/* w83627hf.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Copyright (c) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, Philip Edelbrock <phil@netroedge.com>, and Mark Studebaker <mdsxyz123@yahoo.com> Ported to 2.6 by Bernhard C. Schrenk <clemy@clemy.org> Copyright (c) 2007 Jean Delvare <khali@linux-fr.org> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Supports following chips: Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA w83627hf 9 3 2 3 0x20 0x5ca3 no yes(LPC) w83627thf 7 3 3 3 0x90 0x5ca3 no yes(LPC) w83637hf 7 3 3 3 0x80 0x5ca3 no yes(LPC) w83687thf 7 3 3 3 0x90 0x5ca3 no yes(LPC) w83697hf 8 2 2 2 0x60 0x5ca3 no yes(LPC) For other winbond chips, and for i2c support in the above chips, use w83781d.c. Note: automatic ("cruise") fan control for 697, 637 & 627thf not supported yet. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/platform_device.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/ioport.h> #include <asm/io.h> #include "lm75.h" static struct platform_device *pdev; #define DRVNAME "w83627hf" enum chips { w83627hf, w83627thf, w83697hf, w83637hf, w83687thf }; static u16 force_addr; module_param(force_addr, ushort, 0); MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors"); static u8 force_i2c = 0x1f; module_param(force_i2c, byte, 0); MODULE_PARM_DESC(force_i2c, "Initialize the i2c address of the sensors"); static int reset; module_param(reset, bool, 0); MODULE_PARM_DESC(reset, "Set to one to reset chip on load"); static int init = 1; module_param(init, bool, 0); MODULE_PARM_DESC(init, "Set to zero to bypass chip initialization"); /* modified from kernel/include/traps.c */ static int REG; /* The register to read/write */ #define DEV 0x07 /* Register: Logical device select */ static int VAL; /* The value to read/write */ /* logical device numbers for superio_select (below) */ #define W83627HF_LD_FDC 0x00 #define W83627HF_LD_PRT 0x01 #define W83627HF_LD_UART1 0x02 #define W83627HF_LD_UART2 0x03 #define W83627HF_LD_KBC 0x05 #define W83627HF_LD_CIR 0x06 /* w83627hf only */ #define W83627HF_LD_GAME 0x07 #define W83627HF_LD_MIDI 0x07 #define W83627HF_LD_GPIO1 0x07 #define W83627HF_LD_GPIO5 0x07 /* w83627thf only */ #define W83627HF_LD_GPIO2 0x08 #define W83627HF_LD_GPIO3 0x09 #define W83627HF_LD_GPIO4 0x09 /* w83627thf only */ #define W83627HF_LD_ACPI 0x0a #define W83627HF_LD_HWM 0x0b #define DEVID 0x20 /* Register: Device ID */ #define W83627THF_GPIO5_EN 0x30 /* w83627thf only */ #define W83627THF_GPIO5_IOSR 0xf3 /* w83627thf only */ #define W83627THF_GPIO5_DR 0xf4 /* w83627thf only */ #define W83687THF_VID_EN 0x29 /* w83687thf only */ #define W83687THF_VID_CFG 0xF0 /* w83687thf only */ #define W83687THF_VID_DATA 0xF1 /* w83687thf only */ static inline void superio_outb(int reg, int val) { outb(reg, REG); outb(val, VAL); } static inline int superio_inb(int reg) { outb(reg, REG); return inb(VAL); } static inline void superio_select(int ld) { outb(DEV, REG); outb(ld, VAL); } static inline void superio_enter(void) { outb(0x87, REG); outb(0x87, REG); } static inline void superio_exit(void) { outb(0xAA, REG); } #define W627_DEVID 0x52 #define W627THF_DEVID 0x82 #define W697_DEVID 0x60 #define W637_DEVID 0x70 #define W687THF_DEVID 0x85 #define WINB_ACT_REG 0x30 #define WINB_BASE_REG 0x60 /* Constants specified below */ /* Alignment of the base address */ #define WINB_ALIGNMENT ~7 /* Offset & size of I/O region we are interested in */ #define WINB_REGION_OFFSET 5 #define WINB_REGION_SIZE 2 /* Where are the sensors address/data registers relative to the region offset */ #define W83781D_ADDR_REG_OFFSET 0 #define W83781D_DATA_REG_OFFSET 1 /* The W83781D registers */ /* The W83782D registers for nr=7,8 are in bank 5 */ #define W83781D_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \ (0x554 + (((nr) - 7) * 2))) #define W83781D_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \ (0x555 + (((nr) - 7) * 2))) #define W83781D_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \ (0x550 + (nr) - 7)) /* nr:0-2 for fans:1-3 */ #define W83627HF_REG_FAN_MIN(nr) (0x3b + (nr)) #define W83627HF_REG_FAN(nr) (0x28 + (nr)) #define W83627HF_REG_TEMP2_CONFIG 0x152 #define W83627HF_REG_TEMP3_CONFIG 0x252 /* these are zero-based, unlike config constants above */ static const u16 w83627hf_reg_temp[] = { 0x27, 0x150, 0x250 }; static const u16 w83627hf_reg_temp_hyst[] = { 0x3A, 0x153, 0x253 }; static const u16 w83627hf_reg_temp_over[] = { 0x39, 0x155, 0x255 }; #define W83781D_REG_BANK 0x4E #define W83781D_REG_CONFIG 0x40 #define W83781D_REG_ALARM1 0x459 #define W83781D_REG_ALARM2 0x45A #define W83781D_REG_ALARM3 0x45B #define W83781D_REG_BEEP_CONFIG 0x4D #define W83781D_REG_BEEP_INTS1 0x56 #define W83781D_REG_BEEP_INTS2 0x57 #define W83781D_REG_BEEP_INTS3 0x453 #define W83781D_REG_VID_FANDIV 0x47 #define W83781D_REG_CHIPID 0x49 #define W83781D_REG_WCHIPID 0x58 #define W83781D_REG_CHIPMAN 0x4F #define W83781D_REG_PIN 0x4B #define W83781D_REG_VBAT 0x5D #define W83627HF_REG_PWM1 0x5A #define W83627HF_REG_PWM2 0x5B #define W83627THF_REG_PWM1 0x01 /* 697HF/637HF/687THF too */ #define W83627THF_REG_PWM2 0x03 /* 697HF/637HF/687THF too */ #define W83627THF_REG_PWM3 0x11 /* 637HF/687THF too */ #define W83627THF_REG_VRM_OVT_CFG 0x18 /* 637HF/687THF too */ static const u8 regpwm_627hf[] = { W83627HF_REG_PWM1, W83627HF_REG_PWM2 }; static const u8 regpwm[] = { W83627THF_REG_PWM1, W83627THF_REG_PWM2, W83627THF_REG_PWM3 }; #define W836X7HF_REG_PWM(type, nr) (((type) == w83627hf) ? \ regpwm_627hf[nr] : regpwm[nr]) #define W83627HF_REG_PWM_FREQ 0x5C /* Only for the 627HF */ #define W83637HF_REG_PWM_FREQ1 0x00 /* 697HF/687THF too */ #define W83637HF_REG_PWM_FREQ2 0x02 /* 697HF/687THF too */ #define W83637HF_REG_PWM_FREQ3 0x10 /* 687THF too */ static const u8 W83637HF_REG_PWM_FREQ[] = { W83637HF_REG_PWM_FREQ1, W83637HF_REG_PWM_FREQ2, W83637HF_REG_PWM_FREQ3 }; #define W83627HF_BASE_PWM_FREQ 46870 #define W83781D_REG_I2C_ADDR 0x48 #define W83781D_REG_I2C_SUBADDR 0x4A /* Sensor selection */ #define W83781D_REG_SCFG1 0x5D static const u8 BIT_SCFG1[] = { 0x02, 0x04, 0x08 }; #define W83781D_REG_SCFG2 0x59 static const u8 BIT_SCFG2[] = { 0x10, 0x20, 0x40 }; #define W83781D_DEFAULT_BETA 3435 /* Conversions. Limit checking is only done on the TO_REG variants. Note that you should be a bit careful with which arguments these macros are called: arguments may be evaluated more than once. Fixing this is just not worth it. */ #define IN_TO_REG(val) (SENSORS_LIMIT((((val) + 8)/16),0,255)) #define IN_FROM_REG(val) ((val) * 16) static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm == 0) return 255; rpm = SENSORS_LIMIT(rpm, 1, 1000000); return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } #define TEMP_MIN (-128000) #define TEMP_MAX ( 127000) /* TEMP: 0.001C/bit (-128C to +127C) REG: 1C/bit, two's complement */ static u8 TEMP_TO_REG(long temp) { int ntemp = SENSORS_LIMIT(temp, TEMP_MIN, TEMP_MAX); ntemp += (ntemp<0 ? -500 : 500); return (u8)(ntemp / 1000); } static int TEMP_FROM_REG(u8 reg) { return (s8)reg * 1000; } #define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==255?0:1350000/((val)*(div))) #define PWM_TO_REG(val) (SENSORS_LIMIT((val),0,255)) static inline unsigned long pwm_freq_from_reg_627hf(u8 reg) { unsigned long freq; freq = W83627HF_BASE_PWM_FREQ >> reg; return freq; } static inline u8 pwm_freq_to_reg_627hf(unsigned long val) { u8 i; /* Only 5 dividers (1 2 4 8 16) Search for the nearest available frequency */ for (i = 0; i < 4; i++) { if (val > (((W83627HF_BASE_PWM_FREQ >> i) + (W83627HF_BASE_PWM_FREQ >> (i+1))) / 2)) break; } return i; } static inline unsigned long pwm_freq_from_reg(u8 reg) { /* Clock bit 8 -> 180 kHz or 24 MHz */ unsigned long clock = (reg & 0x80) ? 180000UL : 24000000UL; reg &= 0x7f; /* This should not happen but anyway... */ if (reg == 0) reg++; return (clock / (reg << 8)); } static inline u8 pwm_freq_to_reg(unsigned long val) { /* Minimum divider value is 0x01 and maximum is 0x7F */ if (val >= 93750) /* The highest we can do */ return 0x01; if (val >= 720) /* Use 24 MHz clock */ return (24000000UL / (val << 8)); if (val < 6) /* The lowest we can do */ return 0xFF; else /* Use 180 kHz clock */ return (0x80 | (180000UL / (val << 8))); } #define BEEP_MASK_FROM_REG(val) (val) #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff) #define BEEP_ENABLE_TO_REG(val) ((val)?1:0) #define BEEP_ENABLE_FROM_REG(val) ((val)?1:0) #define DIV_FROM_REG(val) (1 << (val)) static inline u8 DIV_TO_REG(long val) { int i; val = SENSORS_LIMIT(val, 1, 128) >> 1; for (i = 0; i < 7; i++) { if (val == 0) break; val >>= 1; } return ((u8) i); } /* For each registered chip, we need to keep some data in memory. The structure is dynamically allocated. */ struct w83627hf_data { unsigned short addr; const char *name; struct device *hwmon_dev; struct mutex lock; enum chips type; struct mutex update_lock; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[9]; /* Register value */ u8 in_max[9]; /* Register value */ u8 in_min[9]; /* Register value */ u8 fan[3]; /* Register value */ u8 fan_min[3]; /* Register value */ u16 temp[3]; /* Register value */ u16 temp_max[3]; /* Register value */ u16 temp_max_hyst[3]; /* Register value */ u8 fan_div[3]; /* Register encoding, shifted right */ u8 vid; /* Register encoding, combined */ u32 alarms; /* Register encoding, combined */ u32 beep_mask; /* Register encoding, combined */ u8 beep_enable; /* Boolean */ u8 pwm[3]; /* Register value */ u8 pwm_freq[3]; /* Register value */ u16 sens[3]; /* 1 = pentium diode; 2 = 3904 diode; 4 = thermistor */ u8 vrm; u8 vrm_ovt; /* Register value, 627THF/637HF/687THF only */ }; struct w83627hf_sio_data { enum chips type; }; static int w83627hf_probe(struct platform_device *pdev); static int __devexit w83627hf_remove(struct platform_device *pdev); static int w83627hf_read_value(struct w83627hf_data *data, u16 reg); static int w83627hf_write_value(struct w83627hf_data *data, u16 reg, u16 value); static void w83627hf_update_fan_div(struct w83627hf_data *data); static struct w83627hf_data *w83627hf_update_device(struct device *dev); static void w83627hf_init_device(struct platform_device *pdev); static struct platform_driver w83627hf_driver = { .driver = { .owner = THIS_MODULE, .name = DRVNAME, }, .probe = w83627hf_probe, .remove = __devexit_p(w83627hf_remove), }; static ssize_t show_in_input(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long)IN_FROM_REG(data->in[nr])); } static ssize_t show_in_min(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long)IN_FROM_REG(data->in_min[nr])); } static ssize_t show_in_max(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long)IN_FROM_REG(data->in_max[nr])); } static ssize_t store_in_min(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_min[nr] = IN_TO_REG(val); w83627hf_write_value(data, W83781D_REG_IN_MIN(nr), data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t store_in_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_max[nr] = IN_TO_REG(val); w83627hf_write_value(data, W83781D_REG_IN_MAX(nr), data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } #define sysfs_vin_decl(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in_input, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO|S_IWUSR, \ show_in_min, store_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO|S_IWUSR, \ show_in_max, store_in_max, offset); sysfs_vin_decl(1); sysfs_vin_decl(2); sysfs_vin_decl(3); sysfs_vin_decl(4); sysfs_vin_decl(5); sysfs_vin_decl(6); sysfs_vin_decl(7); sysfs_vin_decl(8); /* use a different set of functions for in0 */ static ssize_t show_in_0(struct w83627hf_data *data, char *buf, u8 reg) { long in0; if ((data->vrm_ovt & 0x01) && (w83627thf == data->type || w83637hf == data->type || w83687thf == data->type)) /* use VRM9 calculation */ in0 = (long)((reg * 488 + 70000 + 50) / 100); else /* use VRM8 (standard) calculation */ in0 = (long)IN_FROM_REG(reg); return sprintf(buf,"%ld\n", in0); } static ssize_t show_regs_in_0(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return show_in_0(data, buf, data->in[0]); } static ssize_t show_regs_in_min0(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return show_in_0(data, buf, data->in_min[0]); } static ssize_t show_regs_in_max0(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return show_in_0(data, buf, data->in_max[0]); } static ssize_t store_regs_in_min0(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627hf_data *data = dev_get_drvdata(dev); u32 val; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); if ((data->vrm_ovt & 0x01) && (w83627thf == data->type || w83637hf == data->type || w83687thf == data->type)) /* use VRM9 calculation */ data->in_min[0] = SENSORS_LIMIT(((val * 100) - 70000 + 244) / 488, 0, 255); else /* use VRM8 (standard) calculation */ data->in_min[0] = IN_TO_REG(val); w83627hf_write_value(data, W83781D_REG_IN_MIN(0), data->in_min[0]); mutex_unlock(&data->update_lock); return count; } static ssize_t store_regs_in_max0(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627hf_data *data = dev_get_drvdata(dev); u32 val; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); if ((data->vrm_ovt & 0x01) && (w83627thf == data->type || w83637hf == data->type || w83687thf == data->type)) /* use VRM9 calculation */ data->in_max[0] = SENSORS_LIMIT(((val * 100) - 70000 + 244) / 488, 0, 255); else /* use VRM8 (standard) calculation */ data->in_max[0] = IN_TO_REG(val); w83627hf_write_value(data, W83781D_REG_IN_MAX(0), data->in_max[0]); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(in0_input, S_IRUGO, show_regs_in_0, NULL); static DEVICE_ATTR(in0_min, S_IRUGO | S_IWUSR, show_regs_in_min0, store_regs_in_min0); static DEVICE_ATTR(in0_max, S_IRUGO | S_IWUSR, show_regs_in_max0, store_regs_in_max0); static ssize_t show_fan_input(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", FAN_FROM_REG(data->fan[nr], (long)DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", FAN_FROM_REG(data->fan_min[nr], (long)DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t store_fan_min(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); u32 val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); w83627hf_write_value(data, W83627HF_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } #define sysfs_fan_decl(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan_input, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, store_fan_min, offset - 1); sysfs_fan_decl(1); sysfs_fan_decl(2); sysfs_fan_decl(3); static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); u16 tmp = data->temp[nr]; return sprintf(buf, "%ld\n", (nr) ? (long) LM75_TEMP_FROM_REG(tmp) : (long) TEMP_FROM_REG(tmp)); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); u16 tmp = data->temp_max[nr]; return sprintf(buf, "%ld\n", (nr) ? (long) LM75_TEMP_FROM_REG(tmp) : (long) TEMP_FROM_REG(tmp)); } static ssize_t show_temp_max_hyst(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); u16 tmp = data->temp_max_hyst[nr]; return sprintf(buf, "%ld\n", (nr) ? (long) LM75_TEMP_FROM_REG(tmp) : (long) TEMP_FROM_REG(tmp)); } static ssize_t store_temp_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); long val = simple_strtol(buf, NULL, 10); u16 tmp = (nr) ? LM75_TEMP_TO_REG(val) : TEMP_TO_REG(val); mutex_lock(&data->update_lock); data->temp_max[nr] = tmp; w83627hf_write_value(data, w83627hf_reg_temp_over[nr], tmp); mutex_unlock(&data->update_lock); return count; } static