/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include #include "radeon_reg.h" #include "radeon.h" #include "radeon_asic.h" #include "atom.h" /* * Clear GPU surface registers. */ void radeon_surface_init(struct radeon_device *rdev) { /* FIXME: check this out */ if (rdev->family < CHIP_R600) { int i; for (i = 0; i < 8; i++) { WREG32(RADEON_SURFACE0_INFO + i * (RADEON_SURFACE1_INFO - RADEON_SURFACE0_INFO), 0); } /* enable surfaces */ WREG32(RADEON_SURFACE_CNTL, 0); } } /* * GPU scratch registers helpers function. */ void radeon_scratch_init(struct radeon_device *rdev) { int i; /* FIXME: check this out */ if (rdev->family < CHIP_R300) { rdev->scratch.num_reg = 5; } else { rdev->scratch.num_reg = 7; } for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = RADEON_SCRATCH_REG0 + (i * 4); } } int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg) { int i; for (i = 0; i < rdev->scratch.num_reg; i++) { if (rdev->scratch.free[i]) { rdev->scratch.free[i] = false; *reg = rdev->scratch.reg[i]; return 0; } } return -EINVAL; } void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg) { int i; for (i = 0; i < rdev->scratch.num_reg; i++) { if (rdev->scratch.reg[i] == reg) { rdev->scratch.free[i] = true; return; } } } /* * MC common functions */ int radeon_mc_setup(struct radeon_device *rdev) { uint32_t tmp; /* Some chips have an "issue" with the memory controller, the * location must be aligned to the size. We just align it down, * too bad if we walk over the top of system memory, we don't * use DMA without a remapped anyway. * Affected chips are rv280, all r3xx, and all r4xx, but not IGP */ /* FGLRX seems to setup like this, VRAM a 0, then GART. */ /* * Note: from R6xx the address space is 40bits but here we only * use 32bits (still have to see a card which would exhaust 4G * address space). */ if (rdev->mc.vram_location != 0xFFFFFFFFUL) { /* vram location was already setup try to put gtt after * if it fits */ tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size; tmp = (tmp + rdev->mc.gtt_size - 1) & ~(rdev->mc.gtt_size - 1); if ((0xFFFFFFFFUL - tmp) >= rdev->mc.gtt_size) { rdev->mc.gtt_location = tmp; } else { if (rdev->mc.gtt_size >= rdev->mc.vram_location) { printk(KERN_ERR "[drm] GTT too big to fit " "before or after vram location.\n"); return -EINVAL; } rdev->mc.gtt_location = 0; } } else if (rdev->mc.gtt_location != 0xFFFFFFFFUL) { /* gtt location was already setup try to put vram before * if it fits */ if (rdev->mc.mc_vram_size < rdev->mc.gtt_location) { rdev->mc.vram_location = 0; } else { tmp = rdev->mc.gtt_location + rdev->mc.gtt_size; tmp += (rdev->mc.mc_vram_size - 1); tmp &= ~(rdev->mc.mc_vram_size - 1); if ((0xFFFFFFFFUL - tmp) >= rdev->mc.mc_vram_size) { rdev->mc.vram_location = tmp; } else { printk(KERN_ERR "[drm] vram too big to fit " "before or after GTT location.\n"); return -EINVAL; } } } else { rdev->mc.vram_location = 0; tmp = rdev->mc.mc_vram_size; tmp = (tmp + rdev->mc.gtt_size - 1) & ~(rdev->mc.gtt_size - 1); rdev->mc.gtt_location = tmp; } DRM_INFO("radeon: VRAM %uM\n", (unsigned)(rdev->mc.mc_vram_size >> 20)); DRM_INFO("radeon: VRAM from 0x%08X to 0x%08X\n", (unsigned)rdev->mc.vram_location, (unsigned)(rdev->mc.vram_location + rdev->mc.mc_vram_size - 1)); DRM_INFO("radeon: GTT %uM\n", (unsigned)(rdev->mc.gtt_size >> 20)); DRM_INFO("radeon: GTT from 0x%08X to 0x%08X\n", (unsigned)rdev->mc.gtt_location, (unsigned)(rdev->mc.gtt_location + rdev->mc.gtt_size - 1)); return 0; } /* * GPU helpers function. */ static bool radeon_card_posted(struct radeon_device *rdev) { uint32_t reg; /* first check CRTCs */ if (ASIC_IS_AVIVO(rdev)) { reg = RREG32(AVIVO_D1CRTC_CONTROL) | RREG32(AVIVO_D2CRTC_CONTROL); if (reg & AVIVO_CRTC_EN) { return true; } } else { reg = RREG32(RADEON_CRTC_GEN_CNTL) | RREG32(RADEON_CRTC2_GEN_CNTL); if (reg & RADEON_CRTC_EN) { return true; } } /* then check MEM_SIZE, in case the crtcs are off */ if (rdev->family >= CHIP_R600) reg = RREG32(R600_CONFIG_MEMSIZE); else reg = RREG32(RADEON_CONFIG_MEMSIZE); if (reg) return true; return false; } int radeon_dummy_page_init(struct radeon_device *rdev) { rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO); if (rdev->dummy_page.page == NULL) return -ENOMEM; rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (!rdev->dummy_page.addr) { __free_page(rdev->dummy_page.page); rdev->dummy_page.page = NULL; return -ENOMEM; } return 0; } void radeon_dummy_page_fini(struct radeon_device *rdev) { if (rdev->dummy_page.page == NULL) return; pci_unmap_page(rdev->pdev, rdev->dummy_page.addr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); __free_page(rdev->dummy_page.page); rdev->dummy_page.page = NULL; } /* * Registers accessors functions. */ uint32_t radeon_invalid_rreg(struct radeon_device *rdev, uint32_t reg) { DRM_ERROR("Invalid callback to read register 0x%04X\n", reg); BUG_ON(1); return 0; } void radeon_invalid_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) { DRM_ERROR("Invalid callback to write register 0x%04X with 0x%08X\n", reg, v); BUG_ON(1); } void radeon_register_accessor_init(struct radeon_device *rdev) { rdev->mc_rreg = &radeon_invalid_rreg; rdev->mc_wreg = &radeon_invalid_wreg; rdev->pll_rreg = &radeon_invalid_rreg; rdev->pll_wreg = &radeon_invalid_wreg; rdev->pciep_rreg = &radeon_invalid_rreg; rdev->pciep_wreg = &radeon_invalid_wreg; /* Don't change order as we are overridding accessor. */ if (rdev->family < CHIP_RV515) { rdev->pcie_reg_mask = 0xff; } else { rdev->pcie_reg_mask = 0x7ff; } /* FIXME: not sure here */ if (rdev->family <= CHIP_R580) { rdev->pll_rreg = &r100_pll_rreg; rdev->pll_wreg = &r100_pll_wreg; } if (rdev->family >= CHIP_RV515) { rdev->mc_rreg = &rv515_mc_rreg; rdev->mc_wreg = &rv515_mc_wreg; } if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480) { rdev->mc_rreg = &rs400_mc_rreg; rdev->mc_wreg = &rs400_mc_wreg; } if (rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { rdev->mc_rreg = &rs690_mc_rreg; rdev->mc_wreg = &rs690_mc_wreg; } if (rdev->family == CHIP_RS600) { rdev->mc_rreg = &rs600_mc_rreg; rdev->mc_wreg = &rs600_mc_wreg; } if (rdev->family >= CHIP_R600) { rdev->pciep_rreg = &r600_pciep_rreg; rdev->pciep_wreg = &r600_pciep_wreg; } } /* * ASIC */ int radeon_asic_init(struct radeon_device *rdev) { radeon_register_accessor_init(rdev); switch (rdev->family) { case CHIP_R100: case CHIP_RV100: case CHIP_RS100: case CHIP_RV200: case CHIP_RS200: case CHIP_R200: case CHIP_RV250: case CHIP_RS300: case CHIP_RV280: rdev->asic = &r100_asic; break; case CHIP_R300: case CHIP_R350: case CHIP_RV350: case CHIP_RV380: rdev->asic = &r300_asic; break; case CHIP_R420: case CHIP_R423: case CHIP_RV410: rdev->asic = &r420_asic; break; case CHIP_RS400: case CHIP_RS480: rdev->asic = &rs400_asic; break; case CHIP_RS600: rdev->asic = &rs600_asic; break; case CHIP_RS690: case CHIP_RS740: rdev->asic = &rs690_asic; break; case CHIP_RV515: rdev->asic = &rv515_asic; break; case CHIP_R520: case CHIP_RV530: case CHIP_RV560: case CHIP_RV570: case CHIP_R580: rdev->asic = &r520_asic; break; case CHIP_R600: case CHIP_RV610: case CHIP_RV630: case CHIP_RV620: case CHIP_RV635: case CHIP_RV670: case CHIP_RS780: case CHIP_RS880: rdev->asic = &r600_asic; break; case CHIP_RV770: case CHIP_RV730: case CHIP_RV710: case CHIP_RV740: rdev->asic = &rv770_asic; break; default: /* FIXME: not supported yet */ return -EINVAL; } return 0; } /* * Wrapper around modesetting bits. */ int radeon_clocks_init(struct radeon_device *rdev) { int r; radeon_get_clock_info(rdev->ddev); r = radeon_static_clocks_init(rdev->ddev); if (r) { return r; } DRM_INFO("Clocks initialized !