigs & TIOCM_DSR) ? "|DSR" : ""); *sp = ' '; sp += cnt; for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++) *sp++ = ' '; if (cnt >= MAXLINE) pos[(MAXLINE - 2)] = '+'; pos[(MAXLINE - 1)] = '\n'; return MAXLINE; } /*****************************************************************************/ /* * Port info, read from the /proc file system. */ static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data) { struct stlbrd *brdp; struct stlpanel *panelp; struct stlport *portp; int brdnr, panelnr, portnr, totalport; int curoff, maxoff; char *pos; pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p," "data=%p\n", page, start, off, count, eof, data); pos = page; totalport = 0; curoff = 0; if (off == 0) { pos += sprintf(pos, "%s: version %s", stl_drvtitle, stl_drvversion); while (pos < (page + MAXLINE - 1)) *pos++ = ' '; *pos++ = '\n'; } curoff = MAXLINE; /* * We scan through for each board, panel and port. The offset is * calculated on the fly, and irrelevant ports are skipped. */ for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) { brdp = stl_brds[brdnr]; if (brdp == NULL) continue; if (brdp->state == 0) continue; maxoff = curoff + (brdp->nrports * MAXLINE); if (off >= maxoff) { curoff = maxoff; continue; } totalport = brdnr * STL_MAXPORTS; for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) { panelp = brdp->panels[panelnr]; if (panelp == NULL) continue; maxoff = curoff + (panelp->nrports * MAXLINE); if (off >= maxoff) { curoff = maxoff; totalport += panelp->nrports; continue; } for (portnr = 0; portnr < panelp->nrports; portnr++, totalport++) { portp = panelp->ports[portnr]; if (portp == NULL) continue; if (off >= (curoff += MAXLINE)) continue; if ((pos - page + MAXLINE) > count) goto stl_readdone; pos += stl_portinfo(portp, totalport, pos); } } } *eof = 1; stl_readdone: *start = page; return pos - page; } /*****************************************************************************/ /* * All board interrupts are vectored through here first. This code then * calls off to the approrpriate board interrupt handlers. */ static irqreturn_t stl_intr(int irq, void *dev_id) { struct stlbrd *brdp = dev_id; pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, irq); return IRQ_RETVAL((* brdp->isr)(brdp)); } /*****************************************************************************/ /* * Interrupt service routine for EasyIO board types. */ static int stl_eiointr(struct stlbrd *brdp) { struct stlpanel *panelp; unsigned int iobase; int handled = 0; spin_lock(&brd_lock); panelp = brdp->panels[0]; iobase = panelp->iobase; while (inb(brdp->iostatus) & EIO_INTRPEND) { handled = 1; (* panelp->isr)(panelp, iobase); } spin_unlock(&brd_lock); return handled; } /*****************************************************************************/ /* * Interrupt service routine for ECH-AT board types. */ static int stl_echatintr(struct stlbrd *brdp) { struct stlpanel *panelp; unsigned int ioaddr; int bnknr; int handled = 0; outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl); while (inb(brdp->iostatus) & ECH_INTRPEND) { handled = 1; for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) { ioaddr = brdp->bnkstataddr[bnknr]; if (inb(ioaddr) & ECH_PNLINTRPEND) { panelp = brdp->bnk2panel[bnknr]; (* panelp->isr)(panelp, (ioaddr & 0xfffc)); } } } outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl); return handled; } /*****************************************************************************/ /* * Interrupt service routine for ECH-MCA board types. */ static int stl_echmcaintr(struct stlbrd *brdp) { struct stlpanel *panelp; unsigned int ioaddr; int bnknr; int handled = 0; while (inb(brdp->iostatus) & ECH_INTRPEND) { handled = 1; for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) { ioaddr = brdp->bnkstataddr[bnknr]; if (inb(ioaddr) & ECH_PNLINTRPEND) { panelp = brdp->bnk2panel[bnknr]; (* panelp->isr)(panelp, (ioaddr & 0xfffc)); } } } return handled; } /*****************************************************************************/ /* * Interrupt service routine for ECH-PCI board types. */ static int stl_echpciintr(struct stlbrd *brdp) { struct stlpanel *panelp; unsigned int ioaddr; int bnknr, recheck; int handled = 0; while (1) { recheck = 0; for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) { outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl); ioaddr = brdp->bnkstataddr[bnknr]; if (inb(ioaddr) & ECH_PNLINTRPEND) { panelp = brdp->bnk2panel[bnknr]; (* panelp->isr)(panelp, (ioaddr & 0xfffc)); recheck++; handled = 1; } } if (! recheck) break; } return handled; } /*****************************************************************************/ /* * Interrupt service routine for ECH-8/64-PCI board types. */ static int stl_echpci64intr(struct stlbrd *brdp) { struct stlpanel *panelp; unsigned int ioaddr; int bnknr; int handled = 0; while (inb(brdp->ioctrl) & 0x1) { handled = 1; for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) { ioaddr = brdp->bnkstataddr[bnknr]; if (inb(ioaddr) & ECH_PNLINTRPEND) { panelp = brdp->bnk2panel[bnknr]; (* panelp->isr)(panelp, (ioaddr & 0xfffc)); } } } return handled; } /*****************************************************************************/ /* * Service an off-level request for some channel. */ static void stl_offintr(struct work_struct *work) { struct stlport *portp = container_of(work, struct stlport, tqueue); struct tty_struct *tty; unsigned int oldsigs; pr_debug("stl_offintr(portp=%p)\n", portp); if (portp == NULL) return; tty = portp->tty; if (tty == NULL) return; lock_kernel(); if (test_bit(ASYI_TXLOW, &portp->istate)) tty_wakeup(tty); if (test_bit(ASYI_DCDCHANGE, &portp->istate)) { clear_bit(ASYI_DCDCHANGE, &portp->istate); oldsigs = portp->sigs; portp->sigs = stl_getsignals(portp); if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0)) wake_up_interruptible(&portp->open_wait); if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) if (portp->flags & ASYNC_CHECK_CD) tty_hangup(tty); /* FIXME: module removal race here - AKPM */ } unlock_kernel(); } /*****************************************************************************/ /* * Initialize all the ports on a panel. */ static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp) { struct stlport *portp; int chipmask, i; pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp); chipmask = stl_panelinit(brdp, panelp); /* * All UART's are initialized (if found!). Now go through and setup * each ports data structures. */ for (i = 0; i < panelp->nrports; i++) { portp = kzalloc(sizeof(struct stlport), GFP_KERNEL); if (!portp) { printk("STALLION: failed to allocate memory " "(size=%Zd)\n", sizeof(struct stlport)); break; } portp->magic = STL_PORTMAGIC; portp->portnr = i; portp->brdnr = panelp->brdnr; portp->panelnr = panelp->panelnr; portp->uartp = panelp->uartp; portp->clk = brdp->clk; portp->baud_base = STL_BAUDBASE; portp->close_delay = STL_CLOSEDELAY; portp->closing_wait = 30 * HZ; INIT_WORK(&portp->tqueue, stl_offintr); init_waitqueue_head(&portp->open_wait); init_waitqueue_head(&portp->close_wait); portp->stats.brd = portp->brdnr; portp->stats.panel = portp->panelnr; portp->stats.port = portp->portnr; panelp->ports[i] = portp; stl_portinit(brdp, panelp, portp); } return 0; } static void stl_cleanup_panels(struct stlbrd *brdp) { struct stlpanel *panelp; struct stlport *portp; unsigned int j, k; for (j = 0; j < STL_MAXPANELS; j++) { panelp = brdp->panels[j]; if (panelp == NULL) continue; for (k = 0; k < STL_PORTSPERPANEL; k++) { portp = panelp->ports[k]; if (portp == NULL) continue; if (portp->tty != NULL) stl_hangup(portp->tty); kfree(portp->tx.buf); kfree(portp); } kfree(panelp); } } /*****************************************************************************/ /* * Try to find and initialize an EasyIO board. */ static int __devinit stl_initeio(struct stlbrd *brdp) { struct stlpanel *panelp; unsigned int status; char *name; int retval; pr_debug("stl_initeio(brdp=%p)\n", brdp); brdp->ioctrl = brdp->ioaddr1 + 1; brdp->iostatus = brdp->ioaddr1 + 2; status = inb(brdp->iostatus); if ((status & EIO_IDBITMASK) == EIO_MK3) brdp->ioctrl++; /* * Handle board specific stuff now. The real difference is PCI * or not PCI. */ if (brdp->brdtype == BRD_EASYIOPCI) { brdp->iosize1 = 0x80; brdp->iosize2 = 0x80; name = "serial(EIO-PCI)"; outb(0x41, (brdp->ioaddr2 + 0x4c)); } else { brdp->iosize1 = 8; name = "serial(EIO)"; if ((brdp->irq < 0) || (brdp->irq > 15) || (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) { printk("STALLION: invalid irq=%d for brd=%d\n", brdp->irq, brdp->brdnr); retval = -EINVAL; goto err; } outb((stl_vecmap[brdp->irq] | EIO_0WS | ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)), brdp->ioctrl); } retval = -EBUSY; if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) { printk(KERN_WARNING "STALLION: Warning, board %d I/O address " "%x conflicts with another device\n", brdp->brdnr, brdp->ioaddr1); goto err; } if (brdp->iosize2 > 0) if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) { printk(KERN_WARNING "STALLION: Warning, board %d I/O " "address %x conflicts with another device\n", brdp->brdnr, brdp->ioaddr2); printk(KERN_WARNING "STALLION: Warning, also " "releasing board %d I/O address %x \n", brdp->brdnr, brdp->ioaddr1); goto err_rel1; } /* * Everything looks OK, so let's go ahead and probe for the hardware. */ brdp->clk = CD1400_CLK; brdp->isr = stl_eiointr; retval = -ENODEV; switch (status & EIO_IDBITMASK) { case EIO_8PORTM: brdp->clk = CD1400_CLK8M; /* fall thru */ case EIO_8PORTRS: case EIO_8PORTDI: brdp->nrports = 8; break; case EIO_4PORTRS: brdp->nrports = 4; break; case EIO_MK3: switch (status & EIO_BRDMASK) { case ID_BRD4: brdp->nrports = 4; break; case ID_BRD8: brdp->nrports = 8; break; case ID_BRD16: brdp->nrports = 16; break; default: goto err_rel2; } break; default: goto err_rel2; } /* * We have verified that the board is actually present, so now we * can complete the setup. */ panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL); if (!panelp) { printk(KERN_WARNING "STALLION: failed to allocate memory " "(size=%Zd)\n", sizeof(struct stlpanel)); retval = -ENOMEM; goto err_rel2; } panelp->magic = STL_PANELMAGIC; panelp->brdnr = brdp->brdnr; panelp->panelnr = 0; panelp->nrports = brdp->nrports; panelp->iobase = brdp->ioaddr1; panelp->hwid = status; if ((status & EIO_IDBITMASK) == EIO_MK3) { panelp->uartp = &stl_sc26198uart; panelp->isr = stl_sc26198intr; } else { panelp->uartp = &stl_cd1400uart; panelp->isr = stl_cd1400eiointr; } brdp->panels[0] = panelp; brdp->nrpanels = 1; brdp->state |= BRD_FOUND; brdp->hwid = status; if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) { printk("STALLION: failed to register interrupt " "routine for %s irq=%d\n", name, brdp->irq); retval = -ENODEV; goto err_fr; } return 0; err_fr: stl_cleanup_panels(brdp); err_rel2: if (brdp->iosize2 > 0) release_region(brdp->ioaddr2, brdp->iosize2); err_rel1: release_region(brdp->ioaddr1, brdp->iosize1); err: return retval; } /*****************************************************************************/ /* * Try to find an ECH board and initialize it. This code is capable of * dealing with all types of ECH board. */ static int __devinit stl_initech(struct stlbrd *brdp) { struct stlpanel *panelp; unsigned int status, nxtid, ioaddr, conflict; int panelnr, banknr, i, retval; char *name; pr_debug("stl_initech(brdp=%p)\n", brdp); status = 0; conflict = 0; /* * Set up the initial board register contents for boards. This varies a * bit between the different board types. So we need to handle each * separately. Also do a check that the supplied IRQ is good. */ switch (brdp->brdtype) { case BRD_ECH: brdp->isr = stl_echatintr; brdp->ioctrl = brdp->ioaddr1 + 1; brdp->iostatus = brdp->ioaddr1 + 1; status = inb(brdp->iostatus); if ((status & ECH_IDBITMASK) != ECH_ID) { retval = -ENODEV; goto err; } if ((brdp->irq < 0) || (brdp->irq > 15) || (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) { printk("STALLION: invalid irq=%d for brd=%d\n", brdp->irq, brdp->brdnr); retval = -EINVAL; goto err; } status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1); status |= (stl_vecmap[brdp->irq] << 1); outb((status | ECH_BRDRESET), brdp->ioaddr1); brdp->ioctrlval = ECH_INTENABLE | ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE); for (i = 0; i < 10; i++) outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl); brdp->iosize1 = 2; brdp->iosize2 = 32; name = "serial(EC8/32)"; outb(status, brdp->ioaddr1); break; case BRD_ECHMC: brdp->isr = stl_echmcaintr; brdp->ioctrl = brdp->ioaddr1 + 0x20; brdp->iostatus = brdp->ioctrl; status = inb(brdp->iostatus); if ((status & ECH_IDBITMASK) != ECH_ID) { retval = -ENODEV; goto err; } if ((brdp->irq < 0) || (brdp->irq > 15) || (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) { printk("STALLION: invalid irq=%d for brd=%d\n", brdp->irq, brdp->brdnr); retval = -EINVAL; goto err; } outb(ECHMC_BRDRESET, brdp->ioctrl); outb(ECHMC_INTENABLE, brdp->ioctrl); brdp->iosize1 = 64; name = "serial(EC8/32-MC)"; break; case BRD_ECHPCI: brdp->isr = stl_echpciintr; brdp->ioctrl = brdp->ioaddr1 + 2; brdp->iosize1 = 4; brdp->iosize2 = 8; name = "serial(EC8/32-PCI)"; break; case BRD_ECH64PCI: brdp->isr = stl_echpci64intr; brdp->ioctrl = brdp->ioaddr2 + 0x40; outb(0x43, (brdp->ioaddr1 + 0x4c)); brdp->iosize1 = 0x80; brdp->iosize2 = 0x80; name = "serial(EC8/64-PCI)"; break; default: printk("STALLION: unknown board type=%d\n", brdp->brdtype); retval = -EINVAL; goto err; } /* * Check boards for possible IO address conflicts and return fail status * if an IO conflict found. */ retval = -EBUSY; if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) { printk(KERN_WARNING "STALLION: Warning, board %d I/O address " "%x conflicts with another device\n", brdp->brdnr, brdp->ioaddr1); goto err; } if (brdp->iosize2 > 0) if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) { printk(KERN_WARNING "STALLION: Warning, board %d I/O " "address %x conflicts with another device\n", brdp->brdnr, brdp->ioaddr2); printk(KERN_WARNING "STALLION: Warning, also " "releasing board %d I/O address %x \n", brdp->brdnr, brdp->ioaddr1); goto err_rel1; } /* * Scan through the secondary io address space looking for panels. * As we find'em allocate and initialize panel structures for each. */ brdp->clk = CD1400_CLK; brdp->hwid = status; ioaddr = brdp->ioaddr2; banknr = 0; panelnr = 0; nxtid = 0; for (i = 0; i < STL_MAXPANELS; i++) { if (brdp->brdtype == BRD_ECHPCI) { outb(nxtid, brdp->ioctrl); ioaddr = brdp->ioaddr2; } status = inb(ioaddr + ECH_PNLSTATUS); if ((status & ECH_PNLIDMASK) != nxtid) goto err_fr; panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL); if (!panelp) { printk("STALLION: failed to allocate memory " "(size=%Zd)\n", sizeof(struct stlpanel)); goto err_fr; } panelp->magic = STL_PANELMAGIC; panelp->brdnr = brdp->brdnr; panelp->panelnr = panelnr; panelp->iobase = ioaddr; panelp->pagenr = nxtid; panelp->hwid = status; brdp->bnk2panel[banknr] = panelp; brdp->bnkpageaddr[banknr] = nxtid; brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS; if (status & ECH_PNLXPID) { panelp->uartp = &stl_sc26198uart; panelp->isr = stl_sc26198intr; if (status & ECH_PNL16PORT) { panelp->nrports = 16; brdp->bnk2panel[banknr] = panelp; brdp->bnkpageaddr[banknr] = nxtid; brdp->bnkstataddr[banknr++] = ioaddr + 4 + ECH_PNLSTATUS; } else panelp->nrports = 8; } else { panelp->uartp = &stl_cd1400uart; panelp->isr = stl_cd1400echintr; if (status & ECH_PNL16PORT) { panelp->nrports = 16; panelp->ackmask = 0x80; if (brdp->brdtype != BRD_ECHPCI) ioaddr += EREG_BANKSIZE; brdp->bnk2panel[banknr] = panelp; brdp->bnkpageaddr[banknr] = ++nxtid; brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS; } else { panelp->nrports = 8; panelp->ackmask = 0xc0; } } nxtid++; ioaddr += EREG_BANKSIZE; brdp->nrports += panelp->nrports; brdp->panels[panelnr++] = panelp; if ((brdp->brdtype != BRD_ECHPCI) && (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) goto err_fr; } brdp->nrpanels = panelnr; brdp->nrbnks = banknr; if (brdp->brdtype == BRD_ECH) outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl); brdp->state |= BRD_FOUND; if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) { printk("STALLION: failed to register interrupt " "routine for %s irq=%d\n", name, brdp->irq); retval = -ENODEV; goto err_fr; } return 0; err_fr: stl_cleanup_panels(brdp); if (brdp->iosize2 > 0) release_region(brdp->ioaddr2, brdp->iosize2); err_rel1: release_region(brdp->ioaddr1, brdp->iosize1); err: return retval; } /*****************************************************************************/ /* * Initialize and configure the specified board. * Scan through all the boards in the configuration and see what we * can find. Handle EIO and the ECH boards a little differently here * since the initial search and setup is very different. */ static int __devinit stl_brdinit(struct stlbrd *brdp) { int i, retval; pr_debug("stl_brdinit(brdp=%p)\n", brdp); switch (brdp->brdtype) { case BRD_EASYIO: case BRD_EASYIOPCI: retval = stl_initeio(brdp); if (retval) goto err; break; case BRD_ECH: case BRD_ECHMC: case BRD_ECHPCI: case BRD_ECH64PCI: retval = stl_initech(brdp); if (retval) goto err; break; default: printk("STALLION: board=%d is unknown board type=%d\n", brdp->brdnr, brdp->brdtype); retval = -ENODEV; goto err; } if ((brdp->state & BRD_FOUND) == 0) { printk("STALLION: %s board not found, board=%d io=%x irq=%d\n", stl_brdnames[brdp->brdtype], brdp->brdnr, brdp->ioaddr1, brdp->irq); goto err_free; } for (i = 0; i < STL_MAXPANELS; i++) if (brdp->panels[i] != NULL) stl_initports(brdp, brdp->panels[i]); printk("STALLION: %s found, board=%d io=%x irq=%d " "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype], brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels, brdp->nrports); return 0; err_free: free_irq(brdp->irq, brdp); stl_cleanup_panels(brdp); release_region(brdp->ioaddr1, brdp->iosize1); if (brdp->iosize2 > 0) release_region(brdp->ioaddr2, brdp->iosize2); err: return retval; } /*****************************************************************************/ /* * Find the next available board number that is free. */ static int __devinit stl_getbrdnr(void) { int i; for (i = 0; i < STL_MAXBRDS; i++) if (stl_brds[i] == NULL) { if (i >= stl_nrbrds) stl_nrbrds = i + 1; return i; } return -1; } /*****************************************************************************/ /* * We have a Stallion board. Allocate a board structure and * initialize it. Read its IO and IRQ resources from PCI * configuration space. */ static int __devinit stl_pciprobe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct stlbrd *brdp; unsigned int brdtype = ent->driver_data; int retval = -ENODEV; if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) goto err; dev_info(&pdev->dev, "please, report this to LKML: %x/%x/%x\n", pdev->vendor, pdev->device, pdev->class); retval = pci_enable_device(pdev); if (retval) goto err; brdp = stl_allocbrd(); if (brdp == NULL) { retval = -ENOMEM; goto err; } mutex_lock(&stl_brdslock); brdp->brdnr = stl_getbrdnr(); if (brdp->brdnr < 0) { dev_err(&pdev->dev, "too many boards found, " "maximum supported %d\n", STL_MAXBRDS); mutex_unlock(&stl_brdslock); goto err_fr; } stl_brds[brdp->brdnr] = brdp; mutex_unlock(&stl_brdslock); brdp->brdtype = brdtype; brdp->state |= STL_PROBED; /* * We have all resources from the board, so let's setup the actual * board structure now. */ switch (brdtype) { case BRD_ECHPCI: brdp->ioaddr2 = pci_resource_start(pdev, 0); brdp->ioaddr1 = pci_resource_start(pdev, 1); break; case BRD_ECH64PCI: brdp->ioaddr2 = pci_resource_start(pdev, 2); brdp->ioaddr1 = pci_resource_start(pdev, 1); break; case BRD_EASYIOPCI: brdp->ioaddr1 = pci_resource_start(pdev, 2); brdp->ioaddr2 = pci_resource_start(pdev, 1); break; default: dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype); break; } brdp->irq = pdev->irq; retval = stl_brdinit(brdp); if (retval) goto err_null; pci_set_drvdata(pdev, brdp); return 0; err_null: stl_brds[brdp->brdnr] = NULL; err_fr: kfree(brdp); err: return retval; } static void __devexit stl_pciremove(struct pci_dev *pdev) { struct stlbrd *brdp = pci_get_drvdata(pdev); free_irq(brdp->irq, brdp); stl_cleanup_panels(brdp); release_region(brdp->ioaddr1, brdp->iosize1); if (brdp->iosize2 > 0) release_region(brdp->ioaddr2, brdp->iosize2); stl_brds[brdp->brdnr] = NULL; kfree(brdp); } static struct pci_driver stl_pcidriver = { .name = "stallion", .id_table = stl_pcibrds, .probe = stl_pciprobe, .remove = __devexit_p(stl_pciremove) }; /*****************************************************************************/ /* * Return the board stats structure to user app. */ static int stl_getbrdstats(combrd_t __user *bp) { struct stlbrd *brdp; struct stlpanel *panelp; int i; if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t))) return -EFAULT; if (stl_brdstats.brd >= STL_MAXBRDS) return -ENODEV; brdp = stl_brds[stl_brdstats.brd]; if (brdp == NULL) return -ENODEV; memset(&stl_brdstats, 0, sizeof(combrd_t)); stl_brdstats.brd = brdp->brdnr; stl_brdstats.type = brdp->brdtype; stl_brdstats.hwid = brdp->hwid; stl_brdstats.state = brdp->state; stl_brdstats.ioaddr = brdp->ioaddr1; stl_brdstats.ioaddr2 = brdp->ioaddr2; stl_brdstats.irq = brdp->irq; stl_brdstats.nrpanels = brdp->nrpanels; stl_brdstats.nrports = brdp->nrports; for (i = 0; i < brdp->nrpanels; i++) { panelp = brdp->panels[i]; stl_brdstats.panels[i].panel = i; stl_brdstats.panels[i].hwid = panelp->hwid; stl_brdstats.panels[i].nrports = panelp->nrports; } return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0; } /*****************************************************************************/ /* * Resolve the referenced port number into a port struct pointer. */ static struct stlport *stl_getport(int brdnr, int panelnr, int portnr) { struct stlbrd *brdp; struct stlpanel *panelp; if (brdnr < 0 || brdnr >= STL_MAXBRDS) return NULL; brdp = stl_brds[brdnr]; if (brdp == NULL) return NULL; if (panelnr < 0 || panelnr >= brdp->nrpanels) return NULL; panelp = brdp->panels[panelnr]; if (panelp == NULL) return NULL; if (portnr < 0 || portnr >= panelp->nrports) return NULL; return panelp->ports[portnr]; } /*****************************************************************************/ /* * Return the port stats structure to user app. A NULL port struct * pointer passed in means that we need to find out from the app * what port to get stats for (used through board control device). */ static int stl_getportstats(struct stlport *portp, comstats_t __user *cp) { unsigned char *head, *tail; unsigned long flags; if (!portp) { if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t))) return -EFAULT; portp = stl_getport(stl_comstats.brd, stl_comstats.panel, stl_comstats.port); if (portp == NULL) return -ENODEV; } portp->stats.state = portp->istate; portp->stats.flags = portp->flags; portp->stats.hwid = portp->hwid; portp->stats.ttystate = 0; portp->stats.cflags = 0; portp->stats.iflags = 0; portp->stats.oflags = 0; portp->stats.lflags = 0; portp->stats.rxbuffered = 0; spin_lock_irqsave(&stallion_lock, flags); if (portp->tty != NULL) if (portp->tty->driver_data == portp) { portp->stats.ttystate = portp->tty->flags; /* No longer available as a statistic */ portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */ if (portp->tty->termios != NULL) { portp->stats.cflags = portp->tty->termios->c_cflag; portp->stats.iflags = portp->tty->termios->c_iflag; portp->stats.oflags = portp->tty->termios->c_oflag; portp->stats.lflags = portp->tty->termios->c_lflag; } } spin_unlock_irqrestore(&stallion_lock, flags); head = portp->tx.head; tail = portp->tx.tail; portp->stats.txbuffered = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head)); portp->stats.signals = (unsigned long) stl_getsignals(portp); return copy_to_user(cp, &portp->stats, sizeof(comstats_t)) ? -EFAULT : 0; } /*****************************************************************************/ /* * Clear the port stats structure. We also return it zeroed out... */ static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp) { if (!portp) { if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t))) return -EFAULT; portp = stl_getport(stl_comstats.brd, stl_comstats.panel, stl_comstats.port); if (portp == NULL) return -ENODEV; } memset(&portp->stats, 0, sizeof(comstats_t)); portp->stats.brd = portp->brdnr; portp->stats.panel = portp->panelnr; portp->stats.port = portp->portnr; return copy_to_user(cp, &portp->stats, sizeof(comstats_t)) ? -EFAULT : 0; } /*****************************************************************************/ /* * Return the entire driver ports structure to a user app. */ static int stl_getportstruct(struct stlport __user *arg) { struct stlport *portp; if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport))) return -EFAULT; portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr, stl_dummyport.portnr); if (!portp) return -ENODEV; return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0; } /*****************************************************************************/ /* * Return the entire driver board structure to a user app. */ static int stl_getbrdstruct(struct stlbrd __user *arg) { struct stlbrd *brdp; if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd))) return -EFAULT; if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS)) return -ENODEV; brdp = stl_brds[stl_dummybrd.brdnr]; if (!brdp) return -ENODEV; return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0; } /*****************************************************************************/ /* * The "staliomem" device is also required to do some special operations * on the board and/or ports. In this driver it is mostly used for stats * collection. */ static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg) { int brdnr, rc; void __user *argp = (void __user *)arg; pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg); brdnr = iminor(ip); if (brdnr >= STL_MAXBRDS) return -ENODEV; rc = 0; switch (cmd) { case COM_GETPORTSTATS: rc = stl_getportstats(NULL, argp); break; case COM_CLRPORTSTATS: rc = stl_clrportstats(NULL, argp); break; case COM_GETBRDSTATS: rc = stl_getbrdstats(argp); break; case COM_READPORT: rc = stl_getportstruct(argp); break; case COM_READBOARD: rc = stl_getbrdstruct(argp); break; default: rc = -ENOIOCTLCMD; break; } return rc; } static const struct tty_operations stl_ops = { .open = stl_open, .close = stl_close, .write = stl_write, .put_char = stl_putchar, .flush_chars = stl_flushchars, .write_room = stl_writeroom, .chars_in_buffer = stl_charsinbuffer, .ioctl = stl_ioctl, .set_termios = stl_settermios, .throttle = stl_throttle, .unthrottle = stl_unthrottle, .stop = stl_stop, .start = stl_start, .hangup = stl_hangup, .flush_buffer = stl_flushbuffer, .break_ctl = stl_breakctl, .wait_until_sent = stl_waituntilsent, .send_xchar = stl_sendxchar, .read_proc = stl_readproc, .tiocmget = stl_tiocmget, .tiocmset = stl_tiocmset, }; /*****************************************************************************/ /* CD1400 HARDWARE FUNCTIONS */ /*****************************************************************************/ /* * These functions get/set/update the registers of the cd1400 UARTs. * Access to the cd1400 registers is via an address/data io port pair. * (Maybe should make this inline...) */ static int stl_cd1400getreg(struct stlport *portp, int regnr) { outb((regnr + portp->uartaddr), portp->ioaddr); return inb(portp->ioaddr + EREG_DATA); } static void stl_cd1400setreg(struct stlport *portp, int regnr, int value) { outb(regnr + portp->uartaddr, portp->ioaddr); outb(value, portp->ioaddr + EREG_DATA); } static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value) { outb(regnr + portp->uartaddr, portp->ioaddr); if (inb(portp->ioaddr + EREG_DATA) != value) { outb(value, portp->ioaddr + EREG_DATA); return 1; } return 0; } /*****************************************************************************/ /* * Inbitialize the UARTs in a panel. We don't care what sort of board * these ports are on - since the port io registers are almost * identical when dealing with ports. */ static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp) { unsigned int gfrcr; int chipmask, i, j; int nrchips, uartaddr, ioaddr; unsigned long flags; pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(panelp->brdnr, panelp->pagenr); /* * Check that each chip is present and started up OK. */ chipmask = 0; nrchips = panelp->nrports / CD1400_PORTS; for (i = 0; i < nrchips; i++) { if (brdp->brdtype == BRD_ECHPCI) { outb((panelp->pagenr + (i >> 1)), brdp->ioctrl); ioaddr = panelp->iobase; } else ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1)); uartaddr = (i & 0x01) ? 