ssize_t store_temp_max_hyst(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); long val = simple_strtol(buf, NULL, 10); u16 tmp = (nr) ? LM75_TEMP_TO_REG(val) : TEMP_TO_REG(val); mutex_lock(&data->update_lock); data->temp_max_hyst[nr] = tmp; w83627hf_write_value(data, w83627hf_reg_temp_hyst[nr], tmp); mutex_unlock(&data->update_lock); return count; } #define sysfs_temp_decl(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ show_temp, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO|S_IWUSR, \ show_temp_max, store_temp_max, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO|S_IWUSR, \ show_temp_max_hyst, store_temp_max_hyst, offset - 1); sysfs_temp_decl(1); sysfs_temp_decl(2); sysfs_temp_decl(3); static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL); static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = dev_get_drvdata(dev); return sprintf(buf, "%ld\n", (long) data->vrm); } static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627hf_data *data = dev_get_drvdata(dev); u32 val; val = simple_strtoul(buf, NULL, 10); data->vrm = val; return count; } static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg); static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) data->alarms); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); #define show_beep_reg(REG, reg) \ static ssize_t show_beep_##reg (struct device *dev, struct device_attribute *attr, char *buf) \ { \ struct w83627hf_data *data = w83627hf_update_device(dev); \ return sprintf(buf,"%ld\n", \ (long)BEEP_##REG##_FROM_REG(data->beep_##reg)); \ } show_beep_reg(ENABLE, enable) show_beep_reg(MASK, mask) #define BEEP_ENABLE 0 /* Store beep_enable */ #define BEEP_MASK 1 /* Store beep_mask */ static ssize_t store_beep_reg(struct device *dev, const char *buf, size_t count, int update_mask) { struct w83627hf_data *data = dev_get_drvdata(dev); u32 val, val2; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); if (update_mask == BEEP_MASK) { /* We are storing beep_mask */ data->beep_mask = BEEP_MASK_TO_REG(val); w83627hf_write_value(data, W83781D_REG_BEEP_INTS1, data->beep_mask & 0xff); w83627hf_write_value(data, W83781D_REG_BEEP_INTS3, ((data->beep_mask) >> 16) & 0xff); val2 = (data->beep_mask >> 8) & 0x7f; } else { /* We are storing beep_enable */ val2 = w83627hf_read_value(data, W83781D_REG_BEEP_INTS2) & 0x7f; data->beep_enable = BEEP_ENABLE_TO_REG(val); } w83627hf_write_value(data, W83781D_REG_BEEP_INTS2, val2 | data->beep_enable << 7); mutex_unlock(&data->update_lock); return count; } #define sysfs_beep(REG, reg) \ static ssize_t show_regs_beep_##reg (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_beep_##reg(dev, attr, buf); \ } \ static ssize_t \ store_regs_beep_##reg (struct device *dev, struct device_attribute *attr, const char *buf, size_t count) \ { \ return store_beep_reg(dev, buf, count, BEEP_##REG); \ } \ static DEVICE_ATTR(beep_##reg, S_IRUGO | S_IWUSR, \ show_regs_beep_##reg, store_regs_beep_##reg); sysfs_beep(ENABLE, enable); sysfs_beep(MASK, mask); static ssize_t show_fan_div(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) DIV_FROM_REG(data->fan_div[nr])); } /* Note: we save and restore the fan minimum here, because its value is determined in part by the fan divisor. This follows the principle of least surprise; the user doesn't expect the fan minimum to change just because the divisor changed. */ static ssize_t store_fan_div(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long min; u8 reg; unsigned long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); /* Save fan_min */ min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); data->fan_div[nr] = DIV_TO_REG(val); reg = (w83627hf_read_value(data, nr==2 ? W83781D_REG_PIN : W83781D_REG_VID_FANDIV) & (nr==0 ? 0xcf : 0x3f)) | ((data->fan_div[nr] & 0x03) << (nr==0 ? 4 : 6)); w83627hf_write_value(data, nr==2 ? W83781D_REG_PIN : W83781D_REG_VID_FANDIV, reg); reg = (w83627hf_read_value(data, W83781D_REG_VBAT) & ~(1 << (5 + nr))) | ((data->fan_div[nr] & 0x04) << (3 + nr)); w83627hf_write_value(data, W83781D_REG_VBAT, reg); /* Restore fan_min */ data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); w83627hf_write_value(data, W83627HF_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(fan1_div, S_IRUGO|S_IWUSR, show_fan_div, store_fan_div, 0); static SENSOR_DEVICE_ATTR(fan2_div, S_IRUGO|S_IWUSR, show_fan_div, store_fan_div, 1); static SENSOR_DEVICE_ATTR(fan3_div, S_IRUGO|S_IWUSR, show_fan_div, store_fan_div, 2); static ssize_t show_pwm(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) data->pwm[nr]); } static ssize_t store_pwm(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); u32 val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); if (data->type == w83627thf) { /* bits 0-3 are reserved in 627THF */ data->pwm[nr] = PWM_TO_REG(val) & 0xf0; w83627hf_write_value(data, W836X7HF_REG_PWM(data->type, nr), data->pwm[nr] | (w83627hf_read_value(data, W836X7HF_REG_PWM(data->type, nr)) & 0x0f)); } else { data->pwm[nr] = PWM_TO_REG(val); w83627hf_write_value(data, W836X7HF_REG_PWM(data->type, nr), data->pwm[nr]); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO|S_IWUSR, show_pwm, store_pwm, 