/* * i2c_adap_pxa.c * * I2C adapter for the PXA I2C bus access. * * Copyright (C) 2002 Intrinsyc Software Inc. * Copyright (C) 2004-2005 Deep Blue Solutions Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * History: * Apr 2002: Initial version [CS] * Jun 2002: Properly seperated algo/adap [FB] * Jan 2003: Fixed several bugs concerning interrupt handling [Kai-Uwe Bloem] * Jan 2003: added limited signal handling [Kai-Uwe Bloem] * Sep 2004: Major rework to ensure efficient bus handling [RMK] * Dec 2004: Added support for PXA27x and slave device probing [Liam Girdwood] * Feb 2005: Rework slave mode handling [RMK] */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/i2c-id.h> #include <linux/init.h> #include <linux/time.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/i2c-pxa.h> #include <linux/platform_device.h> #include <asm/hardware.h> #include <asm/irq.h> #include <asm/arch/i2c.h> #include <asm/arch/pxa-regs.h> struct pxa_i2c { spinlock_t lock; wait_queue_head_t wait; struct i2c_msg *msg; unsigned int msg_num; unsigned int msg_idx; unsigned int msg_ptr; unsigned int slave_addr; struct i2c_adapter adap; #ifdef CONFIG_I2C_PXA_SLAVE struct i2c_slave_client *slave; #endif unsigned int irqlogidx; u32 isrlog[32]; u32 icrlog[32]; }; /* * I2C Slave mode address */ #define I2C_PXA_SLAVE_ADDR 0x1 #ifdef DEBUG struct bits { u32 mask; const char *set; const char *unset; }; #define BIT(m, s, u) { .mask = m, .set = s, .unset = u } static inline void decode_bits(const char *prefix, const struct bits *bits, int num, u32 val) { printk("%s %08x: ", prefix, val); while (num--) { const char *str = val & bits->mask ? bits->set : bits->unset; if (str) printk("%s ", str); bits++; } } static const struct bits isr_bits[] = { BIT(ISR_RWM, "RX", "TX"), BIT(ISR_ACKNAK, "NAK", "ACK"), BIT(ISR_UB, "Bsy", "Rdy"), BIT(ISR_IBB, "BusBsy", "BusRdy"), BIT(ISR_SSD, "SlaveStop", NULL), BIT(ISR_ALD, "ALD", NULL), BIT(ISR_ITE, "TxEmpty", NULL), BIT(ISR_IRF, "RxFull", NULL), BIT(ISR_GCAD, "GenCall", NULL), BIT(ISR_SAD, "SlaveAddr", NULL), BIT(ISR_BED, "BusErr", NULL), }; static void decode_ISR(unsigned int val) { decode_bits(KERN_DEBUG "ISR", isr_bits, ARRAY_SIZE(isr_bits), val); printk("\n"); } static const struct bits icr_bits[] = { BIT(ICR_START, "START", NULL), BIT(ICR_STOP, "STOP", NULL), BIT(ICR_ACKNAK, "ACKNAK", NULL), BIT(ICR_TB, "TB", NULL), BIT(ICR_MA, "MA", NULL), BIT(ICR_SCLE, "SCLE", "scle"), BIT(ICR_IUE, "IUE", "iue"), BIT(ICR_GCD, "GCD", NULL), BIT(ICR_ITEIE, "ITEIE", NULL), BIT(ICR_IRFIE, "IRFIE", NULL), BIT(ICR_BEIE, "BEIE", NULL), BIT(ICR_SSDIE, "SSDIE", NULL), BIT(ICR_ALDIE, "ALDIE", NULL), BIT(ICR_SADIE, "SADIE", NULL), BIT(ICR_UR, "UR", "ur"), }; static void decode_ICR(unsigned int val) { decode_bits(KERN_DEBUG "ICR", icr_bits, ARRAY_SIZE(icr_bits), val); printk("\n"); } static unsigned int i2c_debug = DEBUG; static void i2c_pxa_show_state(struct pxa_i2c *i2c, int lno, const char *fname) { dev_dbg(&i2c->adap.dev, "state:%s:%d: ISR=%08x, ICR=%08x, IBMR=%02x\n", fname, lno, ISR, ICR, IBMR); } #define show_state(i2c) i2c_pxa_show_state(i2c, __LINE__, __FUNCTION__) #else #define i2c_debug 0 #define show_state(i2c) do { } while (0) #define decode_ISR(val) do { } while (0) #define decode_ICR(val) do { } while (0) #endif #define eedbg(lvl, x...) do { if ((lvl) < 1) { printk(KERN_DEBUG "" x); } } while(0) static void i2c_pxa_master_complete(struct pxa_i2c *i2c, int ret); static void i2c_pxa_scream_blue_murder(struct pxa_i2c *i2c, const char *why) { unsigned int i; printk("i2c: error: %s\n", why); printk("i2c: msg_num: %d msg_idx: %d msg_ptr: %d\n", i2c->msg_num, i2c->msg_idx, i2c->msg_ptr); printk("i2c: ICR: %08x ISR: %08x\n" "i2c: log: ", ICR, ISR); for (i = 0; i < i2c->irqlogidx; i++) printk("[%08x:%08x] ", i2c->isrlog[i], i2c->icrlog[i]); printk("\n"); } static inline int i2c_pxa_is_slavemode(struct pxa_i2c *i2c) { return !(ICR & ICR_SCLE); } static void i2c_pxa_abort(struct pxa_i2c *i2c) { unsigned long timeout = jiffies + HZ/4; if (i2c_pxa_is_slavemode(i2c)) { dev_dbg(&i2c->adap.dev, "%s: called in slave mode\n", __func__); return; } while (time_before(jiffies, timeout) && (IBMR & 0x1) == 0) { unsigned long icr = ICR; icr &= ~ICR_START; icr |= ICR_ACKNAK | ICR_STOP | ICR_TB; ICR = icr; show_state(i2c); msleep(1); } ICR &= ~(ICR_MA | ICR_START | ICR_STOP); } static int i2c_pxa_wait_bus_not_busy(struct pxa_i2c *i2c) { int timeout = DEF_TIMEOUT; while (timeout-- && ISR & (ISR_IBB | ISR_UB)) { if ((ISR & ISR_SAD) != 0) timeout += 4; msleep(2); show_state(i2c); } if (timeout <= 0) show_state(i2c); return timeout <= 0 ? I2C_RETRY : 0; } static int i2c_pxa_wait_master(struct pxa_i2c *i2c) { unsigned long timeout = jiffies + HZ*4; while (time_before(jiffies, timeout)) { if (i2c_debug > 1) dev_dbg(&i2c->adap.dev, "%s: %ld: ISR=%08x, ICR=%08x, IBMR=%02x\n", __func__, (long)jiffies, ISR, ICR, IBMR); if (ISR & ISR_SAD) { if (i2c_debug > 0) dev_dbg(&i2c->adap.dev, "%s: Slave detected\n", __func__); goto out; } /* wait for unit and bus being not busy, and we also do a * quick check of the i2c lines themselves to ensure they've * gone high... */ if ((ISR & (ISR_UB | ISR_IBB)) == 0 && IBMR == 3) { if (i2c_debug > 0) dev_dbg(&i2c->adap.dev, "%s: done\n", __func__); return 1; } msleep(1); } if (i2c_debug > 0) dev_dbg(&i2c->adap.dev, "%s: did not free\n", __func__); out: return 0; } static int i2c_pxa_set_master(struct pxa_i2c *i2c) { if (i2c_debug) dev_dbg(&i2c->adap.dev, "setting to bus master\n"); if ((ISR & (ISR_UB | ISR_IBB)) != 0) { dev_dbg(&i2c->adap.dev, "%s: unit is busy\n", __func__); if (!i2c_pxa_wait_master(i2c)) { dev_dbg(&i2c->adap.dev, "%s: error: unit busy\n", __func__); return I2C_RETRY; } } ICR |= ICR_SCLE; return 0; } #ifdef CONFIG_I2C_PXA_SLAVE static int i2c_pxa_wait_slave(struct pxa_i2c *i2c) { unsigned long timeout = jiffies + HZ*1; /* wait for stop */ show_state(i2c); while (time_before(jiffies, timeout)) { if (i2c_debug > 1) dev_dbg(&i2c->adap.dev, "%s: %ld: ISR=%08x, ICR=%08x, IBMR=%02x\n", __func__, (long)jiffies, ISR, ICR, IBMR); if ((ISR & (ISR_UB|ISR_IBB|ISR_SAD)) == ISR_SAD || (ICR & ICR_SCLE) == 0) { if (i2c_debug > 1) dev_dbg(&i2c->adap.dev, "%s: done\n", __func__); return 1; } msleep(1); } if (i2c_debug > 0) dev_dbg(&i2c->adap.dev, "%s: did not free\n", __func__); return 0; } /* * clear the hold on the bus, and take of anything else * that has been configured */ static void i2c_pxa_set_slave(struct pxa_i2c *i2c, int errcode) { show_state(i2c); if (errcode < 0) { udelay(100); /* simple delay */ } else { /* we need to wait for the stop condition to end */ /* if we where in stop, then clear... */ if (ICR & ICR_STOP) { udelay(100); ICR &= ~ICR_STOP; } if (!i2c_pxa_wait_slave(i2c)) { dev_err(&i2c->adap.dev, "%s: wait timedout\n", __func__); return; } } ICR &= ~(ICR_STOP|ICR_ACKNAK|ICR_MA); ICR &= ~ICR_SCLE; if (i2c_debug) { dev_dbg(&i2c->adap.dev, "ICR now %08x, ISR %08x\n", ICR, ISR); decode_ICR(ICR); } } #else #define i2c_pxa_set_slave(i2c, err) do { } while (0) #endif static void i2c_pxa_reset(struct pxa_i2c *i2c) { pr_debug("Resetting I2C Controller Unit\n"); /* abort any transfer currently under way */ i2c_pxa_abort(i2c); /* reset according to 9.8 */ ICR = ICR_UR; ISR = I2C_ISR_INIT; ICR &= ~ICR_UR; ISAR = i2c->slave_addr; /* set control register values */ ICR = I2C_ICR_INIT; #ifdef CONFIG_I2C_PXA_SLAVE dev_info(&i2c->adap.dev, "Enabling slave mode\n"); ICR |= ICR_SADIE | ICR_ALDIE | ICR_SSDIE; #endif i2c_pxa_set_slave(i2c, 0); /* enable unit */ ICR |= ICR_IUE; udelay(100); } #ifdef CONFIG_I2C_PXA_SLAVE /* * I2C EEPROM emulation. */ static struct i2c_eeprom_emu eeprom = { .size = I2C_EEPROM_EMU_SIZE, .watch = LIST_HEAD_INIT(eeprom.watch), }; struct i2c_eeprom_emu *i2c_pxa_get_eeprom(void) { return &eeprom; } int i2c_eeprom_emu_addwatcher(struct i2c_eeprom_emu *emu, void *data, unsigned int addr, unsigned int size, struct i2c_eeprom_emu_watcher *watcher) { struct i2c_eeprom_emu_watch *watch; unsigned long flags; if (addr + size > emu->size) return -EINVAL; watch = kmalloc(sizeof(struct i2c_eeprom_emu_watch), GFP_KERNEL); if (watch) { watch->start = addr; watch->end = addr + size - 1; watch->ops = watcher; watch->data = data; local_irq_save(flags); list_add(&watch->node, &emu->watch); local_irq_restore(flags); } return watch ? 0 : -ENOMEM; } void i2c_eeprom_emu_delwatcher(struct i2c_eeprom_emu *emu, void *data, struct i2c_eeprom_emu_watcher *watcher) { struct i2c_eeprom_emu_watch *watch, *n; unsigned long flags; list_for_each_entry_safe(watch, n, &emu->watch, node) { if (watch->ops == watcher && watch->data == data) { local_irq_save(flags); list_del(&watch->node); local_irq_restore(flags); kfree(watch); } } } static void i2c_eeprom_emu_event(void *ptr, i2c_slave_event_t event) { struct i2c_eeprom_emu *emu = ptr; eedbg(3, "i2c_eeprom_emu_event: %d\n", event); switch (event) { case