0x080 : 0; outb((GFRCR + uartaddr), ioaddr); outb(0, (ioaddr + EREG_DATA)); outb((CCR + uartaddr), ioaddr); outb(CCR_RESETFULL, (ioaddr + EREG_DATA)); outb(CCR_RESETFULL, (ioaddr + EREG_DATA)); outb((GFRCR + uartaddr), ioaddr); for (j = 0; j < CCR_MAXWAIT; j++) if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0) break; if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) { printk("STALLION: cd1400 not responding, " "brd=%d panel=%d chip=%d\n", panelp->brdnr, panelp->panelnr, i); continue; } chipmask |= (0x1 << i); outb((PPR + uartaddr), ioaddr); outb(PPR_SCALAR, (ioaddr + EREG_DATA)); } BRDDISABLE(panelp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); return chipmask; } /*****************************************************************************/ /* * Initialize hardware specific port registers. */ static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp) { unsigned long flags; pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp, panelp, portp); if ((brdp == NULL) || (panelp == NULL) || (portp == NULL)) return; spin_lock_irqsave(&brd_lock, flags); portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) || (portp->portnr < 8)) ? 0 : EREG_BANKSIZE); portp->uartaddr = (portp->portnr & 0x04) << 5; portp->pagenr = panelp->pagenr + (portp->portnr >> 3); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); stl_cd1400setreg(portp, LIVR, (portp->portnr << 3)); portp->hwid = stl_cd1400getreg(portp, GFRCR); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Wait for the command register to be ready. We will poll this, * since it won't usually take too long to be ready. */ static void stl_cd1400ccrwait(struct stlport *portp) { int i; for (i = 0; i < CCR_MAXWAIT; i++) if (stl_cd1400getreg(portp, CCR) == 0) return; printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n", portp->portnr, portp->panelnr, portp->brdnr); } /*****************************************************************************/ /* * Set up the cd1400 registers for a port based on the termios port * settings. */ static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp) { struct stlbrd *brdp; unsigned long flags; unsigned int clkdiv, baudrate; unsigned char cor1, cor2, cor3; unsigned char cor4, cor5, ccr; unsigned char srer, sreron, sreroff; unsigned char mcor1, mcor2, rtpr; unsigned char clk, div; cor1 = 0; cor2 = 0; cor3 = 0; cor4 = 0; cor5 = 0; ccr = 0; rtpr = 0; clk = 0; div = 0; mcor1 = 0; mcor2 = 0; sreron = 0; sreroff = 0; brdp = stl_brds[portp->brdnr]; if (brdp == NULL) return; /* * Set up the RX char ignore mask with those RX error types we * can ignore. We can get the cd1400 to help us out a little here, * it will ignore parity errors and breaks for us. */ portp->rxignoremsk = 0; if (tiosp->c_iflag & IGNPAR) { portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN); cor1 |= COR1_PARIGNORE; } if (tiosp->c_iflag & IGNBRK) { portp->rxignoremsk |= ST_BREAK; cor4 |= COR4_IGNBRK; } portp->rxmarkmsk = ST_OVERRUN; if (tiosp->c_iflag & (INPCK | PARMRK)) portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING); if (tiosp->c_iflag & BRKINT) portp->rxmarkmsk |= ST_BREAK; /* * Go through the char size, parity and stop bits and set all the * option register appropriately. */ switch (tiosp->c_cflag & CSIZE) { case CS5: cor1 |= COR1_CHL5; break; case CS6: cor1 |= COR1_CHL6; break; case CS7: cor1 |= COR1_CHL7; break; default: cor1 |= COR1_CHL8; break; } if (tiosp->c_cflag & CSTOPB) cor1 |= COR1_STOP2; else cor1 |= COR1_STOP1; if (tiosp->c_cflag & PARENB) { if (tiosp->c_cflag & PARODD) cor1 |= (COR1_PARENB | COR1_PARODD); else cor1 |= (COR1_PARENB | COR1_PAREVEN); } else { cor1 |= COR1_PARNONE; } /* * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing * space for hardware flow control and the like. This should be set to * VMIN. Also here we will set the RX data timeout to 10ms - this should * really be based on VTIME. */ cor3 |= FIFO_RXTHRESHOLD; rtpr = 2; /* * Calculate the baud rate timers. For now we will just assume that * the input and output baud are the same. Could have used a baud * table here, but this way we can generate virtually any baud rate * we like! */ baudrate = tiosp->c_cflag & CBAUD; if (baudrate & CBAUDEX) { baudrate &= ~CBAUDEX; if ((baudrate < 1) || (baudrate > 4)) tiosp->c_cflag &= ~CBAUDEX; else baudrate += 15; } baudrate = stl_baudrates[baudrate]; if ((tiosp->c_cflag & CBAUD) == B38400) { if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) baudrate = 57600; else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) baudrate = 115200; else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI) baudrate = 230400; else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP) baudrate = 460800; else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST) baudrate = (portp->baud_base / portp->custom_divisor); } if (baudrate > STL_CD1400MAXBAUD) baudrate = STL_CD1400MAXBAUD; if (baudrate > 0) { for (clk = 0; clk < CD1400_NUMCLKS; clk++) { clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate; if (clkdiv < 0x100) break; } div = (unsigned char) clkdiv; } /* * Check what form of modem signaling is required and set it up. */ if ((tiosp->c_cflag & CLOCAL) == 0) { mcor1 |= MCOR1_DCD; mcor2 |= MCOR2_DCD; sreron |= SRER_MODEM; portp->flags |= ASYNC_CHECK_CD; } else portp->flags &= ~ASYNC_CHECK_CD; /* * Setup cd1400 enhanced modes if we can. In particular we want to * handle as much of the flow control as possible automatically. As * well as saving a few CPU cycles it will also greatly improve flow * control reliability. */ if (tiosp->c_iflag & IXON) { cor2 |= COR2_TXIBE; cor3 |= COR3_SCD12; if (tiosp->c_iflag & IXANY) cor2 |= COR2_IXM; } if (tiosp->c_cflag & CRTSCTS) { cor2 |= COR2_CTSAE; mcor1 |= FIFO_RTSTHRESHOLD; } /* * All cd1400 register values calculated so go through and set * them all up. */ pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n", portp->portnr, portp->panelnr, portp->brdnr); pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n", cor1, cor2, cor3, cor4, cor5); pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n", mcor1, mcor2, rtpr, sreron, sreroff); pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div); pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n", tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP], tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3)); srer = stl_cd1400getreg(portp, SRER); stl_cd1400setreg(portp, SRER, 0); if (stl_cd1400updatereg(portp, COR1, cor1)) ccr = 1; if (stl_cd1400updatereg(portp, COR2, cor2)) ccr = 1; if (stl_cd1400updatereg(portp, COR3, cor3)) ccr = 1; if (ccr) { stl_cd1400ccrwait(portp); stl_cd1400setreg(portp, CCR, CCR_CORCHANGE); } stl_cd1400setreg(portp, COR4, cor4); stl_cd1400setreg(portp, COR5, cor5); stl_cd1400setreg(portp, MCOR1, mcor1); stl_cd1400setreg(portp, MCOR2, mcor2); if (baudrate > 0) { stl_cd1400setreg(portp, TCOR, clk); stl_cd1400setreg(portp, TBPR, div); stl_cd1400setreg(portp, RCOR, clk); stl_cd1400setreg(portp, RBPR, div); } stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]); stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]); stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]); stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]); stl_cd1400setreg(portp, RTPR, rtpr); mcor1 = stl_cd1400getreg(portp, MSVR1); if (mcor1 & MSVR1_DCD) portp->sigs |= TIOCM_CD; else portp->sigs &= ~TIOCM_CD; stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron)); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Set the state of the DTR and RTS signals. */ static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts) { unsigned char msvr1, msvr2; unsigned long flags; pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n", portp, dtr, rts); msvr1 = 0; msvr2 = 0; if (dtr > 0) msvr1 = MSVR1_DTR; if (rts > 0) msvr2 = MSVR2_RTS; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); if (rts >= 0) stl_cd1400setreg(portp, MSVR2, msvr2); if (dtr >= 0) stl_cd1400setreg(portp, MSVR1, msvr1); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Return the state of the signals. */ static int stl_cd1400getsignals(struct stlport *portp) { unsigned char msvr1, msvr2; unsigned long flags; int sigs; pr_debug("stl_cd1400getsignals(portp=%p)\n", portp); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); msvr1 = stl_cd1400getreg(portp, MSVR1); msvr2 = stl_cd1400getreg(portp, MSVR2); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); sigs = 0; sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0; sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0; sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0; sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0; #if 0 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0; sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0; #else sigs |= TIOCM_DSR; #endif return sigs; } /*****************************************************************************/ /* * Enable/Disable the Transmitter and/or Receiver. */ static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx) { unsigned char ccr; unsigned long flags; pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx); ccr = 0; if (tx == 0) ccr |= CCR_TXDISABLE; else if (tx > 0) ccr |= CCR_TXENABLE; if (rx == 0) ccr |= CCR_RXDISABLE; else if (rx > 0) ccr |= CCR_RXENABLE; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); stl_cd1400ccrwait(portp); stl_cd1400setreg(portp, CCR, ccr); stl_cd1400ccrwait(portp); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Start/stop the Transmitter and/or Receiver. */ static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx) { unsigned char sreron, sreroff; unsigned long flags; pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx); sreron = 0; sreroff = 0; if (tx == 0) sreroff |= (SRER_TXDATA | SRER_TXEMPTY); else if (tx == 1) sreron |= SRER_TXDATA; else if (tx >= 2) sreron |= SRER_TXEMPTY; if (rx == 0) sreroff |= SRER_RXDATA; else if (rx > 0) sreron |= SRER_RXDATA; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); stl_cd1400setreg(portp, SRER, ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron)); BRDDISABLE(portp->brdnr); if (tx > 