0); static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO|S_IWUSR, show_pwm, store_pwm, 1); static SENSOR_DEVICE_ATTR(pwm3, S_IRUGO|S_IWUSR, show_pwm, store_pwm, 2); static ssize_t show_pwm_freq(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); if (data->type == w83627hf) return sprintf(buf, "%ld\n", pwm_freq_from_reg_627hf(data->pwm_freq[nr])); else return sprintf(buf, "%ld\n", pwm_freq_from_reg(data->pwm_freq[nr])); } static ssize_t store_pwm_freq(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); static const u8 mask[]={0xF8, 0x8F}; u32 val; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); if (data->type == w83627hf) { data->pwm_freq[nr] = pwm_freq_to_reg_627hf(val); w83627hf_write_value(data, W83627HF_REG_PWM_FREQ, (data->pwm_freq[nr] << (nr*4)) | (w83627hf_read_value(data, W83627HF_REG_PWM_FREQ) & mask[nr])); } else { data->pwm_freq[nr] = pwm_freq_to_reg(val); w83627hf_write_value(data, W83637HF_REG_PWM_FREQ[nr], data->pwm_freq[nr]); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1_freq, S_IRUGO|S_IWUSR, show_pwm_freq, store_pwm_freq, 0); static SENSOR_DEVICE_ATTR(pwm2_freq, S_IRUGO|S_IWUSR, show_pwm_freq, store_pwm_freq, 1); static SENSOR_DEVICE_ATTR(pwm3_freq, S_IRUGO|S_IWUSR, show_pwm_freq, store_pwm_freq, 2); static ssize_t show_temp_type(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) data->sens[nr]); } static ssize_t store_temp_type(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); u32 val, tmp; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); switch (val) { case 1: /* PII/Celeron diode */ tmp = w83627hf_read_value(data, W83781D_REG_SCFG1); w83627hf_write_value(data, W83781D_REG_SCFG1, tmp | BIT_SCFG1[nr]); tmp = w83627hf_read_value(data, W83781D_REG_SCFG2); w83627hf_write_value(data, W83781D_REG_SCFG2, tmp | BIT_SCFG2[nr]); data->sens[nr] = val; break; case 2: /* 3904 */ tmp = w83627hf_read_value(data, W83781D_REG_SCFG1); w83627hf_write_value(data, W83781D_REG_SCFG1, tmp | BIT_SCFG1[nr]); tmp = w83627hf_read_value(data, W83781D_REG_SCFG2); w83627hf_write_value(data, W83781D_REG_SCFG2, tmp & ~BIT_SCFG2[nr]); data->sens[nr] = val; break; case W83781D_DEFAULT_BETA: dev_warn(dev, "Sensor type %d is deprecated, please use 4 " "instead\n", W83781D_DEFAULT_BETA); /* fall through */ case 4: /* thermistor */ tmp = w83627hf_read_value(data, W83781D_REG_SCFG1); w83627hf_write_value(data, W83781D_REG_SCFG1, tmp & ~BIT_SCFG1[nr]); data->sens[nr] = val; break; default: dev_err(dev, "Invalid sensor type %ld; must be 1, 2, or 4\n", (long) val); break; } mutex_unlock(&data->update_lock); return count; } #define sysfs_temp_type(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_type, S_IRUGO | S_IWUSR, \ show_temp_type, store_temp_type, offset - 1); sysfs_temp_type(1); sysfs_temp_type(2); sysfs_temp_type(3); static ssize_t show_name(struct device *dev, struct device_attribute *devattr, char *buf) { struct w83627hf_data *data = dev_get_drvdata(dev); return sprintf(buf, "%s\n", data->name); } static DEVICE_ATTR(name, S_IRUGO, show_name, NULL); static int __init w83627hf_find(int sioaddr, unsigned short *addr, struct w83627hf_sio_data *sio_data) { int err = -ENODEV; u16 val; static const __initdata char *names[] = { "W83627HF", "W83627THF", "W83697HF", "W83637HF", "W83687THF", }; REG = sioaddr; VAL = sioaddr + 1; superio_enter(); val= superio_inb(DEVID); switch (val) { case W627_DEVID: sio_data->type = w83627hf; break; case W627THF_DEVID: sio_data->type = w83627thf; break; case W697_DEVID: sio_data->type = w83697hf; break; case W637_DEVID: sio_data->type = w83637hf; break; case W687THF_DEVID: sio_data->type = w83687thf; break; case 0xff: /* No device at all */ goto exit; default: pr_debug(DRVNAME ": Unsupported chip (DEVID=0x%02x)\n", val); goto exit; } superio_select(W83627HF_LD_HWM); force_addr &= WINB_ALIGNMENT; if (force_addr) { printk(KERN_WARNING DRVNAME ": Forcing address 0x%x\n", force_addr); superio_outb(WINB_BASE_REG, force_addr >> 8); superio_outb(WINB_BASE_REG + 1, force_addr & 0xff); } val = (superio_inb(WINB_BASE_REG) << 8) | superio_inb(WINB_BASE_REG + 1); *addr = val & WINB_ALIGNMENT; if (*addr == 0) { printk(KERN_WARNING DRVNAME ": Base address not set, " "skipping\n"); goto exit; } val = superio_inb(WINB_ACT_REG); if (!(val & 0x01)) { printk(KERN_WARNING DRVNAME ": Enabling HWM logical device\n"); superio_outb(WINB_ACT_REG, val | 0x01); } err = 0; pr_info(DRVNAME ": Found %s chip at %#x\n", names[sio_data->type], *addr); exit: superio_exit(); return err; } #define VIN_UNIT_ATTRS(_X_) \ &sensor_dev_attr_in##_X_##_input.dev_attr.attr, \ &sensor_dev_attr_in##_X_##_min.dev_attr.attr, \ &sensor_dev_attr_in##_X_##_max.dev_attr.attr #define FAN_UNIT_ATTRS(_X_) \ &sensor_dev_attr_fan##_X_##_input.dev_attr.attr, \ &sensor_dev_attr_fan##_X_##_min.dev_attr.attr, \ &sensor_dev_attr_fan##_X_##_div.dev_attr.attr #define TEMP_UNIT_ATTRS(_X_) \ &sensor_dev_attr_temp##_X_##_input.dev_attr.attr, \ &sensor_dev_attr_temp##_X_##_max.dev_attr.attr, \ &sensor_dev_attr_temp##_X_##_max_hyst.dev_attr.attr, \ &sensor_dev_attr_temp##_X_##_type.dev_attr.attr static struct attribute *w83627hf_attributes[] = { &dev_attr_in0_input.attr, &dev_attr_in0_min.attr, &dev_attr_in0_max.attr, VIN_UNIT_ATTRS(2), VIN_UNIT_ATTRS(3), VIN_UNIT_ATTRS(4), VIN_UNIT_ATTRS(7), VIN_UNIT_ATTRS(8), FAN_UNIT_ATTRS(1), FAN_UNIT_ATTRS(2), TEMP_UNIT_ATTRS(1), TEMP_UNIT_ATTRS(2), &dev_attr_alarms.attr, &dev_attr_beep_enable.attr, &dev_attr_beep_mask.