/* * linux/drivers/ide/ide-pmac.c * * Support for IDE interfaces on PowerMacs. * These IDE interfaces are memory-mapped and have a DBDMA channel * for doing DMA. * * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Some code taken from drivers/ide/ide-dma.c: * * Copyright (c) 1995-1998 Mark Lord * * TODO: - Use pre-calculated (kauai) timing tables all the time and * get rid of the "rounded" tables used previously, so we have the * same table format for all controllers and can then just have one * big table * */ #include <linux/config.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/ide.h> #include <linux/notifier.h> #include <linux/reboot.h> #include <linux/pci.h> #include <linux/adb.h> #include <linux/pmu.h> #include <linux/scatterlist.h> #include <asm/prom.h> #include <asm/io.h> #include <asm/dbdma.h> #include <asm/ide.h> #include <asm/pci-bridge.h> #include <asm/machdep.h> #include <asm/pmac_feature.h> #include <asm/sections.h> #include <asm/irq.h> #ifndef CONFIG_PPC64 #include <asm/mediabay.h> #endif #include "ide-timing.h" #undef IDE_PMAC_DEBUG #define DMA_WAIT_TIMEOUT 50 typedef struct pmac_ide_hwif { unsigned long regbase; int irq; int kind; int aapl_bus_id; unsigned cable_80 : 1; unsigned mediabay : 1; unsigned broken_dma : 1; unsigned broken_dma_warn : 1; struct device_node* node; struct macio_dev *mdev; u32 timings[4]; volatile u32 __iomem * *kauai_fcr; #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC /* Those fields are duplicating what is in hwif. We currently * can't use the hwif ones because of some assumptions that are * beeing done by the generic code about the kind of dma controller * and format of the dma table. This will have to be fixed though. */ volatile struct dbdma_regs __iomem * dma_regs; struct dbdma_cmd* dma_table_cpu; #endif } pmac_ide_hwif_t; static pmac_ide_hwif_t pmac_ide[MAX_HWIFS]; static int pmac_ide_count; enum { controller_ohare, /* OHare based */ controller_heathrow, /* Heathrow/Paddington */ controller_kl_ata3, /* KeyLargo ATA-3 */ controller_kl_ata4, /* KeyLargo ATA-4 */ controller_un_ata6, /* UniNorth2 ATA-6 */ controller_k2_ata6, /* K2 ATA-6 */ controller_sh_ata6, /* Shasta ATA-6 */ }; static const char* model_name[] = { "OHare ATA", /* OHare based */ "Heathrow ATA", /* Heathrow/Paddington */ "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */ "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */ "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */ "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */ "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */ }; /* * Extra registers, both 32-bit little-endian */ #define IDE_TIMING_CONFIG 0x200 #define IDE_INTERRUPT 0x300 /* Kauai (U2) ATA has different register setup */ #define IDE_KAUAI_PIO_CONFIG 0x200 #define IDE_KAUAI_ULTRA_CONFIG 0x210 #define IDE_KAUAI_POLL_CONFIG 0x220 /* * Timing configuration register definitions */ /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */ #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS) #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS) #define IDE_SYSCLK_NS 30 /* 33Mhz cell */ #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */ /* 133Mhz cell, found in shasta. * See comments about 100 Mhz Uninorth 2... * Note that PIO_MASK and MDMA_MASK seem to overlap */ #define TR_133_PIOREG_PIO_MASK 0xff000fff #define TR_133_PIOREG_MDMA_MASK 0x00fff800 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff #define TR_133_UDMAREG_UDMA_EN 0x00000001 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about * this one yet, it appears as a pci device (106b/0033) on uninorth * internal PCI bus and it's clock is controlled like gem or fw. It * appears to be an evolution of keylargo ATA4 with a timing register * extended to 2 32bits registers and a similar DBDMA channel. Other * registers seem to exist but I can't tell much about them. * * So far, I'm using pre-calculated tables for this extracted from * the values used by the MacOS X driver. * * The "PIO" register controls PIO and MDMA timings, the "ULTRA" * register controls the UDMA timings. At least, it seems bit 0 * of this one enables UDMA vs. MDMA, and bits 4..7 are the * cycle time in units of 10ns. Bits 8..15 are used by I don't * know their meaning yet */ #define TR_100_PIOREG_PIO_MASK 0xff000fff #define TR_100_PIOREG_MDMA_MASK 0x00fff000 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff #define TR_100_UDMAREG_UDMA_EN 0x00000001 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on * 40 connector cable and to 4 on 80 connector one. * Clock unit is 15ns (66Mhz) * * 3 Values can be programmed: * - Write data setup, which appears to match the cycle time. They * also call it DIOW setup. * - Ready to pause time (from spec) * - Address setup. That one is weird. I don't see where exactly * it fits in UDMA cycles, I got it's name from an obscure piece * of commented out code in Darwin. They leave it to 0, we do as * well, despite a comment that would lead to think it has a * min value of 45ns. * Apple also add 60ns to the write data setup (or cycle time ?) on * reads. */ #define TR_66_UDMA_MASK 0xfff00000 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */ #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */ #define TR_66_UDMA_ADDRSETUP_SHIFT 29 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */ #define TR_66_UDMA_RDY2PAUS_SHIFT 25 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */ #define TR_66_UDMA_WRDATASETUP_SHIFT 21 #define TR_66_MDMA_MASK 0x000ffc00 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000 #define TR_66_MDMA_RECOVERY_SHIFT 15 #define TR_66_MDMA_ACCESS_MASK 0x00007c00 #define TR_66_MDMA_ACCESS_SHIFT 10 #define TR_66_PIO_MASK 0x000003ff #define TR_66_PIO_RECOVERY_MASK 0x000003e0 #define TR_66_PIO_RECOVERY_SHIFT 5 #define TR_66_PIO_ACCESS_MASK 0x0000001f #define TR_66_PIO_ACCESS_SHIFT 0 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo * Can do pio & mdma modes, clock unit is 30ns (33Mhz) * * The access time and recovery time can be programmed. Some older * Darwin code base limit OHare to 150ns cycle time. I decided to do * the same here fore safety against broken old hardware ;) * The HalfTick bit, when set, adds half a clock (15ns) to the access * time and removes one from recovery. It's not supported on KeyLargo * implementation afaik. The E bit appears to be set for PIO mode 0 and * is used to reach long timings used in this mode. */ #define TR_33_MDMA_MASK 0x003ff800 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000 #define TR_33_MDMA_RECOVERY_SHIFT 16 #define TR_33_MDMA_ACCESS_MASK 0x0000f800 #define TR_33_MDMA_ACCESS_SHIFT 11 #define TR_33_MDMA_HALFTICK 0x00200000 #define TR_33_PIO_MASK 0x000007ff #define TR_33_PIO_E 0x00000400 #define TR_33_PIO_RECOVERY_MASK 0x000003e0 #define TR_33_PIO_RECOVERY_SHIFT 5 #define TR_33_PIO_ACCESS_MASK 0x0000001f #define TR_33_PIO_ACCESS_SHIFT 0 /* * Interrupt register definitions */ #define IDE_INTR_DMA 0x80000000 #define IDE_INTR_DEVICE 0x40000000 /* * FCR Register on Kauai. Not sure what bit 0x4 is ... */ #define KAUAI_FCR_UATA_MAGIC 0x00000004 #define KAUAI_FCR_UATA_RESET_N 0x00000002 #define KAUAI_FCR_UATA_ENABLE 0x00000001 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC /* Rounded Multiword DMA timings * * I gave up finding a generic formula for all controller * types and instead, built tables based on timing values * used by Apple in Darwin's implementation. */ struct mdma_timings_t { int accessTime; int recoveryTime; int cycleTime; }; struct mdma_timings_t mdma_timings_33[] = { { 240, 240, 480 }, { 180, 180, 360 }, { 135, 135, 270 }, { 120, 120, 240 }, { 105, 105, 210 }, { 90, 90, 180 }, { 75, 75, 150 }, { 75, 45, 120 }, { 0, 0, 0 } }; struct mdma_timings_t mdma_timings_33k[] = { { 240, 240, 480 }, { 180, 180, 360 }, { 150, 150, 300 }, { 120, 120, 240 }, { 90, 120, 210 }, { 90, 90, 180 }, { 90, 60, 150 }, { 90, 30, 120 }, { 0, 0, 0 } }; struct mdma_timings_t mdma_timings_66[] = { { 240, 240, 480 }, { 180, 180, 360 }, { 135, 135, 270 }, { 120, 120, 240 }, { 105, 105, 210 }, { 90, 90, 180 }, { 90, 75, 165 }, { 75, 45, 120 }, { 0, 0, 0 } }; /* KeyLargo ATA-4 Ultra DMA timings (rounded) */ struct { int addrSetup; /* ??? */ int rdy2pause; int wrDataSetup; } kl66_udma_timings[] = { { 0, 180, 120 }, /* Mode 0 */ { 0, 150, 90 }, /* 1 */ { 0, 120, 60 }, /* 2 */ { 0, 90, 45 }, /* 3 */ { 0, 90, 30 } /* 4 */ }; /* UniNorth 2 ATA/100 timings */ struct kauai_timing { int cycle_time; u32 timing_reg; }; static struct kauai_timing kauai_pio_timings[] = { { 930 , 0x08000fff }, { 600 , 0x08000a92 }, { 383 , 0x0800060f }, { 360 , 0x08000492 }, { 330 , 0x0800048f }, { 300 , 0x080003cf }, { 270 , 0x080003cc }, { 240 , 0x0800038b }, { 239 , 0x0800030c }, { 180 , 0x05000249 }, { 120 , 0x04000148 } }; static struct kauai_timing kauai_mdma_timings[] = { { 1260 , 0x00fff000 }, { 480 , 0x00618000 }, { 360 , 0x00492000 }, { 270 , 0x0038e000 }, { 240 , 0x0030c000 }, { 210 , 0x002cb000 }, { 180 , 0x00249000 }, { 150 , 0x00209000 }, { 120 , 0x00148000 }, { 0 , 0 }, }; static struct kauai_timing kauai_udma_timings[] = { { 120 , 0x000070c0 }, { 90 , 0x00005d80 }, { 60 , 0x00004a60 }, { 45 , 0x00003a50 }, { 30 , 0x00002a30 }, { 20 , 0x00002921 }, { 0 , 0 }, }; static struct kauai_timing shasta_pio_timings[] = { { 930 , 0x08000fff }, { 600 , 0x0A000c97 }, { 383 , 0x07000712 }, { 360 , 0x040003cd }, { 330 , 0x040003cd }, { 300 , 0x040003cd }, { 270 , 0x040003cd }, { 240 , 0x040003cd }, { 239 , 0x040003cd }, { 180 , 0x0400028b }, { 120 , 0x0400010a } }; static struct kauai_timing shasta_mdma_timings[] = { { 1260 , 0x00fff000 }, { 480 , 0x00820800 }, { 360 , 0x00820800 }, { 270 , 0x00820800 }, { 240 , 0x00820800 }, { 210 , 0x00820800 }, { 180 , 0x00820800 }, { 150 , 0x0028b000 }, { 120 , 0x001ca000 }, { 0 , 0 }, }; static struct kauai_timing shasta_udma133_timings[] = { { 120 , 0x00035901, }, { 90 , 0x000348b1, }, { 60 , 0x00033881, }, { 45 , 0x00033861, }, { 30 , 0x00033841, }, { 20 , 0x00033031, }, { 15 , 0x00033021, }, { 0 , 0 }, }; static inline u32 kauai_lookup_timing(struct kauai_timing* table, int cycle_time) { int i; for (i=0; table[i].cycle_time; i++) if (cycle_time > table[i+1].cycle_time) return table[i].timing_reg; return 0; } /* allow up to 256 DBDMA commands per xfer */ #define MAX_DCMDS 256 /* * Wait 1s for disk to answer on IDE bus after a hard reset * of the device (via GPIO/FCR). * * Some devices seem to "pollute" the bus even after dropping * the BSY bit (typically some combo drives slave on the UDMA * bus) after a hard reset. Since we hard reset all drives on * KeyLargo ATA66, we have to keep that delay around. I may end * up not hard resetting anymore on these and keep the delay only * for older interfaces instead (we have to reset when coming * from MacOS...) --BenH. */ #define IDE_WAKEUP_DELAY (1*HZ) static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif); static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq); static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed); static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio); static void pmac_ide_selectproc(ide_drive_t *drive); static void pmac_ide_kauai_selectproc(ide_drive_t *drive); #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ /* * Below is the code for blinking the laptop LED along with hard * disk activity. */ #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK /* Set to 50ms minimum led-on time (also used to limit frequency * of requests sent to the PMU */ #define PMU_HD_BLINK_TIME (HZ/50) static struct adb_request pmu_blink_on, pmu_blink_off; static spinlock_t pmu_blink_lock; static unsigned long pmu_blink_stoptime; static int pmu_blink_ledstate; static struct timer_list pmu_blink_timer; static int pmu_ide_blink_enabled; static void pmu_hd_blink_timeout(unsigned long data) { unsigned long flags; spin_lock_irqsave(&pmu_blink_lock, flags); /* We may have been triggered again in a racy way, check * that we really want to switch it off */ if (time_after(pmu_blink_stoptime, jiffies)) goto done; /* Previous req. not complete, try 100ms more */ if (pmu_blink_off.complete == 0) mod_timer(&pmu_blink_timer, jiffies + PMU_HD_BLINK_TIME); else if (pmu_blink_ledstate) { pmu_request(&pmu_blink_off, NULL, 4, 0xee, 4, 0, 0); pmu_blink_ledstate = 0; } done: spin_unlock_irqrestore(&pmu_blink_lock, flags); } static void pmu_hd_kick_blink(void *data, int rw) { unsigned long flags; pmu_blink_stoptime = jiffies + PMU_HD_BLINK_TIME; wmb(); mod_timer(&pmu_blink_timer, pmu_blink_stoptime); /* Fast path when LED is already ON */ if (pmu_blink_ledstate == 1) return; spin_lock_irqsave(&pmu_blink_lock, flags); if (pmu_blink_on.complete && !pmu_blink_ledstate) { pmu_request(&pmu_blink_on, NULL, 4, 0xee, 4, 0, 1); pmu_blink_ledstate = 1; } spin_unlock_irqrestore(&pmu_blink_lock, flags); } static int pmu_hd_blink_init(void) { struct device_node *dt; const char *model; /* Currently, I only enable this feature on KeyLargo based laptops, * older laptops may support it (at least heathrow/paddington) but * I don't feel like loading those venerable old machines with so * much additional interrupt & PMU activity... */ if (pmu_get_model() != PMU_KEYLARGO_BASED) return 0; dt = of_find_node_by_path("/"); if (dt == NULL) return 0; model = (const char *)get_property(dt, "model", NULL); if (model == NULL) return 0; if (strncmp(model, "PowerBook", strlen("PowerBook")) != 0 && strncmp(model, "iBook", strlen("iBook")) != 0) { of_node_put(dt); return 0; } of_node_put(dt); pmu_blink_on.complete = 1; pmu_blink_off.complete = 1; spin_lock_init(&pmu_blink_lock); init_timer(&pmu_blink_timer); pmu_blink_timer.function = pmu_hd_blink_timeout; return 1; } #endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */ /* * N.B. this can't be an initfunc, because the media-bay task can * call ide_[un]register at any time. */ void pmac_ide_init_hwif_ports(hw_regs_t *hw, unsigned long data_port, unsigned long ctrl_port, int *irq) { int i, ix; if (data_port == 0) return; for (ix = 0; ix < MAX_HWIFS; ++ix) if (data_port == pmac_ide[ix].regbase) break; if (ix >= MAX_HWIFS) { /* Probably a PCI interface... */ for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i) hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET; hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port; return; } for (i = 0; i < 8; ++i) hw->io_ports[i] = data_port + i * 0x10; hw->io_ports[8] = data_port + 0x160; if (irq != NULL) *irq = pmac_ide[ix].irq; } #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x))) /* * Apply the timings of the proper unit (master/slave) to the shared * timing register when selecting that unit. This version is for * ASICs with a single timing register */ static void pmac_ide_selectproc(ide_drive_t *drive) { pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; if (pmif == NULL) return; if (drive->select.b.unit & 0x01) writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG)); else writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG)); (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); } /* * Apply the timings of the proper unit (master/slave) to the shared * timing register when selecting that unit. This version is for * ASICs with a dual timing register (Kauai) */ static void pmac_ide_kauai_selectproc(ide_drive_t *drive) { pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; if (pmif == NULL) return; if (drive->select.b.unit & 0x01) { writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); } else { writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); } (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); } /* * Force an update of controller timing values for a given drive */ static void pmac_ide_do_update_timings(ide_drive_t *drive) { pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; if (pmif == NULL) return; if (pmif->kind == controller_sh_ata6 || pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6) pmac_ide_kauai_selectproc(drive); else pmac_ide_selectproc(drive); } static void pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port) { u32 tmp; writeb(value, (void __iomem *) port); tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); } /* * Send the SET_FEATURE IDE command to the drive and update drive->id with * the new state. We currently don't use the generic routine as it used to * cause various trouble, especially with older mediabays. * This code is sometimes triggering a spurrious interrupt though, I need * to sort that out sooner or later and see if I can finally get the * common version to work properly in all cases */ static int pmac_ide_do_setfeature(ide_drive_t *drive, u8 command) { ide_hwif_t *hwif = HWIF(drive); int result = 1; disable_irq_nosync(hwif->irq); udelay(1); SELECT_DRIVE(drive); SELECT_MASK(drive, 0); udelay(1); /* Get rid of pending error state */ (void) hwif->INB(IDE_STATUS_REG); /* Timeout bumped for some powerbooks */ if (wait_for_ready(drive, 2000)) { /* Timeout bumped for some powerbooks */ printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready " "before SET_FEATURE!\n", drive->name); goto out; } udelay(10); hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG); hwif->OUTB(command, IDE_NSECTOR_REG); hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG); udelay(1); /* Timeout bumped for some powerbooks */ result = wait_for_ready(drive, 2000); hwif->OUTB(drive->ctl, IDE_CONTROL_REG); if (result) printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready " "after SET_FEATURE !\n", drive->name); out: SELECT_MASK(drive, 0); if (result == 0) { drive->id->dma_ultra &= ~0xFF00; drive->id->dma_mword &= ~0x0F00; drive->id->dma_1word &= ~0x0F00; switch(command) { case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break; case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break; case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break; case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break; case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break; case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break; case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break; case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break; case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; default: break; } } enable_irq(hwif->irq); return result; } /* * Old tuning functions (called on hdparm -p), sets up drive PIO timings */ static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio) { ide_pio_data_t d; u32 *timings; unsigned accessTicks, recTicks; unsigned accessTime, recTime; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; if (pmif == NULL) return; /* which drive is it ? */ timings = &pmif->timings[drive->select.b.unit & 0x01]; pio = ide_get_best_pio_mode(drive, pio, 4, &d); switch (pmif->kind) { case controller_sh_ata6: { /* 133Mhz cell */ u32 tr = kauai_lookup_timing(shasta_pio_timings, d.cycle_time); if (tr == 0) return; *timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr; break; } case controller_un_ata6: case controller_k2_ata6: { /* 100Mhz cell */ u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time); if (tr == 0) return; *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr; break; } case controller_kl_ata4: /* 66Mhz cell */ recTime = d.cycle_time - ide_pio_timings[pio].active_time - ide_pio_timings[pio].setup_time; recTime = max(recTime, 150U); accessTime = ide_pio_timings[pio].active_time; accessTime = max(accessTime, 150U); accessTicks = SYSCLK_TICKS_66(accessTime); accessTicks = min(accessTicks, 0x1fU); recTicks = SYSCLK_TICKS_66(recTime); recTicks = min(recTicks, 0x1fU); *timings = ((*timings) & ~TR_66_PIO_MASK) | (accessTicks << TR_66_PIO_ACCESS_SHIFT) | (recTicks << TR_66_PIO_RECOVERY_SHIFT); break; default: { /* 33Mhz cell */ int ebit = 0; recTime = d.cycle_time - ide_pio_timings[pio].active_time - ide_pio_timings[pio].setup_time; recTime = max(recTime, 150U); accessTime = ide_pio_timings[pio].active_time; accessTime = max(accessTime, 150U); accessTicks = SYSCLK_TICKS(accessTime); accessTicks = min(accessTicks, 0x1fU); accessTicks = max(accessTicks, 4U); recTicks = SYSCLK_TICKS(recTime); recTicks = min(recTicks, 0x1fU); recTicks = max(recTicks, 5U) - 4; if (recTicks > 9) { recTicks--; /* guess, but it's only for PIO0, so... */ ebit = 1; } *timings = ((*timings) & ~TR_33_PIO_MASK) | (accessTicks << TR_33_PIO_ACCESS_SHIFT) | (recTicks << TR_33_PIO_RECOVERY_SHIFT); if (ebit) *timings |= TR_33_PIO_E; break; } } #ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n", drive->name, pio, *timings); #endif if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG)) pmac_ide_do_update_timings(drive); } #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC /* * Calculate KeyLargo ATA/66 UDMA timings */ static int set_timings_udma_ata4(u32 *timings, u8 speed) { unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks; if (speed > XFER_UDMA_4) return 1; rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause); wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup); addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup); *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) | (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) | (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) | TR_66_UDMA_EN; #ifdef IDE_PMAC_DEBUG printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n", speed & 0xf, *timings); #endif return 0; } /* * Calculate Kauai ATA/100 UDMA timings */ static int set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed) { struct ide_timing *t = ide_timing_find_mode(speed); u32 tr; if (speed > XFER_UDMA_5 || t == NULL) return 1; tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma); if (tr == 0) return 1; *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr; *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN; return 0; } /* * Calculate Shasta ATA/133 UDMA timings */ static int set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed) { struct ide_timing *t = ide_timing_find_mode(speed); u32 tr; if (speed > XFER_UDMA_6 || t == NULL) return 1; tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma); if (tr == 0) return 1; *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr; *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN; return 0; } /* * Calculate MDMA timings for all cells */ static int set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2, u8 speed, int drive_cycle_time) { int cycleTime, accessTime = 0, recTime = 0; unsigned accessTicks, recTicks; struct mdma_timings_t* tm = NULL; int i; /* Get default cycle time for mode */ switch(speed & 0xf) { case 0: cycleTime = 480; break; case 1: cycleTime = 150; break; case 2: cycleTime = 120; break; default: return 1; } /* Adjust for drive */ if (drive_cycle_time && drive_cycle_time > cycleTime) cycleTime = drive_cycle_time; /* OHare limits according to some old Apple sources */ if ((intf_type == controller_ohare) && (cycleTime < 150)) cycleTime = 150; /* Get the proper timing array for this controller */ switch(intf_type) { case controller_sh_ata6: case controller_un_ata6: case controller_k2_ata6: break; case controller_kl_ata4: tm = mdma_timings_66; break; case controller_kl_ata3: tm = mdma_timings_33k; break; default: tm = mdma_timings_33; break; } if (tm != NULL) { /* Lookup matching access & recovery times */ i = -1; for (;;) { if (tm[i+1].cycleTime < cycleTime) break; i++; } if (i < 0) return 1; cycleTime = tm[i].cycleTime; accessTime = tm[i].accessTime; recTime = tm[i].recoveryTime; #ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n", drive->name, cycleTime, accessTime, recTime); #endif } switch(intf_type) { case controller_sh_ata6: { /* 133Mhz cell */ u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime); if (tr == 0) return 1; *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr; *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN; } case controller_un_ata6: case controller_k2_ata6: { /* 100Mhz cell */ u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime); if (tr == 0) return 1; *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr; *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN; } break; case controller_kl_ata4: /* 66Mhz cell */ accessTicks = SYSCLK_TICKS_66(accessTime); accessTicks = min(accessTicks, 0x1fU); accessTicks = max(accessTicks, 0x1U); recTicks = SYSCLK_TICKS_66(recTime); recTicks = min(recTicks, 0x1fU); recTicks = max(recTicks, 0x3U); /* Clear out mdma bits and disable udma */ *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) | (accessTicks << TR_66_MDMA_ACCESS_SHIFT) | (recTicks << TR_66_MDMA_RECOVERY_SHIFT); break; case controller_kl_ata3: /* 33Mhz cell on KeyLargo */ accessTicks = SYSCLK_TICKS(accessTime); accessTicks = max(accessTicks, 1U); accessTicks = min(accessTicks, 0x1fU); accessTime = accessTicks * IDE_SYSCLK_NS; recTicks = SYSCLK_TICKS(recTime); recTicks = max(recTicks, 1U); recTicks = min(recTicks, 0x1fU); *timings = ((*timings) & ~TR_33_MDMA_MASK) | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | (recTicks << TR_33_MDMA_RECOVERY_SHIFT); break; default: { /* 33Mhz cell on others */ int halfTick = 0; int origAccessTime = accessTime; int origRecTime = recTime; accessTicks = SYSCLK_TICKS(accessTime); accessTicks = max(accessTicks, 1U); accessTicks = min(accessTicks, 0x1fU); accessTime = accessTicks * IDE_SYSCLK_NS; recTicks = SYSCLK_TICKS(recTime); recTicks = max(recTicks, 2U) - 1; recTicks = min(recTicks, 0x1fU); recTime = (recTicks + 1) * IDE_SYSCLK_NS; if ((accessTicks > 1) && ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) && ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) { halfTick = 1; accessTicks--; } *timings = ((*timings) & ~TR_33_MDMA_MASK) | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | (recTicks << TR_33_MDMA_RECOVERY_SHIFT); if (halfTick) *timings |= TR_33_MDMA_HALFTICK; } } #ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n", drive->name, speed & 0xf, *timings); #endif return 0; } #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */ /* * Speedproc. This function is called by the core to set any of the standard * timing (PIO, MDMA or UDMA) to both the drive and the controller. * You may notice we don't use this function on normal "dma check" operation, * our dedicated function is more precise as it uses the drive provided * cycle time value. We should probably fix this one to deal with that too... */ static int pmac_ide_tune_chipset (ide_drive_t *drive, byte speed) { int unit = (drive->select.b.unit & 0x01); int ret = 0; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; u32 *timings, *timings2; if (pmif == NULL) return 1; timings = &pmif->timings[unit]; timings2 = &pmif->timings[unit+2]; switch(speed) { #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC case XFER_UDMA_6: if (pmif->kind != controller_sh_ata6) return 1; case XFER_UDMA_5: if (pmif->kind != controller_un_ata6 && pmif->kind != controller_k2_ata6 && pmif->kind != controller_sh_ata6) return 1; case XFER_UDMA_4: case XFER_UDMA_3: if (HWIF(drive)->udma_four == 0) return 1; case XFER_UDMA_2: case XFER_UDMA_1: case XFER_UDMA_0: if (pmif->kind == controller_kl_ata4) ret = set_timings_udma_ata4(timings, speed); else if (pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6) ret = set_timings_udma_ata6(timings, timings2, speed); else