0) set_bit(ASYI_TXBUSY, &portp->istate); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Disable all interrupts from this port. */ static void stl_cd1400disableintrs(struct stlport *portp) { unsigned long flags; pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); stl_cd1400setreg(portp, SRER, 0); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ static void stl_cd1400sendbreak(struct stlport *portp, int len) { unsigned long flags; pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); stl_cd1400setreg(portp, SRER, ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) | SRER_TXEMPTY)); BRDDISABLE(portp->brdnr); portp->brklen = len; if (len == 1) portp->stats.txbreaks++; spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Take flow control actions... */ static void stl_cd1400flowctrl(struct stlport *portp, int state) { struct tty_struct *tty; unsigned long flags; pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state); if (portp == NULL) return; tty = portp->tty; if (tty == NULL) return; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); if (state) { if (tty->termios->c_iflag & IXOFF) { stl_cd1400ccrwait(portp); stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1); portp->stats.rxxon++; stl_cd1400ccrwait(portp); } /* * Question: should we return RTS to what it was before? It may * have been set by an ioctl... Suppose not, since if you have * hardware flow control set then it is pretty silly to go and * set the RTS line by hand. */ if (tty->termios->c_cflag & CRTSCTS) { stl_cd1400setreg(portp, MCOR1, (stl_cd1400getreg(portp, MCOR1) | FIFO_RTSTHRESHOLD)); stl_cd1400setreg(portp, MSVR2, MSVR2_RTS); portp->stats.rxrtson++; } } else { if (tty->termios->c_iflag & IXOFF) { stl_cd1400ccrwait(portp); stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2); portp->stats.rxxoff++; stl_cd1400ccrwait(portp); } if (tty->termios->c_cflag & CRTSCTS) { stl_cd1400setreg(portp, MCOR1, (stl_cd1400getreg(portp, MCOR1) & 0xf0)); stl_cd1400setreg(portp, MSVR2, 0); portp->stats.rxrtsoff++; } } BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Send a flow control character... */ static void stl_cd1400sendflow(struct stlport *portp, int state) { struct tty_struct *tty; unsigned long flags; pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state); if (portp == NULL) return; tty = portp->tty; if (tty == NULL) return; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); if (state) { stl_cd1400ccrwait(portp); stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1); portp->stats.rxxon++; stl_cd1400ccrwait(portp); } else { stl_cd1400ccrwait(portp); stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2); portp->stats.rxxoff++; stl_cd1400ccrwait(portp); } BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ static void stl_cd1400flush(struct stlport *portp) { unsigned long flags; pr_debug("stl_cd1400flush(portp=%p)\n", portp); if (portp == NULL) return; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03)); stl_cd1400ccrwait(portp); stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO); stl_cd1400ccrwait(portp); portp->tx.tail = portp->tx.head; BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Return the current state of data flow on this port. This is only * really interresting when determining if data has fully completed * transmission or not... This is easy for the cd1400, it accurately * maintains the busy port flag. */ static int stl_cd1400datastate(struct stlport *portp) { pr_debug("stl_cd1400datastate(portp=%p)\n", portp); if (portp == NULL) return 0; return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0; } /*****************************************************************************/ /* * Interrupt service routine for cd1400 EasyIO boards. */ static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase) { unsigned char svrtype; pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase); spin_lock(&brd_lock); outb(SVRR, iobase); svrtype = inb(iobase + EREG_DATA); if (panelp->nrports > 4) { outb((SVRR + 0x80), iobase); svrtype |= inb(iobase + EREG_DATA); } if (svrtype & SVRR_RX) stl_cd1400rxisr(panelp, iobase); else if (svrtype & SVRR_TX) stl_cd1400txisr(panelp, iobase); else if (svrtype & SVRR_MDM) stl_cd1400mdmisr(panelp, iobase); spin_unlock(&brd_lock); } /*****************************************************************************/ /* * Interrupt service routine for cd1400 panels. */ static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase) { unsigned char svrtype; pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase); outb(SVRR, iobase); svrtype = inb(iobase + EREG_DATA); outb((SVRR + 0x80), iobase); svrtype |= inb(iobase + EREG_DATA); if (svrtype & SVRR_RX) stl_cd1400rxisr(panelp, iobase); else if (svrtype & SVRR_TX) stl_cd1400txisr(panelp, iobase); else if (svrtype & SVRR_MDM) stl_cd1400mdmisr(panelp, iobase); } /*****************************************************************************/ /* * Unfortunately we need to handle breaks in the TX data stream, since * this is the only way to generate them on the cd1400. */ static int stl_cd1400breakisr(struct stlport *portp, int ioaddr) { if (portp->brklen == 1) { outb((COR2 + portp->uartaddr), ioaddr); outb((inb(ioaddr + EREG_DATA) | COR2_ETC), (ioaddr + EREG_DATA)); outb((TDR + portp->uartaddr), ioaddr); outb(ETC_CMD, (ioaddr + EREG_DATA)); outb(ETC_STARTBREAK, (ioaddr + EREG_DATA)); outb((SRER + portp->uartaddr), ioaddr); outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)), (ioaddr + EREG_DATA)); return 1; } else if (portp->brklen > 1) { outb((TDR + portp->uartaddr), ioaddr); outb(ETC_CMD, (ioaddr + EREG_DATA)); outb(ETC_STOPBREAK, (ioaddr + EREG_DATA)); portp->brklen = -1; return 1; } else { outb((COR2 + portp->uartaddr), ioaddr); outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC), (ioaddr + EREG_DATA)); portp->brklen = 0; } return 0; } /*****************************************************************************/ /* * Transmit interrupt handler. This has gotta be fast! Handling TX * chars is pretty simple, stuff as many as possible from the TX buffer * into the cd1400 FIFO. Must also handle TX breaks here, since they * are embedded as commands in the data stream. Oh no, had to use a goto! * This could be optimized more, will do when I get time... * In practice it is possible that interrupts are enabled but that the * port has been hung up. Need to handle not having any TX buffer here, * this is done by using the side effect that head and tail will also * be NULL if the buffer has been freed. */ static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr) { struct stlport *portp; int len, stlen; char *head, *tail; unsigned char ioack, srer; pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr); ioack = inb(ioaddr + EREG_TXACK); if (((ioack & panelp->ackmask) != 0) || ((ioack & ACK_TYPMASK) != ACK_TYPTX)) { printk("STALLION: bad TX interrupt ack value=%x\n", ioack); return; } portp = panelp->ports[(ioack >> 3)]; /* * Unfortunately we need to handle breaks in the data stream, since * this is the only way to generate them on the cd1400. Do it now if * a break is to be sent. */ if (portp->brklen != 0) if (stl_cd1400breakisr(portp, ioaddr)) goto stl_txalldone; head = portp->tx.head; tail = portp->tx.tail; len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head)); if ((len == 0) || ((len < STL_TXBUFLOW) && (test_bit(ASYI_TXLOW, &portp->istate) == 0))) { set_bit(ASYI_TXLOW, &portp->istate); schedule_work(&portp->tqueue); } if (len == 0) { outb((SRER + portp->uartaddr), ioaddr); srer = inb(ioaddr + EREG_DATA); if (srer & SRER_TXDATA) { srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY; } else { srer &= ~(SRER_TXDATA | SRER_TXEMPTY); clear_bit(ASYI_TXBUSY, &portp->istate); } outb(srer, (ioaddr + EREG_DATA)); } else { len = min(len, CD1400_TXFIFOSIZE); portp->stats.txtotal += len; stlen = min(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail)); outb((TDR + portp->uartaddr), ioaddr); outsb((ioaddr + EREG_DATA), tail, stlen); len -= stlen; tail += stlen; if (tail >= (portp->tx.buf + STL_TXBUFSIZE)) tail = portp->tx.buf; if (len > 0) { outsb((ioaddr + EREG_DATA), tail, len); tail += len; } portp->tx.tail = tail; } stl_txalldone: outb((EOSRR + portp->uartaddr), ioaddr); outb(0, (ioaddr + EREG_DATA)); } /*****************************************************************************/ /* * Receive character interrupt handler. Determine if we have good chars * or bad chars and then process appropriately. Good chars are easy * just shove the lot into the RX buffer and set all status byte to 0. * If a bad RX char then process as required. This routine needs to be * fast! In practice it is possible that we get an interrupt on a port * that is closed. This can happen on hangups - since they completely * shutdown a port not in user context. Need to handle this case. */ static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr) { struct stlport *portp; struct tty_struct *tty; unsigned int ioack, len, buflen; unsigned char status; char ch; pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr); ioack = inb(ioaddr + EREG_RXACK); if ((ioack & panelp->ackmask) != 0) { printk("STALLION: bad RX interrupt ack value=%x\n", ioack); return; } portp = panelp->ports[(ioack >> 3)]; tty = portp->tty; if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) { outb((RDCR + portp->uartaddr), ioaddr); len = inb(ioaddr + EREG_DATA); if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) { len = min(len, sizeof(stl_unwanted)); outb((RDSR + portp->uartaddr), ioaddr); insb((ioaddr + EREG_DATA), &stl_unwanted[0], len); portp->stats.rxlost += len; portp->stats.rxtotal += len; } else { len = min(len, buflen); if (len > 0) { unsigned char *ptr; outb((RDSR + portp->uartaddr), ioaddr); tty_prepare_flip_string(tty, &ptr, len); insb((ioaddr + EREG_DATA), ptr, len); tty_schedule_flip(tty); portp->stats.rxtotal += len; } } } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) { outb((RDSR + portp->uartaddr), ioaddr); status = inb(ioaddr + EREG_DATA); ch = inb(ioaddr + EREG_DATA); if (status & ST_PARITY) portp->stats.rxparity++; if (status & ST_FRAMING) portp->stats.rxframing++; if (status & ST_OVERRUN) portp->stats.rxoverrun++; if (status & ST_BREAK) portp->stats.rxbreaks++; if (status & ST_SCHARMASK) { if ((status & ST_SCHARMASK) == ST_SCHAR1) portp->stats.txxon++; if ((status & ST_SCHARMASK) == ST_SCHAR2) portp->stats.txxoff++; goto stl_rxalldone; } if (tty != NULL && (portp->rxignoremsk & status) == 0) { if (portp->rxmarkmsk & status) { if (status & ST_BREAK) { status = TTY_BREAK; if (portp->flags & ASYNC_SAK) { do_SAK(tty); BRDENABLE(portp->brdnr, portp->pagenr); } } else if (status & ST_PARITY) status = TTY_PARITY; else if (status & ST_FRAMING) status = TTY_FRAME; else if(status & ST_OVERRUN) status = TTY_OVERRUN; else status = 0; } else status = 0; tty_insert_flip_char(tty, ch, status); tty_schedule_flip(tty); } } else { printk("STALLION: bad RX interrupt ack value=%x\n", ioack); return; } stl_rxalldone: outb((EOSRR + portp->uartaddr), ioaddr); outb(0, (ioaddr + EREG_DATA)); } /*****************************************************************************/ /* * Modem interrupt handler. The is called when the modem signal line * (DCD) has changed state. Leave most of the work to the off-level * processing routine. */ static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr) { struct stlport *portp; unsigned int ioack; unsigned char misr; pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp); ioack = inb(ioaddr + EREG_MDACK); if (((ioack & panelp->ackmask) != 0) || ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) { printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack); return; } portp = panelp->ports[(ioack >> 3)]; outb((MISR + portp->uartaddr), ioaddr); misr = inb(ioaddr + EREG_DATA); if (misr & MISR_DCD) { set_bit(ASYI_DCDCHANGE, &portp->istate); schedule_work(&portp->tqueue); portp->stats.modem++; } outb((EOSRR + portp->uartaddr), ioaddr); outb(0, (ioaddr + EREG_DATA)); } /*****************************************************************************/ /* SC26198 HARDWARE FUNCTIONS */ /*****************************************************************************/ /* * These functions get/set/update the registers of the sc26198 UARTs. * Access to the sc26198 registers is via an address/data io port pair. * (Maybe should make this inline...) */ static int stl_sc26198getreg(struct stlport *portp, int regnr) { outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR)); return inb(portp->ioaddr + XP_DATA); } static void stl_sc26198setreg(struct stlport *portp, int regnr, int value) { outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR)); outb(value, (portp->ioaddr + XP_DATA)); } static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value) { outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR)); if (inb(portp->ioaddr + XP_DATA) != value) { outb(value, (portp->ioaddr + XP_DATA)); return 1; } return 0; } /*****************************************************************************/ /* * Functions to get and set the sc26198 global registers. */ static int stl_sc26198getglobreg(struct stlport *portp, int regnr) { outb(regnr, (portp->ioaddr + XP_ADDR)); return inb(portp->ioaddr + XP_DATA); } #if 0 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value) { outb(regnr, (portp->ioaddr + XP_ADDR)); outb(value, (portp->ioaddr + XP_DATA)); } #endif /*****************************************************************************/ /* * Inbitialize the UARTs in a panel. We don't care what sort of board * these ports are on - since the port io registers are almost * identical when dealing with ports. */ static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp) { int chipmask, i; int nrchips, ioaddr; pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp); BRDENABLE(panelp->brdnr, panelp->pagenr); /* * Check that each chip is present and started up OK. */ chipmask = 0; nrchips = (panelp->nrports + 4) / SC26198_PORTS; if (brdp->brdtype == BRD_ECHPCI) outb(panelp->pagenr, brdp->ioctrl); for (i = 0; i < nrchips; i++) { ioaddr = panelp->iobase + (i * 4); outb(SCCR, (ioaddr + XP_ADDR)); outb(CR_RESETALL, (ioaddr + XP_DATA)); outb(TSTR, (ioaddr + XP_ADDR)); if (inb(ioaddr + XP_DATA) != 0) { printk("STALLION: sc26198 not responding, " "brd=%d panel=%d chip=%d\n", panelp->brdnr, panelp->panelnr, i); continue; } chipmask |= (0x1 << i); outb(GCCR, (ioaddr + XP_ADDR)); outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA)); outb(WDTRCR, (ioaddr + XP_ADDR)); outb(0xff, (ioaddr + XP_DATA)); } BRDDISABLE(panelp->brdnr); return chipmask; } /*****************************************************************************/ /* * Initialize hardware specific port registers. */ static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp) { pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp, panelp, portp); if ((brdp == NULL) || (panelp == NULL) || (portp == NULL)) return; portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4); portp->uartaddr = (portp->portnr & 0x07) << 4; portp->pagenr = panelp->pagenr; portp->hwid = 0x1; BRDENABLE(portp->brdnr, portp->pagenr); stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS); BRDDISABLE(portp->brdnr); } /*****************************************************************************/ /* * Set up the sc26198 registers for a port based on the termios port * settings. */ static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp) { struct stlbrd *brdp; unsigned long flags; unsigned int baudrate; unsigned char mr0, mr1, mr2, clk; unsigned char imron, imroff, iopr, ipr; mr0 = 0; mr1 = 0; mr2 = 0; clk = 0; iopr = 0; imron = 0; imroff = 0; brdp = stl_brds[portp->brdnr]; if (brdp == NULL) return; /* * Set up the RX char ignore mask with those RX error types we * can ignore. */ portp->rxignoremsk = 0; if (tiosp->c_iflag & IGNPAR) portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING | SR_RXOVERRUN); if (tiosp->c_iflag & IGNBRK) portp->rxignoremsk |= SR_RXBREAK; portp->rxmarkmsk = SR_RXOVERRUN; if (tiosp->c_iflag & (INPCK | PARMRK)) portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING); if (tiosp->c_iflag & BRKINT) portp->rxmarkmsk |= SR_RXBREAK; /* * Go through the char size, parity and stop bits and set all the * option register appropriately. */ switch (tiosp->c_cflag & CSIZE) { case CS5: mr1 |= MR1_CS5; break; case CS6: mr1 |= MR1_CS6; break; case CS7: mr1 |= MR1_CS7; break; default: mr1 |= MR1_CS8; break; } if (tiosp->c_cflag & CSTOPB) mr2 |= MR2_STOP2; else mr2 |= MR2_STOP1; if (tiosp->c_cflag & PARENB) { if (tiosp->c_cflag & PARODD) mr1 |= (MR1_PARENB | MR1_PARODD); else mr1 |= (MR1_PARENB | MR1_PAREVEN); } else mr1 |= MR1_PARNONE; mr1 |= MR1_ERRBLOCK; /* * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing * space for hardware flow control and the like. This should be set to * VMIN. */ mr2 |= MR2_RXFIFOHALF; /* * Calculate the baud rate timers. For now we will just assume that * the input and output baud are the same. The sc26198 has a fixed * baud rate table, so only discrete baud rates possible. */ baudrate = tiosp->c_cflag & CBAUD; if (baudrate & CBAUDEX) { baudrate &= ~CBAUDEX; if ((baudrate < 1) || (baudrate > 4)) tiosp->c_cflag &= ~CBAUDEX; else baudrate += 15; } baudrate = stl_baudrates[baudrate]; if ((tiosp->c_cflag & CBAUD) == B38400) { if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) baudrate = 57600; else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) baudrate = 115200; else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI) baudrate = 230400; else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP) baudrate = 460800; else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST) baudrate = (portp->baud_base / portp->custom_divisor); } if (baudrate > STL_SC26198MAXBAUD) baudrate = STL_SC26198MAXBAUD; if (baudrate > 0) for (clk = 0; clk < SC26198_NRBAUDS; clk++) if (baudrate <= sc26198_baudtable[clk]) break; /* * Check what form of modem signaling is required and set it up. */ if (tiosp->c_cflag & CLOCAL) { portp->flags &= ~ASYNC_CHECK_CD; } else { iopr |= IOPR_DCDCOS; imron |= IR_IOPORT; portp->flags |= ASYNC_CHECK_CD; } /* * Setup sc26198 enhanced modes if we can. In particular we want to * handle as much of the flow control as possible automatically. As * well as saving a few CPU cycles it will also greatly improve flow * control reliability. */ if (tiosp->c_iflag & IXON) { mr0 |= MR0_SWFTX | MR0_SWFT; imron |= IR_XONXOFF; } else imroff |= IR_XONXOFF; if (tiosp->c_iflag & IXOFF) mr0 |= MR0_SWFRX; if (tiosp->c_cflag & CRTSCTS) { mr2 |= MR2_AUTOCTS; mr1 |= MR1_AUTORTS; } /* * All sc26198 register values calculated so go through and set * them all up. */ pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n", portp->portnr, portp->panelnr, portp->brdnr); pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk); pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff); pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n", tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP], tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_sc26198setreg(portp, IMR, 0); stl_sc26198updatereg(portp, MR0, mr0); stl_sc26198updatereg(portp, MR1, mr1); stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK); stl_sc26198updatereg(portp, MR2, mr2); stl_sc26198updatereg(portp, IOPIOR, ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr)); if (baudrate > 