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &dev_attr_name.attr, NULL }; static const struct attribute_group w83627hf_group = { .attrs = w83627hf_attributes, }; static struct attribute *w83627hf_attributes_opt[] = { VIN_UNIT_ATTRS(1), VIN_UNIT_ATTRS(5), VIN_UNIT_ATTRS(6), FAN_UNIT_ATTRS(3), TEMP_UNIT_ATTRS(3), &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm1_freq.dev_attr.attr, &sensor_dev_attr_pwm2_freq.dev_attr.attr, &sensor_dev_attr_pwm3_freq.dev_attr.attr, NULL }; static const struct attribute_group w83627hf_group_opt = { .attrs = w83627hf_attributes_opt, }; static int __devinit w83627hf_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct w83627hf_sio_data *sio_data = dev->platform_data; struct w83627hf_data *data; struct resource *res; int err, i; static const char *names[] = { "w83627hf", "w83627thf", "w83697hf", "w83637hf", "w83687thf", }; res = platform_get_resource(pdev, IORESOURCE_IO, 0); if (!request_region(res->start, WINB_REGION_SIZE, DRVNAME)) { dev_err(dev, "Failed to request region 0x%lx-0x%lx\n", (unsigned long)res->start, (unsigned long)(res->start + WINB_REGION_SIZE - 1)); err = -EBUSY; goto ERROR0; } if (!(data = kzalloc(sizeof(struct w83627hf_data), GFP_KERNEL))) { err = -ENOMEM; goto ERROR1; } data->addr = res->start; data->type = sio_data->type; data->name = names[sio_data->type]; mutex_init(&data->lock); mutex_init(&data->update_lock); platform_set_drvdata(pdev, data); /* Initialize the chip */ w83627hf_init_device(pdev); /* A few vars need to be filled upon startup */ for (i = 0; i <= 2; i++) data->fan_min[i] = w83627hf_read_value( data, W83627HF_REG_FAN_MIN(i)); w83627hf_update_fan_div(data); /* Register common device attributes */ if ((err = sysfs_create_group(&dev->kobj, &w83627hf_group))) goto ERROR3; /* Register chip-specific device attributes */ if (data->type == w83627hf || data->type == w83697hf) if ((err = device_create_file(dev, &sensor_dev_attr_in5_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in5_min.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in5_max.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in6_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in6_min.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in6_max.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm1_freq.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm2_freq.dev_attr))) goto ERROR4; if (data->type != w83697hf) if ((err = device_create_file(dev, &sensor_dev_attr_in1_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in1_min.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in1_max.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_fan3_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_fan3_min.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_fan3_div.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_max.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_max_hyst.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_type.dev_attr))) goto ERROR4; if (data->type != w83697hf && data->vid != 0xff) { /* Convert VID to voltage based on VRM */ data->vrm = vid_which_vrm(); if ((err = device_create_file(dev, &dev_attr_cpu0_vid)) || (err = device_create_file(dev, &dev_attr_vrm))) goto ERROR4; } if (data->type == w83627thf || data->type == w83637hf || data->type == w83687thf) if ((err = device_create_file(dev, &sensor_dev_attr_pwm3.dev_attr))) goto ERROR4; if (data->type == w83637hf || data->type == w83687thf) if ((err = device_create_file(dev, &sensor_dev_attr_pwm1_freq.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm2_freq.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm3_freq.dev_attr))) goto ERROR4; data->hwmon_dev = hwmon_device_register(dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto ERROR4; } return 0; ERROR4: sysfs_remove_group(&dev->kobj, &w83627hf_group); sysfs_remove_group(&dev->kobj, &w83627hf_group_opt); ERROR3: platform_set_drvdata(pdev, NULL); kfree(data); ERROR1: release_region(res->start, WINB_REGION_SIZE); ERROR0: return err; } static int __devexit w83627hf_remove(struct platform_device *pdev) { struct w83627hf_data *data = platform_get_drvdata(pdev); struct resource *res; hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&pdev->dev.kobj, &w83627hf_group); sysfs_remove_group(&pdev->dev.kobj, &w83627hf_group_opt); platform_set_drvdata(pdev, NULL); kfree(data); res = platform_get_resource(pdev, IORESOURCE_IO, 0); release_region(res->start, WINB_REGION_SIZE); return 0; } /* Registers 0x50-0x5f are banked */ static inline void w83627hf_set_bank(struct w83627hf_data *data, u16 reg) { if ((reg & 0x00f0) == 0x50) { outb_p(W83781D_REG_BANK, data->addr + W83781D_ADDR_REG_OFFSET); outb_p(reg >> 8, data->addr + W83781D_DATA_REG_OFFSET); } } /* Not strictly necessary, but play it safe for now */ static inline