I2C_SLAVE_EVENT_START_WRITE: emu->seen_start = 1; eedbg(2, "i2c_eeprom: write initiated\n"); break; case I2C_SLAVE_EVENT_START_READ: emu->seen_start = 0; eedbg(2, "i2c_eeprom: read initiated\n"); break; case I2C_SLAVE_EVENT_STOP: emu->seen_start = 0; eedbg(2, "i2c_eeprom: received stop\n"); break; default: eedbg(0, "i2c_eeprom: unhandled event\n"); break; } } static int i2c_eeprom_emu_read(void *ptr) { struct i2c_eeprom_emu *emu = ptr; int ret; ret = emu->bytes[emu->ptr]; emu->ptr = (emu->ptr + 1) % emu->size; return ret; } static void i2c_eeprom_emu_write(void *ptr, unsigned int val) { struct i2c_eeprom_emu *emu = ptr; struct i2c_eeprom_emu_watch *watch; if (emu->seen_start != 0) { eedbg(2, "i2c_eeprom_emu_write: setting ptr %02x\n", val); emu->ptr = val; emu->seen_start = 0; return; } emu->bytes[emu->ptr] = val; eedbg(1, "i2c_eeprom_emu_write: ptr=0x%02x, val=0x%02x\n", emu->ptr, val); list_for_each_entry(watch, &emu->watch, node) { if (!watch->ops || !watch->ops->write) continue; if (watch->start <= emu->ptr && watch->end >= emu->ptr) watch->ops->write(watch->data, emu->ptr, val); } emu->ptr = (emu->ptr + 1) % emu->size; } struct i2c_slave_client eeprom_client = { .data = &eeprom, .event = i2c_eeprom_emu_event, .read = i2c_eeprom_emu_read, .write = i2c_eeprom_emu_write }; /* * PXA I2C Slave mode */ static void i2c_pxa_slave_txempty(struct pxa_i2c *i2c, u32 isr) { if (isr & ISR_BED) { /* what should we do here? */ } else { int ret = i2c->slave->read(i2c->slave->data); IDBR = ret; ICR |= ICR_TB; /* allow next byte */ } } static void i2c_pxa_slave_rxfull(struct pxa_i2c *i2c, u32 isr) { unsigned int byte = IDBR; if (i2c->slave != NULL) i2c->slave->write(i2c->slave->data, byte); ICR |= ICR_TB; } static void i2c_pxa_slave_start(struct pxa_i2c *i2c, u32 isr) { int timeout; if (i2c_debug > 0) dev_dbg(&i2c->adap.dev, "SAD, mode is slave-%cx\n", (isr & ISR_RWM) ? 'r' : 't'); if (i2c->slave != NULL) i2c->slave->event(i2c->slave->data, (isr & ISR_RWM) ? I2C_SLAVE_EVENT_START_READ : I2C_SLAVE_EVENT_START_WRITE); /* * slave could interrupt in the middle of us generating a * start condition... if this happens, we'd better back off * and stop holding the poor thing up */ ICR &= ~(ICR_START|ICR_STOP); ICR |= ICR_TB; timeout = 0x10000; while (1) { if ((IBMR & 2) == 2) break; timeout--; if (timeout <= 0) { dev_err(&i2c->adap.dev, "timeout waiting for SCL high\n"); break; } } ICR &= ~ICR_SCLE; } static void i2c_pxa_slave_stop(struct pxa_i2c *i2c) { if (i2c_debug > 2) dev_dbg(&i2c->adap.dev, "ISR: SSD (Slave Stop)\n"); if (i2c->slave != NULL) i2c->slave->event(i2c->slave->data, I2C_SLAVE_EVENT_STOP); if (i2c_debug > 2) dev_dbg(&i2c->adap.dev, "ISR: SSD (Slave Stop) acked\n"); /* * If we have a master-mode message waiting, * kick it off now that the slave has completed. */ if (i2c->msg) i2c_pxa_master_complete(i2c, I2C_RETRY); } #else static void i2c_pxa_slave_txempty(struct pxa_i2c *i2c, u32 isr) { if (isr & ISR_BED) { /* what should