0) { stl_sc26198setreg(portp, TXCSR, clk); stl_sc26198setreg(portp, RXCSR, clk); } stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]); stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]); ipr = stl_sc26198getreg(portp, IPR); if (ipr & IPR_DCD) portp->sigs &= ~TIOCM_CD; else portp->sigs |= TIOCM_CD; portp->imr = (portp->imr & ~imroff) | imron; stl_sc26198setreg(portp, IMR, portp->imr); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Set the state of the DTR and RTS signals. */ static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts) { unsigned char iopioron, iopioroff; unsigned long flags; pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp, dtr, rts); iopioron = 0; iopioroff = 0; if (dtr == 0) iopioroff |= IPR_DTR; else if (dtr > 0) iopioron |= IPR_DTR; if (rts == 0) iopioroff |= IPR_RTS; else if (rts > 0) iopioron |= IPR_RTS; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_sc26198setreg(portp, IOPIOR, ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron)); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Return the state of the signals. */ static int stl_sc26198getsignals(struct stlport *portp) { unsigned char ipr; unsigned long flags; int sigs; pr_debug("stl_sc26198getsignals(portp=%p)\n", portp); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); ipr = stl_sc26198getreg(portp, IPR); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); sigs = 0; sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD; sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS; sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR; sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS; sigs |= TIOCM_DSR; return sigs; } /*****************************************************************************/ /* * Enable/Disable the Transmitter and/or Receiver. */ static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx) { unsigned char ccr; unsigned long flags; pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx); ccr = portp->crenable; if (tx == 0) ccr &= ~CR_TXENABLE; else if (tx > 0) ccr |= CR_TXENABLE; if (rx == 0) ccr &= ~CR_RXENABLE; else if (rx > 0) ccr |= CR_RXENABLE; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_sc26198setreg(portp, SCCR, ccr); BRDDISABLE(portp->brdnr); portp->crenable = ccr; spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Start/stop the Transmitter and/or Receiver. */ static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx) { unsigned char imr; unsigned long flags; pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx); imr = portp->imr; if (tx == 0) imr &= ~IR_TXRDY; else if (tx == 1) imr |= IR_TXRDY; if (rx == 0) imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG); else if (rx > 0) imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_sc26198setreg(portp, IMR, imr); BRDDISABLE(portp->brdnr); portp->imr = imr; if (tx > 0) set_bit(ASYI_TXBUSY, &portp->istate); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Disable all interrupts from this port. */ static void stl_sc26198disableintrs(struct stlport *portp) { unsigned long flags; pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); portp->imr = 0; stl_sc26198setreg(portp, IMR, 0); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ static void stl_sc26198sendbreak(struct stlport *portp, int len) { unsigned long flags; pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len); spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); if (len == 1) { stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK); portp->stats.txbreaks++; } else stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Take flow control actions... */ static void stl_sc26198flowctrl(struct stlport *portp, int state) { struct tty_struct *tty; unsigned long flags; unsigned char mr0; pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state); if (portp == NULL) return; tty = portp->tty; if (tty == NULL) return; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); if (state) { if (tty->termios->c_iflag & IXOFF) { mr0 = stl_sc26198getreg(portp, MR0); stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX)); stl_sc26198setreg(portp, SCCR, CR_TXSENDXON); mr0 |= MR0_SWFRX; portp->stats.rxxon++; stl_sc26198wait(portp); stl_sc26198setreg(portp, MR0, mr0); } /* * Question: should we return RTS to what it was before? It may * have been set by an ioctl... Suppose not, since if you have * hardware flow control set then it is pretty silly to go and * set the RTS line by hand. */ if (tty->termios->c_cflag & CRTSCTS) { stl_sc26198setreg(portp, MR1, (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS)); stl_sc26198setreg(portp, IOPIOR, (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS)); portp->stats.rxrtson++; } } else { if (tty->termios->c_iflag & IXOFF) { mr0 = stl_sc26198getreg(portp, MR0); stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX)); stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF); mr0 &= ~MR0_SWFRX; portp->stats.rxxoff++; stl_sc26198wait(portp); stl_sc26198setreg(portp, MR0, mr0); } if (tty->termios->c_cflag & CRTSCTS) { stl_sc26198setreg(portp, MR1, (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS)); stl_sc26198setreg(portp, IOPIOR, (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS)); portp->stats.rxrtsoff++; } } BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Send a flow control character. */ static void stl_sc26198sendflow(struct stlport *portp, int state) { struct tty_struct *tty; unsigned long flags; unsigned char mr0; pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state); if (portp == NULL) return; tty = portp->tty; if (tty == NULL) return; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); if (state) { mr0 = stl_sc26198getreg(portp, MR0); stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX)); stl_sc26198setreg(portp, SCCR, CR_TXSENDXON); mr0 |= MR0_SWFRX; portp->stats.rxxon++; stl_sc26198wait(portp); stl_sc26198setreg(portp, MR0, mr0); } else { mr0 = stl_sc26198getreg(portp, MR0); stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX)); stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF); mr0 &= ~MR0_SWFRX; portp->stats.rxxoff++; stl_sc26198wait(portp); stl_sc26198setreg(portp, MR0, mr0); } BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ static void stl_sc26198flush(struct stlport *portp) { unsigned long flags; pr_debug("stl_sc26198flush(portp=%p)\n", portp); if (portp == NULL) return; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); stl_sc26198setreg(portp, SCCR, CR_TXRESET); stl_sc26198setreg(portp, SCCR, portp->crenable); BRDDISABLE(portp->brdnr); portp->tx.tail = portp->tx.head; spin_unlock_irqrestore(&brd_lock, flags); } /*****************************************************************************/ /* * Return the current state of data flow on this port. This is only * really interresting when determining if data has fully completed * transmission or not... The sc26198 interrupt scheme cannot * determine when all data has actually drained, so we need to * check the port statusy register to be sure. */ static int stl_sc26198datastate(struct stlport *portp) { unsigned long flags; unsigned char sr; pr_debug("stl_sc26198datastate(portp=%p)\n", portp); if (portp == NULL) return 0; if (test_bit(ASYI_TXBUSY, &portp->istate)) return 1; spin_lock_irqsave(&brd_lock, flags); BRDENABLE(portp->brdnr, portp->pagenr); sr = stl_sc26198getreg(portp, SR); BRDDISABLE(portp->brdnr); spin_unlock_irqrestore(&brd_lock, flags); return (sr & SR_TXEMPTY) ? 0 : 1; } /*****************************************************************************/ /* * Delay for a small amount of time, to give the sc26198 a chance * to process a command... */ static void stl_sc26198wait(struct stlport *portp) { int i; pr_debug("stl_sc26198wait(portp=%p)\n", portp); if (portp == NULL) return; for (i = 0; i < 20; i++) stl_sc26198getglobreg(portp, TSTR); } /*****************************************************************************/ /* * If we are TX flow controlled and in IXANY mode then we may * need to unflow control here. We gotta do this because of the * automatic flow control modes of the sc26198. */ static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty) { unsigned char mr0; mr0 = stl_sc26198getreg(portp, MR0); stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX)); stl_sc26198setreg(portp, SCCR, CR_HOSTXON); stl_sc26198wait(portp); stl_sc26198setreg(portp, MR0, mr0); clear_bit(ASYI_TXFLOWED, &portp->istate); } /*****************************************************************************/ /* * Interrupt service routine for sc26198 panels. */ static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase) { struct stlport *portp; unsigned int iack; spin_lock(&brd_lock); /* * Work around bug in sc26198 chip... Cannot have A6 address * line of UART high, else iack will be returned as 0. */ outb(0, (iobase + 1)); iack = inb(iobase + XP_IACK); portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)]; if (iack & IVR_RXDATA) stl_sc26198rxisr(portp, iack); else if (iack & IVR_TXDATA) stl_sc26198txisr(portp); else stl_sc26198otherisr(portp, iack); spin_unlock(&brd_lock); } /*****************************************************************************/ /* * Transmit interrupt handler. This has gotta be fast! Handling TX * chars is pretty simple, stuff as many as possible from the TX buffer * into the sc26198 FIFO. * In practice it is possible that interrupts are enabled but that the * port has been hung up. Need to handle not having any TX buffer here, * this is done by using the side effect that head and tail will also * be NULL if the buffer has been freed. */ static void stl_sc26198txisr(struct stlport *portp) { unsigned int ioaddr; unsigned char mr0; int len, stlen; char *head, *tail; pr_debug("stl_sc26198txisr(portp=%p)\n", portp); ioaddr = portp->ioaddr; head = portp->tx.head; tail = portp->tx.tail; len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head)); if ((len == 0) || ((len < STL_TXBUFLOW) && (test_bit(ASYI_TXLOW, &portp->istate) == 0))) { set_bit(ASYI_TXLOW, &portp->istate); schedule_work(&portp->tqueue); } if (len == 0) { outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR)); mr0 = inb(ioaddr + XP_DATA); if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) { portp->imr &= ~IR_TXRDY; outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR)); outb(portp->imr, (ioaddr + XP_DATA)); clear_bit(ASYI_TXBUSY, &portp->istate); } else { mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY); outb(mr0, (ioaddr + XP_DATA)); } } else { len = min(len, SC26198_TXFIFOSIZE); portp->stats.txtotal += len; stlen = min(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail)); outb(GTXFIFO, (ioaddr + XP_ADDR)); outsb((ioaddr + XP_DATA), tail, stlen); len -= stlen; tail += stlen; if (tail >= (portp->tx.buf + STL_TXBUFSIZE)) tail = portp->tx.buf; if (len > 0) { outsb((ioaddr + XP_DATA), tail, len); tail += len; } portp->tx.tail = tail; } } /*****************************************************************************/ /* * Receive character interrupt handler. Determine if we have good chars * or bad chars and then process appropriately. Good chars are easy * just shove the lot into the RX buffer and set all status byte to 0. * If a bad RX char then process as required. This routine needs to be * fast! In practice it is possible that we get an interrupt on a port * that is closed. This can happen on hangups - since they completely * shutdown a port not in user context. Need to handle this case. */ static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack) { struct tty_struct *tty; unsigned int len, buflen, ioaddr; pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack); tty = portp->tty; ioaddr = portp->ioaddr; outb(GIBCR, (ioaddr + XP_ADDR)); len = inb(ioaddr + XP_DATA) + 1; if ((iack & IVR_TYPEMASK) == IVR_RXDATA) { if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) { len = min(len, sizeof(stl_unwanted)); outb(GRXFIFO, (ioaddr + XP_ADDR)); insb((ioaddr + XP_DATA), &stl_unwanted[0], len); portp->stats.rxlost += len; portp->stats.rxtotal += len; } else { len = min(len, buflen); if (len > 0) { unsigned char *ptr; outb(GRXFIFO, (ioaddr + XP_ADDR)); tty_prepare_flip_string(tty, &ptr, len); insb((ioaddr + XP_DATA), ptr, len); tty_schedule_flip(tty); portp->stats.rxtotal += len; } } } else { stl_sc26198rxbadchars(portp); } /* * If we are TX flow controlled and in IXANY mode then we may need * to unflow control here. We gotta do this because of the automatic * flow control modes of the sc26198. */ if (test_bit(ASYI_TXFLOWED, &portp->istate)) { if ((tty != NULL) && (tty->termios != NULL) && (tty->termios->c_iflag & IXANY)) { stl_sc26198txunflow(portp, tty); } } } /*****************************************************************************/ /* * Process an RX bad character. */ static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch) { struct tty_struct *tty; unsigned int ioaddr; tty = portp->tty; ioaddr = portp->ioaddr; if (status & SR_RXPARITY) portp->stats.rxparity++; if (status & SR_RXFRAMING) portp->stats.rxframing++; if (status & SR_RXOVERRUN) portp->stats.rxoverrun++; if (status & SR_RXBREAK) portp->stats.rxbreaks++; if ((tty != NULL) && ((portp->rxignoremsk & status) == 0)) { if (portp->rxmarkmsk & status) { if (status & SR_RXBREAK) { status = TTY_BREAK; if (portp->flags & ASYNC_SAK) { do_SAK(tty); BRDENABLE(portp->brdnr, portp->pagenr); } } else if (status & SR_RXPARITY) status = TTY_PARITY; else if (status & SR_RXFRAMING) status = TTY_FRAME; else if(status & SR_RXOVERRUN) status = TTY_OVERRUN; else status = 0; } else status = 0; tty_insert_flip_char(tty, ch, status); tty_schedule_flip(tty); if (status == 0) portp->stats.rxtotal++; } } /*****************************************************************************/ /* * Process all characters in the RX FIFO of the UART. Check all char * status bytes as well, and process as required. We need to check * all bytes in the FIFO, in case some more enter the FIFO while we * are here. To get the exact character error type we need to switch * into CHAR error mode (that is why we need to make sure we empty * the FIFO). */ static void stl_sc26198rxbadchars(struct stlport *portp) { unsigned char status, mr1; char ch; /* * To get the precise error type for each character we must switch * back into CHAR error mode. */ mr1 = stl_sc26198getreg(portp, MR1); stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK)); while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) { stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR); ch = stl_sc26198getreg(portp, RXFIFO); stl_sc26198rxbadch(portp, status, ch); } /* * To get correct interrupt class we must switch back into BLOCK * error mode. */ stl_sc26198setreg(portp, MR1, mr1); } /*****************************************************************************/ /* * Other interrupt handler. This includes modem signals, flow * control actions, etc. Most stuff is left to off-level interrupt * processing time. */ static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack) { unsigned char cir, ipr, xisr; pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack); cir = stl_sc26198getglobreg(portp, CIR); switch (cir & CIR_SUBTYPEMASK) { case CIR_SUBCOS: ipr = stl_sc26198getreg(portp, IPR); if (ipr & IPR_DCDCHANGE) { set_bit(ASYI_DCDCHANGE, &portp->istate); schedule_work(&portp->tqueue); portp->stats.modem++; } break; case CIR_SUBXONXOFF: xisr = stl_sc26198getreg(portp, XISR); if (xisr & XISR_RXXONGOT) { set_bit(ASYI_TXFLOWED, &portp->istate); portp->stats.txxoff++; } if (xisr & XISR_RXXOFFGOT) { clear_bit(ASYI_TXFLOWED, &portp->istate); portp->stats.txxon++; } break; case CIR_SUBBREAK: stl_sc26198setreg(portp, SCCR, CR_BREAKRESET); stl_sc26198rxbadchars(portp); break; default: break; } } static void stl_free_isabrds(void) { struct stlbrd *brdp; unsigned int i; for (i = 0; i < stl_nrbrds; i++) { if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED)) continue; free_irq(brdp->irq, brdp); stl_cleanup_panels(brdp); release_region(brdp->ioaddr1, brdp->iosize1); if (brdp->iosize2 > 0) release_region(brdp->ioaddr2, brdp->iosize2); kfree(brdp); stl_brds[i] = NULL; } } /* * Loadable module initialization stuff. */ static int __init stallion_module_init(void) { struct stlbrd *brdp; struct stlconf conf; unsigned int i; int retval; printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion); spin_lock_init(&stallion_lock); spin_lock_init(&brd_lock); /* * Find any dynamically supported boards. That is via module load * line options. */ for (i = stl_nrbrds; i < stl_nargs; i++) { memset(&conf, 0, sizeof(conf)); if (stl_parsebrd(&conf, stl_brdsp[i]) == 0) continue; if ((brdp = stl_allocbrd()) == NULL) continue; brdp->brdnr = i; brdp->brdtype = conf.brdtype; brdp->ioaddr1 = conf.ioaddr1; brdp->ioaddr2 = conf.ioaddr2; brdp->irq = conf.irq; brdp->irqtype = conf.irqtype; if (stl_brdinit(brdp)) kfree(brdp); else { stl_brds[brdp->brdnr] = brdp; stl_nrbrds = i + 1; } } /* this has to be _after_ isa finding because of locking */ retval = pci_register_driver(&stl_pcidriver); if (retval && stl_nrbrds == 0) goto err; stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS); if (!stl_serial) { retval = -ENOMEM; goto err_pcidr; } /* * Set up a character driver for per board stuff. This is mainly used * to do stats ioctls on the ports. */ if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem)) printk("STALLION: failed to register serial board device\n"); stallion_class = class_create(THIS_MODULE, "staliomem"); if (IS_ERR(stallion_class)) { retval = PTR_ERR(stallion_class); goto err_reg; } for (i = 0; i < 4; i++) class_device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i), NULL, "staliomem%d", i); stl_serial->owner = THIS_MODULE; stl_serial->driver_name = stl_drvname; stl_serial->name = "ttyE"; stl_serial->major = STL_SERIALMAJOR; stl_serial->minor_start = 0; stl_serial->type = TTY_DRIVER_TYPE_SERIAL; stl_serial->subtype = SERIAL_TYPE_NORMAL; stl_serial->init_termios = stl_deftermios; stl_serial->flags = TTY_DRIVER_REAL_RAW; tty_set_operations(stl_serial, &stl_ops); retval = tty_register_driver(stl_serial); if (retval) { printk("STALLION: failed to register serial driver\n"); goto err_clsdev; } return 0; err_clsdev: for (i = 0; i < 4; i++) class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i)); class_destroy(stallion_class); err_reg: unregister_chrdev(STL_SIOMEMMAJOR, "staliomem"); put_tty_driver(stl_serial); err_pcidr: pci_unregister_driver(&stl_pcidriver); stl_free_isabrds(); err: return retval; } static void __exit stallion_module_exit(void) { int i; pr_debug("cleanup_module()\n"); printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle, stl_drvversion); /* * Free up all allocated resources used by the ports. This includes * memory and interrupts. As part of this process we will also do * a hangup on every open port - to try to flush out any processes * hanging onto ports. */ tty_unregister_driver(stl_serial); put_tty_driver(stl_serial); for (i = 0; i < 4; i++) class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i)); if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem"))) printk("STALLION: failed to un-register serial memory device, " "errno=%d\n", -i); class_destroy(stallion_class); pci_unregister_driver(&stl_pcidriver); stl_free_isabrds(); } module_init(stallion_module_init); module_exit(stallion_module_exit); MODULE_AUTHOR("Greg Ungerer"); MODULE_DESCRIPTION("Stallion Multiport Serial Driver"); MODULE_LICENSE("GPL");