void w83627hf_reset_bank(struct w83627hf_data *data, u16 reg) { if (reg & 0xff00) { outb_p(W83781D_REG_BANK, data->addr + W83781D_ADDR_REG_OFFSET); outb_p(0, data->addr + W83781D_DATA_REG_OFFSET); } } static int w83627hf_read_value(struct w83627hf_data *data, u16 reg) { int res, word_sized; mutex_lock(&data->lock); word_sized = (((reg & 0xff00) == 0x100) || ((reg & 0xff00) == 0x200)) && (((reg & 0x00ff) == 0x50) || ((reg & 0x00ff) == 0x53) || ((reg & 0x00ff) == 0x55)); w83627hf_set_bank(data, reg); outb_p(reg & 0xff, data->addr + W83781D_ADDR_REG_OFFSET); res = inb_p(data->addr + W83781D_DATA_REG_OFFSET); if (word_sized) { outb_p((reg & 0xff) + 1, data->addr + W83781D_ADDR_REG_OFFSET); res = (res << 8) + inb_p(data->addr + W83781D_DATA_REG_OFFSET); } w83627hf_reset_bank(data, reg); mutex_unlock(&data->lock); return res; } static int __devinit w83627thf_read_gpio5(struct platform_device *pdev) { int res = 0xff, sel; superio_enter(); superio_select(W83627HF_LD_GPIO5); /* Make sure these GPIO pins are enabled */ if (!(superio_inb(W83627THF_GPIO5_EN) & (1<<3))) { dev_dbg(&pdev->dev, "GPIO5 disabled, no VID function\n"); goto exit; } /* Make sure the pins are configured for input There must be at least five (VRM 9), and possibly 6 (VRM 10) */ sel = superio_inb(W83627THF_GPIO5_IOSR) & 0x3f; if ((sel & 0x1f) != 0x1f) { dev_dbg(&pdev->dev, "GPIO5 not configured for VID " "function\n"); goto exit; } dev_info(&pdev->dev, "Reading VID from GPIO5\n"); res = superio_inb(W83627THF_GPIO5_DR) & sel; exit: superio_exit(); return res; } static int __devinit w83687thf_read_vid(struct platform_device *pdev) { int res = 0xff; superio_enter(); superio_select(W83627HF_LD_HWM); /* Make sure these GPIO pins are enabled */ if (!(superio_inb(W83687THF_VID_EN) & (1 << 2))) { dev_dbg(&pdev->dev, "VID disabled, no VID function\n"); goto exit; } /* Make sure the pins are configured for input */ if (!(superio_inb(W83687THF_VID_CFG) & (1 << 4))) { dev_dbg(&pdev->dev, "VID configured as output, " "no VID function\n"); goto exit; } res = superio_inb(W83687THF_VID_DATA) & 0x3f; exit: superio_exit(); return res; } static int w83627hf_write_value(struct w83627hf_data *data, u16 reg, u16 value) { int word_sized; mutex_lock(&data->lock); word_sized = (((reg & 0xff00) == 0x100) || ((reg & 0xff00) == 0x200)) && (((reg & 0x00ff) == 0x53) || ((reg & 0x00ff) == 0x55)); w83627hf_set_bank(data, reg); outb_p(reg & 0xff, data->addr + W83781D_ADDR_REG_OFFSET); if (word_sized) { outb_p(value >> 8, data->addr + W83781D_DATA_REG_OFFSET); outb_p((reg & 0xff) + 1, data->addr + W83781D_ADDR_REG_OFFSET); } outb_p(value & 0xff, data->addr + W83781D_DATA_REG_OFFSET); w83627hf_reset_bank(data, reg); mutex_unlock(&data->lock); return 0; } static void __devinit w83627hf_init_device(struct platform_device *pdev) { struct w83627hf_data *data = platform_get_drvdata(pdev); int i; enum chips type = data->type; u8 tmp; if (reset) { /* Resetting the chip has been the default for a long time, but repeatedly caused problems (fans going to full speed...) so it is now optional. It might even go away if nobody reports it as being useful, as I see very little reason why this would be needed at all. */ dev_info(&pdev->dev, "If reset=1 solved a problem you were " "having, please report!\n"); /* save this register */ i = w83627hf_read_value(data, W83781D_REG_BEEP_CONFIG); /* Reset all except Watchdog values and last conversion values This sets fan-divs to 2, among others */ w83627hf_write_value(data, W83781D_REG_CONFIG, 0x80); /* Restore the register and disable power-on abnormal beep. This saves FAN 1/2/3 input/output values set by BIOS. */ w83627hf_write_value(data, W83781D_REG_BEEP_CONFIG, i | 0x80); /* Disable master beep-enable (reset turns it on). Individual beeps should be reset to off but for some reason disabling this bit helps some people not get beeped */ w83627hf_write_value(data, W83781D_REG_BEEP_INTS2, 0); } /* Minimize conflicts with other winbond i2c-only clients... */ /* disable i2c subclients... how to disable main i2c client?? */ /* force i2c address to relatively uncommon address */ w83627hf_write_value(data, W83781D_REG_I2C_SUBADDR, 0x89); w83627hf_write_value(data, W83781D_REG_I2C_ADDR, force_i2c); /* Read VID only once */ if (type == w83627hf || type == w83637hf) { int lo = w83627hf_read_value(data, W83781D_REG_VID_FANDIV); int hi = w83627hf_read_value(data, W83781D_REG_CHIPID); data->vid = (lo & 0x0f) | ((hi & 0x01) << 4); } else if (type == w83627thf) { data->vid = w83627thf_read_gpio5(pdev); } else if (type == w83687thf) { data->vid = w83687thf_read_vid(pdev); } /* Read VRM & OVT Config only once */ if (type == w83627thf || type == w83637hf || type == w83687thf) { data->vrm_ovt = w83627hf_read_value(data, W83627THF_REG_VRM_OVT_CFG); } tmp = w83627hf_read_value(data, W83781D_REG_SCFG1); for (i = 1; i <= 3; i++) { if (!