\n"); return 0; } void radeon_clocks_fini(struct radeon_device *rdev) { } /* ATOM accessor methods */ static uint32_t cail_pll_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = rdev->pll_rreg(rdev, reg); return r; } static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; rdev->pll_wreg(rdev, reg, val); } static uint32_t cail_mc_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = rdev->mc_rreg(rdev, reg); return r; } static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; rdev->mc_wreg(rdev, reg, val); } static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; WREG32(reg*4, val); } static uint32_t cail_reg_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = RREG32(reg*4); return r; } static struct card_info atom_card_info = { .dev = NULL, .reg_read = cail_reg_read, .reg_write = cail_reg_write, .mc_read = cail_mc_read, .mc_write = cail_mc_write, .pll_read = cail_pll_read, .pll_write = cail_pll_write, }; int radeon_atombios_init(struct radeon_device *rdev) { atom_card_info.dev = rdev->ddev; rdev->mode_info.atom_context = atom_parse(&atom_card_info, rdev->bios); radeon_atom_initialize_bios_scratch_regs(rdev->ddev); return 0; } void radeon_atombios_fini(struct radeon_device *rdev) { kfree(rdev->mode_info.atom_context); } int radeon_combios_init(struct radeon_device *rdev) { radeon_combios_initialize_bios_scratch_regs(rdev->ddev); return 0; } void radeon_combios_fini(struct radeon_device *rdev) { } int radeon_modeset_init(struct radeon_device *rdev); void radeon_modeset_fini(struct radeon_device *rdev); /* * Radeon device. */ int radeon_device_init(struct radeon_device *rdev, struct drm_device *ddev, struct pci_dev *pdev, uint32_t flags) { int r, ret = 0; int dma_bits; DRM_INFO("radeon: Initializing kernel modesetting.\n"); rdev->shutdown = false; rdev->ddev = ddev; rdev->pdev = pdev; rdev->flags = flags; rdev->family = flags & RADEON_FAMILY_MASK; rdev->is_atom_bios = false; rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT; rdev->mc.gtt_size = radeon_gart_size * 1024 * 1024; rdev->gpu_lockup = false; /* mutex initialization are all done here so we * can recall function without having locking issues */ mutex_init(&rdev->cs_mutex); mutex_init(&rdev->ib_pool.mutex); mutex_init(&rdev->cp.mutex); rwlock_init(&rdev->fence_drv.lock); if (radeon_agpmode == -1) { rdev->flags &= ~RADEON_IS_AGP; if (rdev->family > CHIP_RV515 || rdev->family == CHIP_RV380 || rdev->family == CHIP_RV410 || rdev->family == CHIP_R423) { DRM_INFO("Forcing AGP to PCIE mode\n"); rdev->flags |= RADEON_IS_PCIE; } else { DRM_INFO("Forcing AGP to PCI mode\n"); rdev->flags |= RADEON_IS_PCI; } } /* Set asic functions */ r = radeon_asic_init(rdev); if (r) { return r; } /* set DMA mask + need_dma32 flags. * PCIE - can handle 40-bits. * IGP - can handle 40-bits (in theory) * AGP - generally dma32 is safest * PCI - only dma32 */ rdev->need_dma32 = false; if (rdev->flags & RADEON_IS_AGP) rdev->need_dma32 = true; if (rdev->flags & RADEON_IS_PCI) rdev->need_dma32 = true; dma_bits = rdev->need_dma32 ? 32 : 40; r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { printk(KERN_WARNING "radeon: No suitable DMA available.