if (pmif->kind == controller_sh_ata6) ret = set_timings_udma_shasta(timings, timings2, speed); else ret = 1; break; case XFER_MW_DMA_2: case XFER_MW_DMA_1: case XFER_MW_DMA_0: ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0); break; case XFER_SW_DMA_2: case XFER_SW_DMA_1: case XFER_SW_DMA_0: return 1; #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ case XFER_PIO_4: case XFER_PIO_3: case XFER_PIO_2: case XFER_PIO_1: case XFER_PIO_0: pmac_ide_tuneproc(drive, speed & 0x07); break; default: ret = 1; } if (ret) return ret; ret = pmac_ide_do_setfeature(drive, speed); if (ret) return ret; pmac_ide_do_update_timings(drive); drive->current_speed = speed; return 0; } /* * Blast some well known "safe" values to the timing registers at init or * wakeup from sleep time, before we do real calculation */ static void sanitize_timings(pmac_ide_hwif_t *pmif) { unsigned int value, value2 = 0; switch(pmif->kind) { case controller_sh_ata6: value = 0x0a820c97; value2 = 0x00033031; break; case controller_un_ata6: case controller_k2_ata6: value = 0x08618a92; value2 = 0x00002921; break; case controller_kl_ata4: value = 0x0008438c; break; case controller_kl_ata3: value = 0x00084526; break; case controller_heathrow: case controller_ohare: default: value = 0x00074526; break; } pmif->timings[0] = pmif->timings[1] = value; pmif->timings[2] = pmif->timings[3] = value2; } unsigned long pmac_ide_get_base(int index) { return pmac_ide[index].regbase; } int pmac_ide_check_base(unsigned long base) { int ix; for (ix = 0; ix < MAX_HWIFS; ++ix) if (base == pmac_ide[ix].regbase) return ix; return -1; } int pmac_ide_get_irq(unsigned long base) { int ix; for (ix = 0; ix < MAX_HWIFS; ++ix) if (base == pmac_ide[ix].regbase) return pmac_ide[ix].irq; return 0; } static int ide_majors[] = { 3, 22, 33, 34, 56, 57 }; dev_t __init pmac_find_ide_boot(char *bootdevice, int n) { int i; /* * Look through the list of IDE interfaces for this one. */ for (i = 0; i < pmac_ide_count; ++i) { char *name; if (!pmac_ide[i].node || !pmac_ide[i].node->full_name) continue; name = pmac_ide[i].node->full_name; if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) { /* XXX should cope with the 2nd drive as well... */ return MKDEV(ide_majors[i], 0); } } return 0; } /* Suspend call back, should be called after the child devices * have actually been suspended */ static int pmac_ide_do_suspend(ide_hwif_t *hwif) { pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data; /* We clear the timings */ pmif->timings[0] = 0; pmif->timings[1] = 0; #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK /* Note: This code will be called for every hwif, thus we'll * try several time to stop the LED blinker timer, but that * should be harmless */ if (pmu_ide_blink_enabled) { unsigned long flags; /* Make sure we don't hit the PMU blink */ spin_lock_irqsave(&pmu_blink_lock, flags); if (pmu_blink_ledstate) del_timer(&pmu_blink_timer); pmu_blink_ledstate = 0; spin_unlock_irqrestore(&pmu_blink_lock, flags); } #endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */ disable_irq(pmif->irq); /* The media bay will handle itself just fine */ if (pmif->mediabay) return 0; /* Kauai has bus control FCRs directly here */ if (pmif->kauai_fcr) { u32 fcr = readl(pmif->kauai_fcr); fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE); writel(fcr, pmif->kauai_fcr); } /* Disable the bus on older machines and the cell on kauai */ ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 0); return 0; } /* Resume call back, should be called before the child devices * are resumed */ static int pmac_ide_do_resume(ide_hwif_t *hwif) { pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data; /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */ if (!pmif->mediabay) { ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1); ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1); msleep(10); ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0); /* Kauai has it different */ if (pmif->kauai_fcr) { u32 fcr = readl(pmif->kauai_fcr); fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE; writel(fcr, pmif->kauai_fcr); } msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); } /* Sanitize drive timings */ sanitize_timings(pmif); enable_irq(pmif->irq); return 0; } /* * Setup, register & probe an IDE channel driven by this driver, this is * called by one of the 2 probe functions (macio or PCI). Note that a channel * that ends up beeing free of any device is not kept around by this driver * (it is kept in 2.4). This introduce an interface numbering change on some * rare machines unfortunately, but it's better this way. */ static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif) { struct device_node *np = pmif->node; int *bidp; pmif->cable_80 = 0; pmif->broken_dma = pmif->broken_dma_warn = 0; if (device_is_compatible(np, "shasta-ata")) pmif->kind = controller_sh_ata6; else if (device_is_compatible(np, "kauai-ata")) pmif->kind = controller_un_ata6; else if (device_is_compatible(np, "K2-UATA")) pmif->kind = controller_k2_ata6; else if (device_is_compatible(np, "keylargo-ata")) { if (strcmp(np->name, "ata-4") == 0) pmif->kind = controller_kl_ata4; else pmif->kind = controller_kl_ata3; } else if (device_is_compatible(np, "heathrow-ata")) pmif->kind = controller_heathrow; else { pmif->kind = controller_ohare; pmif->broken_dma = 1; } bidp = (int *)get_property(np, "AAPL,bus-id", NULL); pmif->aapl_bus_id = bidp ? *bidp : 0; /* Get cable type from device-tree */ if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6 || pmif->kind == controller_sh_ata6) { char* cable = get_property(np, "cable-type", NULL); if (cable && !strncmp(cable, "80-", 3)) pmif->cable_80 = 1; } /* G5's seem to have incorrect cable type in device-tree. Let's assume * they have a 80 conductor cable, this seem to be always the case unless * the user mucked around */ if (device_is_compatible(np, "K2-UATA") || device_is_compatible(np, "shasta-ata")) pmif->cable_80 = 1; /* On Kauai-type controllers, we make sure the FCR is correct */ if (pmif->kauai_fcr) writel(KAUAI_FCR_UATA_MAGIC | KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr); pmif->mediabay = 0; /* Make sure we have sane timings */ sanitize_timings(pmif); #ifndef CONFIG_PPC64 /* XXX FIXME: Media bay stuff need re-organizing */ if (np->parent && np->parent->name && strcasecmp(np->parent->name, "media-bay") == 0) { #ifdef CONFIG_PMAC_MEDIABAY media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index); #endif /* CONFIG_PMAC_MEDIABAY */ pmif->mediabay = 1; if (!bidp) pmif->aapl_bus_id = 1; } else if (pmif->kind == controller_ohare) { /* The code below is having trouble on some ohare machines * (timing related ?). Until I can put my hand on one of these * units, I keep the old way */ ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1); } else #endif { /* This is necessary to enable IDE when net-booting */ ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1); ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1); msleep(10); ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0); msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); } /* Setup MMIO ops */ default_hwif_mmiops(hwif); hwif->OUTBSYNC = pmac_outbsync; /* Tell common code _not_ to mess with resources */ hwif->mmio = 2; hwif->hwif_data = pmif; pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq); memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports)); hwif->chipset = ide_pmac; hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay; hwif->hold = pmif->mediabay; hwif->udma_four = pmif->cable_80; hwif->drives[0].unmask = 1; hwif->drives[1].unmask = 1; hwif->tuneproc = pmac_ide_tuneproc; if (pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6 || pmif->kind == controller_sh_ata6) hwif->selectproc = pmac_ide_kauai_selectproc; else hwif->selectproc = pmac_ide_selectproc; hwif->speedproc = pmac_ide_tune_chipset; #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK pmu_ide_blink_enabled = pmu_hd_blink_init(); if (pmu_ide_blink_enabled) hwif->led_act = pmu_hd_kick_blink; #endif printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n", hwif->index, model_name[pmif->kind], pmif->aapl_bus_id, pmif->mediabay ? " (mediabay)" : "", hwif->irq); #ifdef CONFIG_PMAC_MEDIABAY if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0) hwif->noprobe = 0; #endif /* CONFIG_PMAC_MEDIABAY */ hwif->sg_max_nents = MAX_DCMDS; #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC /* has a DBDMA controller channel */ if (pmif->dma_regs) pmac_ide_setup_dma(pmif, hwif); #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ /* We probe the hwif now */ probe_hwif_init(hwif); return 0; } /* * Attach to a macio probed interface */ static int __devinit pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match) { void __iomem *base; unsigned long regbase; int irq; ide_hwif_t *hwif; pmac_ide_hwif_t *pmif; int i, rc; i = 0; while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0 || pmac_ide[i].node != NULL)) ++i; if (i >= MAX_HWIFS) { printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n"); printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name); return -ENODEV; } pmif = &pmac_ide[i]; hwif = &ide_hwifs[i]; if (macio_resource_count(mdev) == 0) { printk(KERN_WARNING "ide%d: no address for %s\n", i, mdev->ofdev.node->full_name); return -ENXIO; } /* Request memory resource for IO ports */ if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) { printk(KERN_ERR "ide%d: can't request mmio resource !\n", i); return -EBUSY; } /* XXX This is bogus. Should be fixed in the registry by checking * the kind of host interrupt controller, a bit like gatwick * fixes in irq.c. That works well enough for the single case * where that happens though... */ if (macio_irq_count(mdev) == 0) { printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n", i, mdev->ofdev.node->full_name); irq = 13; } else irq = macio_irq(mdev, 0); base = ioremap(macio_resource_start(mdev, 0), 0x400); regbase = (unsigned long) base; hwif->pci_dev = mdev->bus->pdev; hwif->gendev.parent = &mdev->ofdev.dev; pmif->mdev = mdev; pmif->node = mdev->ofdev.node; pmif->regbase = regbase; pmif->irq = irq; pmif->kauai_fcr = NULL; #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC if (macio_resource_count(mdev) >= 2) { if (macio_request_resource(mdev, 1, "ide-pmac (dma)")) printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i); else pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000); } else pmif->dma_regs = NULL; #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ dev_set_drvdata(&mdev->ofdev.dev, hwif); rc = pmac_ide_setup_device(pmif, hwif); if (rc != 0) { /* The inteface is released to the common IDE layer */ dev_set_drvdata(&mdev->ofdev.dev, NULL); iounmap(base); if (pmif->dma_regs) iounmap(pmif->dma_regs); memset(pmif, 0, sizeof(*pmif)); macio_release_resource(mdev, 0); if (pmif->dma_regs) macio_release_resource(mdev, 1); } return rc; } static int pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t state) { ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev); int rc = 0; if (state.event != mdev->ofdev.dev.power.power_state.event && state.event >= PM_EVENT_SUSPEND) { rc = pmac_ide_do_suspend(hwif); if (rc == 0) mdev->ofdev.dev.power.power_state = state; } return rc; } static int pmac_ide_macio_resume(struct macio_dev *mdev) { ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev); int rc = 0; if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) { rc = pmac_ide_do_resume(hwif); if (rc == 0) mdev->ofdev.dev.power.power_state = PMSG_ON; } return rc; } /* * Attach to a PCI probed interface */ static int __devinit pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id) { ide_hwif_t *hwif; struct device_node *np; pmac_ide_hwif_t *pmif; void __iomem *base; unsigned long rbase, rlen; int i, rc; np = pci_device_to_OF_node(pdev); if (np == NULL) { printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n"); return -ENODEV; } i = 0; while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0 || pmac_ide[i].node != NULL)) ++i; if (i >= MAX_HWIFS) { printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n"); printk(KERN_ERR " %s\n", np->full_name); return -ENODEV; } pmif = &pmac_ide[i]; hwif = &ide_hwifs[i]; if (pci_enable_device(pdev)) { printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n", i, np->full_name); return -ENXIO; } pci_set_master(pdev); if (pci_request_regions(pdev, "Kauai ATA")) { printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n", i, np->full_name); return -ENXIO; } hwif->pci_dev = pdev; hwif->gendev.parent = &pdev->dev; pmif->mdev = NULL; pmif->node = np; rbase = pci_resource_start(pdev, 0); rlen = pci_resource_len(pdev, 0); base = ioremap(rbase, rlen); pmif->regbase = (unsigned long) base + 0x2000; #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC pmif->dma_regs = base + 0x1000; #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ pmif->kauai_fcr = base; pmif->irq = pdev->irq; pci_set_drvdata(pdev, hwif); rc = pmac_ide_setup_device(pmif, hwif); if (rc != 0) { /* The inteface is released to the common IDE layer */ pci_set_drvdata(pdev, NULL); iounmap(base); memset(pmif, 0, sizeof(*pmif)); pci_release_regions(pdev); } return rc; } static int pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t state) { ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev); int rc = 0; if (state.event != pdev->dev.power.power_state.event && state.event >= 2) { rc = pmac_ide_do_suspend(hwif); if (rc == 0) pdev->dev.power.power_state = state; } return rc; } static int pmac_ide_pci_resume(struct pci_dev *pdev) { ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev); int rc = 0; if (pdev->dev.power.power_state.event != PM_EVENT_ON) { rc = pmac_ide_do_resume(hwif); if (rc == 0) pdev->dev.power.power_state = PMSG_ON; } return rc; } static struct of_device_id pmac_ide_macio_match[] = { { .name = "IDE", }, { .name = "ATA", }, { .type = "ide", }, { .type = "ata", }, {}, }; static struct macio_driver pmac_ide_macio_driver = { .name = "ide-pmac", .match_table = pmac_ide_macio_match, .probe = pmac_ide_macio_attach, .suspend = pmac_ide_macio_suspend, .resume = pmac_ide_macio_resume, }; static struct pci_device_id pmac_ide_pci_match[] = { { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, }; static struct pci_driver pmac_ide_pci_driver = { .name = "ide-pmac", .id_table = pmac_ide_pci_match, .probe = pmac_ide_pci_attach, .suspend = pmac_ide_pci_suspend, .resume = pmac_ide_pci_resume, }; MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match); void __init pmac_ide_probe(void) { if (_machine != _MACH_Pmac) return; #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST pci_register_driver(&pmac_ide_pci_driver); macio_register_driver(&pmac_ide_macio_driver); #else macio_register_driver(&pmac_ide_macio_driver); pci_register_driver(&pmac_ide_pci_driver); #endif } #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC /* * pmac_ide_build_dmatable builds the DBDMA command list * for a transfer and sets the DBDMA channel to point to it. */ static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq) { struct dbdma_cmd *table; int i, count = 0; ide_hwif_t *hwif = HWIF(drive); pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; struct scatterlist *sg; int wr = (rq_data_dir(rq) == WRITE); /* DMA table is already aligned */ table = (struct dbdma_cmd *) pmif->dma_table_cpu; /* Make sure DMA controller is stopped (necessary ?) */ writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control); while (readl(&dma->status) & RUN) udelay(1); hwif->sg_nents = i = ide_build_sglist(drive, rq); if (!i) return 0; /* Build DBDMA commands list */ sg = hwif->sg_table; while (i && sg_dma_len(sg)) { u32 cur_addr; u32 cur_len; cur_addr = sg_dma_address(sg); cur_len = sg_dma_len(sg); if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) { if (pmif->broken_dma_warn == 0) { printk(KERN_WARNING "%s: DMA on non aligned address," "switching to PIO on Ohare chipset\n", drive->name); pmif->broken_dma_warn = 1; } goto use_pio_instead; } while (cur_len) { unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00; if (count++ >= MAX_DCMDS) { printk(KERN_WARNING "%s: DMA table too small\n", drive->name); goto use_pio_instead; } st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE); st_le16(&table->req_count, tc); st_le32(&table->phy_addr, cur_addr); table->cmd_dep = 0; table->xfer_status = 0; table->res_count = 0; cur_addr += tc; cur_len -= tc; ++table; } sg++; i--; } /* convert the last command to an input/output last command */ if (count) { st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST); /* add the stop command to the end of the list */ memset(table, 0, sizeof(struct dbdma_cmd)); st_le16(&table->command, DBDMA_STOP); mb(); writel(hwif->dmatable_dma, &dma->cmdptr); return 1; } printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name); use_pio_instead: pci_unmap_sg(hwif->pci_dev, hwif->sg_table, hwif->sg_nents, hwif->sg_dma_direction); return 0; /* revert to PIO for this request */ } /* Teardown mappings after DMA has completed. */ static void pmac_ide_destroy_dmatable (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct pci_dev *dev = HWIF(drive)->pci_dev; struct scatterlist *sg = hwif->sg_table; int nents = hwif->sg_nents; if (nents) { pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction); hwif->sg_nents = 0; } } /* * Pick up best MDMA timing for the drive and apply it */ static int pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode) { ide_hwif_t *hwif = HWIF(drive); pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; int drive_cycle_time; struct hd_driveid *id = drive->id; u32 *timings, *timings2; u32 timing_local[2]; int ret; /* which drive is it ? */ timings = &pmif->timings[drive->select.b.unit & 0x01]; timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2]; /* Check if drive provide explicit cycle time */ if ((id->field_valid & 2) && (id->eide_dma_time)) drive_cycle_time = id->eide_dma_time; else drive_cycle_time = 0; /* Copy timings to local image */ timing_local[0] = *timings; timing_local[1] = *timings2; /* Calculate controller timings */ ret = set_timings_mdma( drive, pmif->kind, &timing_local[0], &timing_local[1], mode, drive_cycle_time); if (ret) return 0; /* Set feature on drive */ printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf); ret = pmac_ide_do_setfeature(drive, mode); if (ret) { printk(KERN_WARNING "%s: Failed !\n", drive->name); return 0; } /* Apply timings to controller */ *timings = timing_local[0]; *timings2 = timing_local[1]; /* Set speed info in drive */ drive->current_speed = mode; if (!drive->init_speed) drive->init_speed = mode; return 1; } /* * Pick up best UDMA timing for the drive and apply it */ static int pmac_ide_udma_enable(ide_drive_t *drive, u16 mode) { ide_hwif_t *hwif = HWIF(drive); pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; u32 *timings, *timings2; u32 timing_local[2]; int ret; /* which drive is it ? */ timings = &pmif->timings[drive->select.b.unit & 0x01]; timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2]; /* Copy timings to local image */ timing_local[0] = *timings; timing_local[1] = *timings2; /* Calculate timings for interface */ if (pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6) ret = set_timings_udma_ata6( &timing_local[0], &timing_local[1], mode); else if (pmif->kind == controller_sh_ata6) ret = set_timings_udma_shasta( &timing_local[0], &timing_local[1], mode); else ret = set_timings_udma_ata4(&timing_local[0], mode); if (ret) return 0; /* Set feature on drive */ printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f); ret = pmac_ide_do_setfeature(drive, mode); if (ret) { printk(KERN_WARNING "%s: Failed !