(tmp & BIT_SCFG1[i - 1])) { data->sens[i - 1] = 4; } else { if (w83627hf_read_value (data, W83781D_REG_SCFG2) & BIT_SCFG2[i - 1]) data->sens[i - 1] = 1; else data->sens[i - 1] = 2; } if ((type == w83697hf) && (i == 2)) break; } if(init) { /* Enable temp2 */ tmp = w83627hf_read_value(data, W83627HF_REG_TEMP2_CONFIG); if (tmp & 0x01) { dev_warn(&pdev->dev, "Enabling temp2, readings " "might not make sense\n"); w83627hf_write_value(data, W83627HF_REG_TEMP2_CONFIG, tmp & 0xfe); } /* Enable temp3 */ if (type != w83697hf) { tmp = w83627hf_read_value(data, W83627HF_REG_TEMP3_CONFIG); if (tmp & 0x01) { dev_warn(&pdev->dev, "Enabling temp3, " "readings might not make sense\n"); w83627hf_write_value(data, W83627HF_REG_TEMP3_CONFIG, tmp & 0xfe); } } } /* Start monitoring */ w83627hf_write_value(data, W83781D_REG_CONFIG, (w83627hf_read_value(data, W83781D_REG_CONFIG) & 0xf7) | 0x01); } static void w83627hf_update_fan_div(struct w83627hf_data *data) { int reg; reg = w83627hf_read_value(data, W83781D_REG_VID_FANDIV); data->fan_div[0] = (reg >> 4) & 0x03; data->fan_div[1] = (reg >> 6) & 0x03; if (data->type != w83697hf) { data->fan_div[2] = (w83627hf_read_value(data, W83781D_REG_PIN) >> 6) & 0x03; } reg = w83627hf_read_value(data, W83781D_REG_VBAT); data->fan_div[0] |= (reg >> 3) & 0x04; data->fan_div[1] |= (reg >> 4) & 0x04; if (data->type != w83697hf) data->fan_div[2] |= (reg >> 5) & 0x04; } static struct w83627hf_data *w83627hf_update_device(struct device *dev) { struct w83627hf_data *data = dev_get_drvdata(dev); int i, num_temps = (data->type == w83697hf) ? 2 : 3; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { for (i = 0; i <= 8; i++) { /* skip missing sensors */ if (((data->type == w83697hf) && (i == 1)) || ((data->type != w83627hf && data->type != w83697hf) && (i == 5 || i == 6))) continue; data->in[i] = w83627hf_read_value(data, W83781D_REG_IN(i)); data->in_min[i] = w83627hf_read_value(data, W83781D_REG_IN_MIN(i)); data->in_max[i] = w83627hf_read_value(data, W83781D_REG_IN_MAX(i)); } for (i = 0; i <= 2; i++) { data->fan[i] = w83627hf_read_value(data, W83627HF_REG_FAN(i)); data->fan_min[i] = w83627hf_read_value(data, W83627HF_REG_FAN_MIN(i)); } for (i = 0; i <= 2; i++) { u8 tmp = w83627hf_read_value(data, W836X7HF_REG_PWM(data->type, i)); /* bits 0-3 are reserved in 627THF */ if (data->type == w83627thf) tmp &= 0xf0; data->pwm[i] = tmp; if (i == 1 && (data->type == w83627hf || data->type == w83697hf)) break; } if (data->type == w83627hf) { u8 tmp = w83627hf_read_value(data, W83627HF_REG_PWM_FREQ); data->pwm_freq[0] = tmp & 0x07; data->pwm_freq[1] = (tmp >> 4) & 0x07; } else if (data->type != w83627thf) { for (i = 1; i <= 3; i++) { data->pwm_freq[i - 1] = w83627hf_read_value(data, W83637HF_REG_PWM_FREQ[i - 1]); if (i == 2 && (data->type == w83697hf)) break; } } for (i = 0; i < num_temps; i++) { data->temp[i] = w83627hf_read_value( data, w83627hf_reg_temp[i]); data->temp_max[i] = w83627hf_read_value( data, w83627hf_reg_temp_over[i]); data->temp_max_hyst[i] = w83627hf_read_value( data, w83627hf_reg_temp_hyst[i]); } w83627hf_update_fan_div(data); data->alarms = w83627hf_read_value(data, W83781D_REG_ALARM1) | (w83627hf_read_value(data, W83781D_REG_ALARM2) << 8) | (w83627hf_read_value(data, W83781D_REG_ALARM3) << 16); i = w83627hf_read_value(data, W83781D_REG_BEEP_INTS2); data->beep_enable = i >> 7; data->beep_mask = ((i & 0x7f) << 8) | w83627hf_read_value(data, W83781D_REG_BEEP_INTS1) | w83627hf_read_value(data, W83781D_REG_BEEP_INTS3) << 16; data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __init w83627hf_device_add(unsigned short address, const struct w83627hf_sio_data *sio_data) { struct resource res = { .start = address + WINB_REGION_OFFSET, .end = address + WINB_REGION_OFFSET + WINB_REGION_SIZE - 1, .name = DRVNAME, .flags = IORESOURCE_IO, }; int err; pdev = platform_device_alloc(DRVNAME, address); if (!pdev) { err = -ENOMEM; printk(KERN_ERR DRVNAME ": Device allocation failed\n"); goto exit; } err = platform_device_add_resources(pdev, &res, 1); if (err) { printk(KERN_ERR DRVNAME ": Device resource addition failed " "(%d)\n", err); goto exit_device_put; } err = platform_device_add_data(pdev, sio_data, sizeof(struct w83627hf_sio_data)); if (err) { printk(KERN_ERR DRVNAME ": Platform data allocation failed\n"); goto exit_device_put; } err = platform_device_add(pdev); if (err) { printk(KERN_ERR DRVNAME ": Device addition failed (%d)\n", err); goto exit_device_put; } return 0; exit_device_put: platform_device_put(pdev); exit: return err; } static int __init sensors_w83627hf_init(void) { int err; unsigned short address; struct w83627hf_sio_data sio_data; if (w83627hf_find(0x2e, &address, &sio_data) && w83627hf_find(0x4e, &address, &sio_data)) return -ENODEV; err = platform_driver_register(&w83627hf_driver); if (err) goto exit; /* Sets global pdev as a side effect */ err = w83627hf_device_add(address, &sio_data); if (err) goto exit_driver; return 0; exit_driver: platform_driver_unregister(&w83627hf_driver); exit: return err; } static void __exit sensors_w83627hf_exit(void) { platform_device_unregister(pdev); platform_driver_unregister(&w83627hf_driver); } MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>, " "Philip Edelbrock <phil@netroedge.com>, " "and Mark Studebaker <mdsxyz123@yahoo.com>"); MODULE_DESCRIPTION("W83627HF driver"); MODULE_LICENSE("GPL"); module_init(sensors_w83627hf_init); module_exit(sensors_w83627hf_exit);