\n"); } /* Registers mapping */ /* TODO: block userspace mapping of io register */ rdev->rmmio_base = drm_get_resource_start(rdev->ddev, 2); rdev->rmmio_size = drm_get_resource_len(rdev->ddev, 2); rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size); if (rdev->rmmio == NULL) { return -ENOMEM; } DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base); DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size); rdev->new_init_path = false; r = radeon_init(rdev); if (r) { return r; } if (!rdev->new_init_path) { /* Setup errata flags */ radeon_errata(rdev); /* Initialize scratch registers */ radeon_scratch_init(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); /* TODO: disable VGA need to use VGA request */ /* BIOS*/ if (!radeon_get_bios(rdev)) { if (ASIC_IS_AVIVO(rdev)) return -EINVAL; } if (rdev->is_atom_bios) { r = radeon_atombios_init(rdev); if (r) { return r; } } else { r = radeon_combios_init(rdev); if (r) { return r; } } /* Reset gpu before posting otherwise ATOM will enter infinite loop */ if (radeon_gpu_reset(rdev)) { /* FIXME: what do we want to do here ? */ } /* check if cards are posted or not */ if (!radeon_card_posted(rdev) && rdev->bios) { DRM_INFO("GPU not posted. posting now...\n"); if (rdev->is_atom_bios) { atom_asic_init(rdev->mode_info.atom_context); } else { radeon_combios_asic_init(rdev->ddev); } } /* Initialize clocks */ r = radeon_clocks_init(rdev); if (r) { return r; } /* Get vram informations */ radeon_vram_info(rdev); /* Add an MTRR for the VRAM */ rdev->mc.vram_mtrr = mtrr_add(rdev->mc.aper_base, rdev->mc.aper_size, MTRR_TYPE_WRCOMB, 1); DRM_INFO("Detected VRAM RAM=%uM, BAR=%uM\n", (unsigned)(rdev->mc.mc_vram_size >> 20), (unsigned)(rdev->mc.aper_size >> 20)); DRM_INFO("RAM width %dbits %cDR\n", rdev->mc.vram_width, rdev->mc.vram_is_ddr ? 'D' : 'S'); /* Initialize memory controller (also test AGP) */ r = radeon_mc_init(rdev); if (r) { return r; } /* Fence driver */ r = radeon_fence_driver_init(rdev); if (r) { return r; } r = radeon_irq_kms_init(rdev); if (r) { return r; } /* Memory manager */ r = radeon_object_init(rdev); if (r) { return r; } /* Initialize GART (initialize after TTM so we can allocate * memory through TTM but finalize after TTM) */ r = radeon_gart_enable(rdev); if (!r) { r = radeon_gem_init(rdev); } /* 1M ring buffer */ if (!r) { r = radeon_cp_init(rdev, 1024 * 1024); } if (!r) { r = radeon_wb_init(rdev); if (r) { DRM_ERROR("radeon: failled initializing WB (%d).\n", r); return r; } } if (!r) { r = radeon_ib_pool_init(rdev); if (r) { DRM_ERROR("radeon: failled initializing IB pool (%d).\n", r); return r; } } if (!r) { r = radeon_ib_test(rdev); if (r) { DRM_ERROR("radeon: failled testing IB (%d).\n", r); return r; } } ret = r; } r = radeon_modeset_init(rdev); if (r) { return r; } if (!ret) { DRM_INFO("radeon: kernel modesetting successfully initialized.\n"); } if (radeon_testing) { radeon_test_moves(rdev); } if (radeon_benchmarking) { radeon_benchmark(rdev); } return ret; } void radeon_device_fini(struct radeon_device *rdev) { if (rdev == NULL || rdev->rmmio == NULL) { return; } DRM_INFO("radeon: finishing device.\n"); rdev->shutdown = true; /* Order matter so becarefull if you rearrange anythings */ radeon_modeset_fini(rdev); if (!rdev->new_init_path) { radeon_ib_pool_fini(rdev); radeon_cp_fini(rdev); radeon_wb_fini(rdev); radeon_gem_fini(rdev); radeon_mc_fini(rdev); #if __OS_HAS_AGP radeon_agp_fini(rdev); #endif radeon_irq_kms_fini(rdev); radeon_fence_driver_fini(rdev); radeon_clocks_fini(rdev); radeon_object_fini(rdev); if (rdev->is_atom_bios) { radeon_atombios_fini(rdev); } else { radeon_combios_fini(rdev); } kfree(rdev->bios); rdev->bios = NULL; } else { radeon_fini(rdev); } iounmap(rdev->rmmio); rdev->rmmio = NULL; } /* * Suspend & resume. */ int radeon_suspend_kms(struct drm_device *dev, pm_message_t state) { struct radeon_device *rdev = dev->dev_private; struct drm_crtc *crtc; if (dev == NULL || rdev == NULL) { return -ENODEV; } if (state.event == PM_EVENT_PRETHAW) { return 0; } /* unpin the front buffers */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->fb); struct radeon_object *robj; if (rfb == NULL || rfb->obj == NULL) { continue; } robj = rfb->obj->driver_private; if (robj != rdev->fbdev_robj) { radeon_object_unpin(robj); } } /* evict vram memory */ radeon_object_evict_vram(rdev); /* wait for gpu to finish processing current batch */ radeon_fence_wait_last(rdev); if (!rdev->new_init_path) { radeon_cp_disable(rdev); radeon_gart_disable(rdev); } else { radeon_suspend(rdev); } /* evict remaining vram memory */ radeon_object_evict_vram(rdev); rdev->irq.sw_int = false; radeon_irq_set(rdev); pci_save_state(dev->pdev); if (state.event == PM_EVENT_SUSPEND) { /* Shut down the device */ pci_disable_device(dev->pdev); pci_set_power_state(dev->pdev, PCI_D3hot); } acquire_console_sem(); fb_set_suspend(rdev->fbdev_info, 1); release_console_sem(); return 0; } int radeon_resume_kms(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; int r; acquire_console_sem(); pci_set_power_state(dev->pdev, PCI_D0); pci_restore_state(dev->pdev); if (pci_enable_device(dev->pdev)) { release_console_sem(); return -1; } pci_set_master(dev->pdev); /* Reset gpu before posting otherwise ATOM will enter infinite loop */ if (radeon_gpu_reset(rdev)) { /* FIXME: what do we want to do here ? */ } if (!rdev->new_init_path) { /* post card */ if (rdev->is_atom_bios) { atom_asic_init(rdev->mode_info.atom_context); } else { radeon_combios_asic_init(rdev->ddev); } /* Initialize clocks */ r = radeon_clocks_init(rdev); if (r) { release_console_sem(); return r; } /* Enable IRQ */ rdev->irq.sw_int = true; radeon_irq_set(rdev); /* Initialize GPU Memory Controller */ r = radeon_mc_init(rdev); if (r) { goto out; } r = radeon_gart_enable(rdev); if (r) { goto out; } r = radeon_cp_init(rdev, rdev->cp.ring_size); if (r) { goto out; } } else { radeon_resume(rdev); } out: fb_set_suspend(rdev->fbdev_info, 0); release_console_sem(); /* blat the mode back in */ drm_helper_resume_force_mode(dev); return 0; } /* * Debugfs */ struct radeon_debugfs { struct drm_info_list *files; unsigned num_files; }; static struct radeon_debugfs _radeon_debugfs[RADEON_DEBUGFS_MAX_NUM_FILES]; static unsigned _radeon_debugfs_count = 0; int radeon_debugfs_add_files(struct radeon_device *rdev, struct drm_info_list *files, unsigned nfiles) { unsigned i; for (i = 0; i < _radeon_debugfs_count; i++) { if (_radeon_debugfs[i].files == files) { /* Already registered */ return 0; } } if ((_radeon_debugfs_count + nfiles) > RADEON_DEBUGFS_MAX_NUM_FILES) { DRM_ERROR("Reached maximum number of debugfs files.\n"); DRM_ERROR("Report so we increase RADEON_DEBUGFS_MAX_NUM_FILES.\n"); return -EINVAL; } _radeon_debugfs[_radeon_debugfs_count].files = files; _radeon_debugfs[_radeon_debugfs_count].num_files = nfiles; _radeon_debugfs_count++; #if defined(CONFIG_DEBUG_FS) drm_debugfs_create_files(files, nfiles, rdev->ddev->control->debugfs_root, rdev->ddev->control); drm_debugfs_create_files(files, nfiles, rdev->ddev->primary->debugfs_root, rdev->ddev->primary); #endif return 0; } #if defined(CONFIG_DEBUG_FS) int radeon_debugfs_init(struct drm_minor *minor) { return 0; } void radeon_debugfs_cleanup(struct drm_minor *minor) { unsigned i; for (i = 0; i < _radeon_debugfs_count; i++) { drm_debugfs_remove_files(_radeon_debugfs[i].files, _radeon_debugfs[i].num_files, minor); } } #endif