\n", drive->name); return 0; } /* Apply timings to controller */ *timings = timing_local[0]; *timings2 = timing_local[1]; /* Set speed info in drive */ drive->current_speed = mode; if (!drive->init_speed) drive->init_speed = mode; return 1; } /* * Check what is the best DMA timing setting for the drive and * call appropriate functions to apply it. */ static int pmac_ide_dma_check(ide_drive_t *drive) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = HWIF(drive); pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; int enable = 1; int map; drive->using_dma = 0; if (drive->media == ide_floppy) enable = 0; if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive)) enable = 0; if (__ide_dma_bad_drive(drive)) enable = 0; if (enable) { short mode; map = XFER_MWDMA; if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6 || pmif->kind == controller_sh_ata6) { map |= XFER_UDMA; if (pmif->cable_80) { map |= XFER_UDMA_66; if (pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6 || pmif->kind == controller_sh_ata6) map |= XFER_UDMA_100; if (pmif->kind == controller_sh_ata6) map |= XFER_UDMA_133; } } mode = ide_find_best_mode(drive, map); if (mode & XFER_UDMA) drive->using_dma = pmac_ide_udma_enable(drive, mode); else if (mode & XFER_MWDMA) drive->using_dma = pmac_ide_mdma_enable(drive, mode); hwif->OUTB(0, IDE_CONTROL_REG); /* Apply settings to controller */ pmac_ide_do_update_timings(drive); } return 0; } /* * Prepare a DMA transfer. We build the DMA table, adjust the timings for * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion */ static int pmac_ide_dma_setup(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; struct request *rq = HWGROUP(drive)->rq; u8 unit = (drive->select.b.unit & 0x01); u8 ata4; if (pmif == NULL) return 1; ata4 = (pmif->kind == controller_kl_ata4); if (!pmac_ide_build_dmatable(drive, rq)) { ide_map_sg(drive, rq); return 1; } /* Apple adds 60ns to wrDataSetup on reads */ if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) { writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0), PMAC_IDE_REG(IDE_TIMING_CONFIG)); (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); } drive->waiting_for_dma = 1; return 0; } static void pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command) { /* issue cmd to drive */ ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL); } /* * Kick the DMA controller into life after the DMA command has been issued * to the drive. */ static void pmac_ide_dma_start(ide_drive_t *drive) { pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; volatile struct dbdma_regs __iomem *dma; dma = pmif->dma_regs; writel((RUN << 16) | RUN, &dma->control); /* Make sure it gets to the controller right now */ (void)readl(&dma->control); } /* * After a DMA transfer, make sure the controller is stopped */ static int pmac_ide_dma_end (ide_drive_t *drive) { pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; volatile struct dbdma_regs __iomem *dma; u32 dstat; if (pmif == NULL) return 0; dma = pmif->dma_regs; drive->waiting_for_dma = 0; dstat = readl(&dma->status); writel(((RUN|WAKE|DEAD) << 16), &dma->control); pmac_ide_destroy_dmatable(drive); /* verify good dma status. we don't check for ACTIVE beeing 0. We should... * in theory, but with ATAPI decices doing buffer underruns, that would * cause us to disable DMA, which isn't what we want */ return (dstat & (RUN|DEAD)) != RUN; } /* * Check out that the interrupt we got was for us. We can't always know this * for sure with those Apple interfaces (well, we could on the recent ones but * that's not implemented yet), on the other hand, we don't have shared interrupts * so it's not really a problem */ static int pmac_ide_dma_test_irq (ide_drive_t *drive) { pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; volatile struct dbdma_regs __iomem *dma; unsigned long status, timeout; if (pmif == NULL) return 0; dma = pmif->dma_regs; /* We have to things to deal with here: * * - The dbdma won't stop if the command was started * but completed with an error without transferring all * datas. This happens when bad blocks are met during * a multi-block transfer. * * - The dbdma fifo hasn't yet finished flushing to * to system memory when the disk interrupt occurs. * */ /* If ACTIVE is cleared, the STOP command have passed and * transfer is complete. */ status = readl(&dma->status); if (!(status & ACTIVE)) return 1; if (!drive->waiting_for_dma) printk(KERN_WARNING "ide%d, ide_dma_test_irq \ called while not waiting\n", HWIF(drive)->index); /* If dbdma didn't execute the STOP command yet, the * active bit is still set. We consider that we aren't * sharing interrupts (which is hopefully the case with * those controllers) and so we just try to flush the * channel for pending data in the fifo */ udelay(1); writel((FLUSH << 16) | FLUSH, &dma->control); timeout = 0; for (;;) { udelay(1); status = readl(&dma->status); if ((status & FLUSH) == 0) break; if (++timeout > 100) { printk(KERN_WARNING "ide%d, ide_dma_test_irq \ timeout flushing channel\n", HWIF(drive)->index); break; } } return 1; } static int pmac_ide_dma_host_off (ide_drive_t *drive) { return 0; } static int pmac_ide_dma_host_on (ide_drive_t *drive) { return 0; } static int pmac_ide_dma_lostirq (ide_drive_t *drive) { pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; volatile struct dbdma_regs __iomem *dma; unsigned long status; if (pmif == NULL) return 0; dma = pmif->dma_regs; status = readl(&dma->status); printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status); return 0; } /* * Allocate the data structures needed for using DMA with an interface * and fill the proper list of functions pointers */ static void __init pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif) { /* We won't need pci_dev if we switch to generic consistent * DMA routines ... */ if (hwif->pci_dev == NULL) return; /* * Allocate space for the DBDMA commands. * The +2 is +1 for the stop command and +1 to allow for * aligning the start address to a multiple of 16 bytes. */ pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent( hwif->pci_dev, (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd), &hwif->dmatable_dma); if (pmif->dma_table_cpu == NULL) { printk(KERN_ERR "%s: unable to allocate DMA command list\n", hwif->name); return; } hwif->ide_dma_off_quietly = &__ide_dma_off_quietly; hwif->ide_dma_on = &__ide_dma_on; hwif->ide_dma_check = &pmac_ide_dma_check; hwif->dma_setup = &pmac_ide_dma_setup; hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd; hwif->dma_start = &pmac_ide_dma_start; hwif->ide_dma_end = &pmac_ide_dma_end; hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq; hwif->ide_dma_host_off = &pmac_ide_dma_host_off; hwif->ide_dma_host_on = &pmac_ide_dma_host_on; hwif->ide_dma_timeout = &__ide_dma_timeout; hwif->ide_dma_lostirq = &pmac_ide_dma_lostirq; hwif->atapi_dma = 1; switch(pmif->kind) { case controller_sh_ata6: hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07; hwif->mwdma_mask = 0x07; hwif->swdma_mask = 0x00; break; case controller_un_ata6: case controller_k2_ata6: hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07; hwif->mwdma_mask = 0x07; hwif->swdma_mask = 0x00; break; case controller_kl_ata4: hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07; hwif->mwdma_mask = 0x07; hwif->swdma_mask = 0x00; break; default: hwif->ultra_mask = 0x00; hwif->mwdma_mask = 0x07; hwif->swdma_mask = 0x00; break; } } #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */