/* * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/scatterlist.h> #include "iscsi_iser.h" #define ISER_KMALLOC_THRESHOLD 0x20000 /* 128K - kmalloc limit */ /** * Decrements the reference count for the * registered buffer & releases it * * returns 0 if released, 1 if deferred */ int iser_regd_buff_release(struct iser_regd_buf *regd_buf) { struct ib_device *dev; if ((atomic_read(®d_buf->ref_count) == 0) || atomic_dec_and_test(®d_buf->ref_count)) { /* if we used the dma mr, unreg is just NOP */ if (regd_buf->reg.is_fmr) iser_unreg_mem(®d_buf->reg); if (regd_buf->dma_addr) { dev = regd_buf->device->ib_device; ib_dma_unmap_single(dev, regd_buf->dma_addr, regd_buf->data_size, regd_buf->direction); } /* else this regd buf is associated with task which we */ /* dma_unmap_single/sg later */ return 0; } else { iser_dbg("Release deferred, regd.buff: 0x%p\n", regd_buf); return 1; } } /** * iser_reg_single - fills registered buffer descriptor with * registration information */ void iser_reg_single(struct iser_device *device, struct iser_regd_buf *regd_buf, enum dma_data_direction direction) { u64 dma_addr; dma_addr = ib_dma_map_single(device->ib_device, regd_buf->virt_addr, regd_buf->data_size, direction); BUG_ON(ib_dma_mapping_error(device->ib_device, dma_addr)); regd_buf->reg.lkey = device->mr->lkey; regd_buf->reg.len = regd_buf->data_size; regd_buf->reg.va = dma_addr; regd_buf->reg.is_fmr = 0; regd_buf->dma_addr = dma_addr; regd_buf->direction = direction; } /** * iser_start_rdma_unaligned_sg */ static int iser_start_rdma_unaligned_sg(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { int dma_nents; struct ib_device *dev; char *mem = NULL; struct iser_data_buf *data = &iser_task->data[cmd_dir]; unsigned long cmd_data_len = data->data_len; if (cmd_data_len > ISER_KMALLOC_THRESHOLD) mem = (void *)__get_free_pages(GFP_NOIO, ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT); else mem = kmalloc(cmd_data_len, GFP_NOIO); if (mem == NULL) { iser_err("Failed to allocate mem size %d %d for copying sglist\n", data->size,(int)cmd_data_len); return -ENOMEM; } if (cmd_dir == ISER_DIR_OUT) { /* copy the unaligned sg the buffer which is used for RDMA */ struct scatterlist *sgl = (struct scatterlist *)data->buf; struct scatterlist *sg; int i; char *p, *from; p = mem; for_each_sg(sgl, sg, data->size, i) { from = kmap_atomic(sg_page(sg), KM_USER0); memcpy(p, from + sg->offset, sg->length); kunmap_atomic(from, KM_USER0); p += sg->length; } } sg_init_one(&iser_task->data_copy[cmd_dir].sg_single, mem, cmd_data_len); iser_task->data_copy[cmd_dir].buf = &iser_task->data_copy[cmd_dir].sg_single; iser_task->data_copy[cmd_dir].size = 1; iser_task->data_copy[cmd_dir].copy_buf = mem; dev = iser_task->iser_conn->ib_conn->device->ib_device; dma_nents = ib_dma_map_sg(dev, &iser_task->data_copy[cmd_dir].sg_single, 1, (cmd_dir == ISER_DIR_OUT) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); BUG_ON(dma_nents == 0); iser_task->data_copy[cmd_dir].dma_nents = dma_nents; return 0; } /** * iser_finalize_rdma_unaligned_sg */ void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct ib_device *dev; struct iser_data_buf *mem_copy; unsigned long cmd_data_len; dev = iser_task->iser_conn->ib_conn->device->ib_device; mem_copy = &iser_task->data_copy[cmd_dir]; ib_dma_unmap_sg(dev, &mem_copy->sg_single, 1, (cmd_dir == ISER_DIR_OUT) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (cmd_dir == ISER_DIR_IN) { char *mem; struct scatterlist *sgl, *sg; unsigned char *p, *to; unsigned int sg_size; int i; /* copy back read RDMA to unaligned sg */ mem = mem_copy->copy_buf; sgl = (struct scatterlist *)iser_task->data[ISER_DIR_IN].buf; sg_size = iser_task->data[ISER_DIR_IN].size; p = mem; for_each_sg(sgl, sg, sg_size, i) { to = kmap_atomic(sg_page(sg), KM_SOFTIRQ0); memcpy(to + sg->offset, p, sg->length); kunmap_atomic(to, KM_SOFTIRQ0); p += sg->length; } } cmd_data_len = iser_task->data[cmd_dir].data_len; if (cmd_data_len > ISER_KMALLOC_THRESHOLD) free_pages((unsigned long)mem_copy->copy_buf, ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT); else kfree(mem_copy->copy_buf); mem_copy->copy_buf = NULL; } /** * iser_sg_to_page_vec - Translates scatterlist entries to physical addresses * and returns the length of resulting physical address array (may be less than * the original due to possible compaction). * * we build a "page vec" under the assumption that the SG meets the RDMA * alignment requirements. Other then the first and last SG elements, all * the "internal" elements can be compacted into a list whose elements are * dma addresses of physical pages. The code supports also the weird case * where --few fragments of the same page-- are present in the SG as * consecutive elements. Also, it handles one entry SG. */ static int iser_sg_to_page_vec(struct iser_data_buf *data, struct iser_page_vec *page_vec, struct ib_device *ibdev) { struct scatterlist *sgl = (struct scatterlist *)data->buf; struct scatterlist *sg; u64 first_addr, last_addr, page; int end_aligned; unsigned int cur_page = 0; unsigned long total_sz = 0; int i; /* compute the offset of first element */ page_vec->offset = (u64) sgl[0].offset & ~MASK_4K; for_each_sg(sgl, sg, data->dma_nents, i) { unsigned int dma_len = ib_sg_dma_len(ibdev, sg); total_sz += dma_len; first_addr = ib_sg_dma_address(ibdev, sg); last_addr = first_addr + dma_len; end_aligned = !(last_addr & ~MASK_4K); /* continue to collect page fragments till aligned or SG ends */ while (!end_aligned && (i + 1 < data->dma_nents)) { sg = sg_next(sg); i++; dma_len = ib_sg_dma_len(ibdev, sg); total_sz += dma_len; last_addr = ib_sg_dma_address(ibdev, sg) + dma_len; end_aligned = !(last_addr & ~MASK_4K); } /* handle the 1st page in the 1st DMA element */ if (cur_page == 0) { page = first_addr & MASK_4K; page_vec->pages[cur_page] = page; cur_page++; page += SIZE_4K; } else page = first_addr; for (; page < last_addr; page += SIZE_4K) { page_vec->pages[cur_page] = page; cur_page++; } } page_vec->data_size = total_sz; iser_dbg("page_vec->data_size:%d cur_page %d\n", page_vec->data_size,cur_page); return cur_page; } #define IS_4K_ALIGNED(addr) ((((unsigned long)addr) & ~MASK_4K) == 0) /** * iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned * for RDMA sub-list of a scatter-gather list of memory buffers, and returns * the number of entries which are aligned correctly. Supports the case where * consecutive SG elements are actually fragments of the same physcial page. */ static unsigned int iser_data_buf_aligned_len(struct iser_data_buf *data, struct ib_device *ibdev) { struct scatterlist *sgl, *sg; u64 end_addr, next_addr; int i, cnt; unsigned int ret_len = 0; sgl = (struct scatterlist *)data->buf; cnt = 0; for_each_sg(sgl, sg, data->dma_nents, i) { /* iser_dbg("Checking sg iobuf [%d]: phys=0x%08lX " "offset: %ld sz: %ld\n", i, (unsigned long)sg_phys(sg), (unsigned long)sg->offset, (unsigned long)sg->length); */ end_addr = ib_sg_dma_address(ibdev, sg) + ib_sg_dma_len(ibdev, sg); /* iser_dbg("Checking sg iobuf end address " "0x%08lX\n", end_addr); */ if (i + 1 < data->dma_nents) { next_addr = ib_sg_dma_address(ibdev, sg_next(sg)); /* are i, i+1 fragments of the same page? */ if (end_addr == next_addr) { cnt++; continue; } else if (!IS_4K_ALIGNED(end_addr)) { ret_len = cnt + 1; break; } } cnt++; } if (i == data->dma_nents) ret_len = cnt; /* loop ended */ iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n", ret_len, data->dma_nents, data); return ret_len; } static void iser_data_buf_dump(struct iser_data_buf *data, struct ib_device *ibdev) { struct scatterlist *sgl = (struct scatterlist *)data->buf; struct scatterlist *sg; int i; if (iser_debug_level == 0) return; for_each_sg(sgl, sg, data->dma_nents, i) iser_warn("sg[%d] dma_addr:0x%lX page:0x%p " "off:0x%x sz:0x%x dma_len:0x%x\n", i, (unsigned long)ib_sg_dma_address(ibdev, sg), sg_page(sg), sg->offset, sg->length, ib_sg_dma_len(ibdev, sg)); } static void iser_dump_page_vec(struct iser_page_vec *page_vec) { int i; iser_err("page vec length %d data size %d\n", page_vec->length, page_vec->data_size); for (i = 0; i < page_vec->length; i++) iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]); } static void iser_page_vec_build(struct iser_data_buf *data, struct iser_page_vec *page_vec, struct ib_device *ibdev) { int page_vec_len = 0; page_vec->length = 0; page_vec->offset = 0; iser_dbg("Translating sg sz: %d\n", data->dma_nents); page_vec_len = iser_sg_to_page_vec(data, page_vec, ibdev); iser_dbg("sg len %d page_vec_len %d\n", data->dma_nents,page_vec_len); page_vec->length = page_vec_len; if (page_vec_len * SIZE_4K < page_vec->data_size) { iser_err("page_vec too short to hold this SG\n"); iser_data_buf_dump(data, ibdev); iser_dump_page_vec(page_vec); BUG(); } } int iser_dma_map_task_data(struct iscsi_iser_task *iser_task, struct iser_data_buf *data, enum iser_data_dir iser_dir, enum dma_data_direction dma_dir) { struct ib_device *dev; iser_task->dir[iser_dir] = 1; dev = iser_task->iser_conn->ib_conn->device->ib_device; data->dma_nents = ib_dma_map_sg(dev, data->buf, data->size, dma_dir); if (data->dma_nents == 0) { iser_err("dma_map_sg failed!!!\n"); return -EINVAL; } return 0; } void iser_dma_unmap_task_data(struct iscsi_iser_task *iser_task) { struct ib_device *dev; struct iser_data_buf *data; dev = iser_task->iser_conn->ib_conn->device->ib_device; if (iser_task->dir[ISER_DIR_IN]) { data = &iser_task->data[ISER_DIR_IN]; ib_dma_unmap_sg(dev, data->buf, data->size, DMA_FROM_DEVICE); } if (iser_task->dir[ISER_DIR_OUT]) { data = &iser_task->data[ISER_DIR_OUT]; ib_dma_unmap_sg(dev, data->buf, data->size, DMA_TO_DEVICE); } } /** * iser_reg_rdma_mem - Registers memory intended for RDMA, * obtaining rkey and va * * returns 0 on success, errno code on failure */ int iser_reg_rdma_mem(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct iscsi_conn *iscsi_conn = iser_task->iser_conn->iscsi_conn; struct iser_conn *ib_conn = iser_task->iser_conn->ib_conn; struct iser_device *device = ib_conn->device; struct ib_device *ibdev = device->ib_device; struct iser_data_buf *mem = &iser_task->data[cmd_dir]; struct iser_regd_buf *regd_buf; int aligned_len; int err; int i; struct scatterlist *sg; regd_buf = &iser_task->rdma_regd[cmd_dir]; aligned_len = iser_data_buf_aligned_len(mem, ibdev); if (aligned_len != mem->dma_nents) { iscsi_conn->fmr_unalign_cnt++; iser_warn("rdma alignment violation %d/%d aligned\n", aligned_len, mem->size); iser_data_buf_dump(mem, ibdev); /* unmap the command data before accessing it */ iser_dma_unmap_task_data(iser_task); /* allocate copy buf, if we are writing, copy the */ /* unaligned scatterlist, dma map the copy */ if (iser_start_rdma_unaligned_sg(iser_task, cmd_dir) != 0) return -ENOMEM; mem = &iser_task->data_copy[cmd_dir]; } /* if there a single dma entry, FMR is not needed */ if (mem->dma_nents == 1) { sg = (struct scatterlist *)mem->buf; regd_buf->reg.lkey = device->mr->lkey; regd_buf->reg.rkey = device->mr->rkey; regd_buf->reg.len = ib_sg_dma_len(ibdev, &sg[0]); regd_buf->reg.va = ib_sg_dma_address(ibdev, &sg[0]); regd_buf->reg.is_fmr = 0; iser_dbg("PHYSICAL Mem.register: lkey: 0x%08X rkey: 0x%08X " "va: 0x%08lX sz: %ld]\n", (unsigned int)regd_buf->reg.lkey, (unsigned int)regd_buf->reg.rkey, (unsigned long)regd_buf->reg.va, (unsigned long)regd_buf->reg.len); } else { /* use FMR for multiple dma entries */ iser_page_vec_build(mem, ib_conn->page_vec, ibdev); err = iser_reg_page_vec(ib_conn, ib_conn->page_vec, ®d_buf->reg); if (err) { iser_data_buf_dump(mem, ibdev); iser_err("mem->dma_nents = %d (dlength = 0x%x)\n", mem->dma_nents, ntoh24(iser_task->desc.iscsi_header.dlength)); iser_err("page_vec: data_size = 0x%x, length = %d, offset = 0x%x\n", ib_conn->page_vec->data_size, ib_conn->page_vec->length, ib_conn->page_vec->offset); for (i=0 ; i<ib_conn->page_vec->length ; i++) iser_err("page_vec[%d] = 0x%llx\n", i, (unsigned long long) ib_conn->page_vec->pages[i]); return err; } } /* take a reference on this regd buf such that it will not be released * * (eg in send dto completion) before we get the scsi response */ atomic_inc(®d_buf->ref_count); return 0; }