we do here? */ } else { IDBR = 0; ICR |= ICR_TB; } } static void i2c_pxa_slave_rxfull(struct pxa_i2c *i2c, u32 isr) { ICR |= ICR_TB | ICR_ACKNAK; } static void i2c_pxa_slave_start(struct pxa_i2c *i2c, u32 isr) { int timeout; /* * slave could interrupt in the middle of us generating a * start condition... if this happens, we'd better back off * and stop holding the poor thing up */ ICR &= ~(ICR_START|ICR_STOP); ICR |= ICR_TB | ICR_ACKNAK; timeout = 0x10000; while (1) { if ((IBMR & 2) == 2) break; timeout--; if (timeout <= 0) { dev_err(&i2c->adap.dev, "timeout waiting for SCL high\n"); break; } } ICR &= ~ICR_SCLE; } static void i2c_pxa_slave_stop(struct pxa_i2c *i2c) { if (i2c->msg) i2c_pxa_master_complete(i2c, I2C_RETRY); } #endif /* * PXA I2C Master mode */ static inline unsigned int i2c_pxa_addr_byte(struct i2c_msg *msg) { unsigned int addr = (msg->addr & 0x7f) << 1; if (msg->flags & I2C_M_RD) addr |= 1; return addr; } static inline void i2c_pxa_start_message(struct pxa_i2c *i2c) { u32 icr; /* * Step 1: target slave address into IDBR */ IDBR = i2c_pxa_addr_byte(i2c->msg); /* * Step 2: initiate the write. */ icr = ICR & ~(ICR_STOP | ICR_ALDIE); ICR = icr | ICR_START | ICR_TB; } /* * We are protected by the adapter bus mutex. */ static int i2c_pxa_do_xfer(struct pxa_i2c *i2c, struct i2c_msg *msg, int num) { long timeout; int ret; /* * Wait for the bus to become free. */ ret = i2c_pxa_wait_bus_not_busy(i2c); if (ret) { dev_err(&i2c->adap.dev, "i2c_pxa: timeout waiting for bus free\n"); goto out; } /* * Set master mode. */ ret = i2c_pxa_set_master(i2c); if (ret) { dev_err(&i2c->adap.dev, "i2c_pxa_set_master: error %d\n", ret); goto out; } spin_lock_irq(&i2c->lock); i2c->msg = msg; i2c->msg_num = num; i2c->msg_idx = 0; i2c->msg_ptr = 0; i2c->irqlogidx = 0; i2c_pxa_start_message(i2c); spin_unlock_irq(&i2c->lock); /* * The rest of the processing occurs in the interrupt handler. */ timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5); /* * We place the return code in i2c->msg_idx. */ ret = i2c->msg_idx; if (timeout == 0) i2c_pxa_scream_blue_murder(i2c, "timeout"); out: return ret; } /* * i2c_pxa_master_complete - complete the message and wake up. */ static void i2c_pxa_master_complete(struct pxa_i2c *i2c, int ret) { i2c->msg_ptr = 0; i2c->msg = NULL; i2c->msg_idx ++; i2c->msg_num = 0; if (ret) i2c->msg_idx = ret; wake_up(&i2c->wait); } static void i2c_pxa_irq_txempty(struct pxa_i2c *i2c, u32 isr) { u32 icr = ICR & ~(ICR_START|ICR_STOP|ICR_ACKNAK|ICR_TB); again: /* * If ISR_ALD is set, we lost arbitration. */ if (isr & ISR_ALD) { /* * Do we need to do anything here? The PXA docs * are vague about what happens. */ i2c_pxa_scream_blue_murder(i2c, "ALD set"); /* * We ignore this error. We seem to see spurious ALDs * for seemingly no reason. If we handle them as I think * they should, we end up causing an I2C error, which * is painful for some systems. */ return; /* ignore */ } if (isr & ISR_BED) { int ret = BUS_ERROR; /* * I2C bus error - either the device NAK'd us, or * something more serious happened. If we were NAK'd * on the initial address phase, we can retry. */ if (isr & ISR_ACKNAK) { if (i2c->msg_ptr == 0 && i2c->msg_idx == 0) ret = I2C_RETRY; else ret = XFER_NAKED; } i2c_pxa_master_complete(i2c, ret); } else if (isr & ISR_RWM) { /* * Read mode. We have just sent the address byte, and * now we must initiate the transfer. */ if (i2c->msg_ptr == i2c->msg->len - 1 && i2c->msg_idx == i2c->msg_num - 1) icr |= ICR_STOP | ICR_ACKNAK; icr |= ICR_ALDIE | ICR_TB; } else if (i2c->msg_ptr < i2c->msg->len) { /* * Write mode. Write the next data byte. */ IDBR = i2c->msg->buf[i2c->msg_ptr++]; icr |= ICR_ALDIE | ICR_TB; /* * If this is the last byte of the last message, send * a STOP. */ if (i2c->msg_ptr == i2c->msg->len && i2c->msg_idx == i2c->msg_num - 1) icr |= ICR_STOP; } else if (i2c->msg_idx < i2c->msg_num - 1) { /* * Next segment of the message. */ i2c->msg_ptr = 0; i2c->msg_idx ++; i2c->msg++; /* * If we aren't doing a repeated start and address, * go back and try to send the next byte. Note that * we do not support switching the R/W direction here. */ if (i2c->msg->flags & I2C_M_NOSTART) goto again; /* * Write the next address. */ IDBR = i2c_pxa_addr_byte(i2c->msg); /* * And trigger a repeated start, and send the byte. */ icr &= ~ICR_ALDIE; icr |= ICR_START | ICR_TB; } else { if (i2c->msg->len == 0) { /* * Device probes have a message length of zero * and need the bus to be reset before it can * be used again. */ i2c_pxa_reset(i2c); } i2c_pxa_master_complete(i2c, 0); } i2c->icrlog[i2c->irqlogidx-1] = icr; ICR = icr; show_state(i2c); } static void i2c_pxa_irq_rxfull(struct pxa_i2c *i2c, u32 isr) { u32 icr = ICR & ~(ICR_START|ICR_STOP|ICR_ACKNAK|ICR_TB); /* * Read the byte. */ i2c->msg->buf[i2c->msg_ptr++] = IDBR; if (i2c->msg_ptr < i2c->msg->len) { /* * If this is the last byte of the last * message, send a STOP. */ if (i2c->msg_ptr == i2c->msg->len - 1) icr |= ICR_STOP | ICR_ACKNAK; icr |= ICR_ALDIE | ICR_TB; } else { i2c_pxa_master_complete(i2c, 0); } i2c->icrlog[i2c->irqlogidx-1] = icr; ICR = icr; } static irqreturn_t i2c_pxa_handler(int this_irq, void *dev_id, struct pt_regs *regs) { struct pxa_i2c *i2c = dev_id; u32 isr = ISR; if (i2c_debug > 2 && 0) { dev_dbg(&i2c->adap.dev, "%s: ISR=%08x, ICR=%08x, IBMR=%02x\n", __func__, isr, ICR, IBMR); decode_ISR(isr); } if (i2c->irqlogidx < ARRAY_SIZE(i2c->isrlog)) i2c->isrlog[i2c->irqlogidx++] = isr; show_state(i2c); /* * Always clear all pending IRQs. */ ISR = isr & (ISR_SSD|ISR_ALD|ISR_ITE|ISR_IRF|ISR_SAD|ISR_BED); if (isr & ISR_SAD) i2c_pxa_slave_start(i2c, isr); if (isr & ISR_SSD) i2c_pxa_slave_stop(i2c); if (i2c_pxa_is_slavemode(i2c)) { if (isr & ISR_ITE) i2c_pxa_slave_txempty(i2c, isr); if (isr & ISR_IRF) i2c_pxa_slave_rxfull(i2c, isr); } else if (i2c->msg) { if (isr & ISR_ITE) i2c_pxa_irq_txempty(i2c, isr); if (isr & ISR_IRF) i2c_pxa_irq_rxfull(i2c, isr); } else { i2c_pxa_scream_blue_murder(i2c, "spurious irq"); } return IRQ_HANDLED; } static int i2c_pxa_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) { struct pxa_i2c *i2c = adap->algo_data; int ret, i; /* If the I2C controller is disabled we need to reset it (probably due to a suspend/resume destroying state). We do this here as we can then avoid worrying about resuming the controller before its users. */ if (!(ICR & ICR_IUE)) i2c_pxa_reset(i2c); for (i = adap->retries; i >= 0; i--) { ret = i2c_pxa_do_xfer(i2c, msgs, num); if (ret != I2C_RETRY) goto out; if (i2c_debug) dev_dbg(&adap->dev, "Retrying transmission\n"); udelay(100); } i2c_pxa_scream_blue_murder(i2c, "exhausted retries"); ret = -EREMOTEIO; out: i2c_pxa_set_slave(i2c, ret); return ret; } static u32 i2c_pxa_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static struct i2c_algorithm i2c_pxa_algorithm = { .master_xfer = i2c_pxa_xfer, .functionality = i2c_pxa_functionality, }; static struct pxa_i2c i2c_pxa = { .lock = SPIN_LOCK_UNLOCKED, .wait = __WAIT_QUEUE_HEAD_INITIALIZER(i2c_pxa.wait), .adap = { .owner = THIS_MODULE, .algo = &i2c_pxa_algorithm, .name = "pxa2xx-i2c", .retries = 5, }, }; static int i2c_pxa_probe(struct platform_device *dev) { struct pxa_i2c *i2c = &i2c_pxa; #ifdef CONFIG_I2C_PXA_SLAVE struct i2c_pxa_platform_data *plat = dev->dev.platform_data; #endif int ret; #ifdef CONFIG_PXA27x pxa_gpio_mode(GPIO117_I2CSCL_MD); pxa_gpio_mode(GPIO118_I2CSDA_MD); udelay(100); #endif i2c->slave_addr = I2C_PXA_SLAVE_ADDR; #ifdef CONFIG_I2C_PXA_SLAVE i2c->slave = &eeprom_client; if (plat) { i2c->slave_addr = plat->slave_addr; if (plat->slave) i2c->slave = plat->slave; } #endif pxa_set_cken(CKEN14_I2C, 1); ret = request_irq(IRQ_I2C, i2c_pxa_handler, SA_INTERRUPT, "pxa2xx-i2c", i2c); if (ret) goto out; i2c_pxa_reset(i2c); i2c->adap.algo_data = i2c; i2c->adap.dev.parent = &dev->dev; ret = i2c_add_adapter(&i2c->adap); if (ret < 0) { printk(KERN_INFO "I2C: Failed to add bus\n"); goto err_irq; } platform_set_drvdata(dev, i2c); #ifdef CONFIG_I2C_PXA_SLAVE printk(KERN_INFO "I2C: %s: PXA I2C adapter, slave address %d\n", i2c->adap.dev.bus_id, i2c->slave_addr); #else printk(KERN_INFO "I2C: %s: PXA I2C adapter\n", i2c->adap.dev.bus_id); #endif return 0; err_irq: free_irq(IRQ_I2C, i2c); out: return ret; } static int i2c_pxa_remove(struct platform_device *dev) { struct pxa_i2c *i2c = platform_get_drvdata(dev); platform_set_drvdata(dev, NULL); i2c_del_adapter(&i2c->adap); free_irq(IRQ_I2C, i2c); pxa_set_cken(CKEN14_I2C, 0); return 0; } static struct platform_driver i2c_pxa_driver = { .probe = i2c_pxa_probe, .remove = i2c_pxa_remove, .driver = { .name = "pxa2xx-i2c", }, }; static int __init i2c_adap_pxa_init(void) { return platform_driver_register(&i2c_pxa_driver); } static void i2c_adap_pxa_exit(void) { return platform_driver_unregister(&i2c_pxa_driver); } MODULE_LICENSE("GPL"); module_init(i2c_adap_pxa_init); module_exit(i2c_adap_pxa_exit);