/* $Id: hfc_pci.c,v 1.48.2.4 2004/02/11 13:21:33 keil Exp $ * * low level driver for CCD�s hfc-pci based cards * * Author Werner Cornelius * based on existing driver for CCD hfc ISA cards * Copyright by Werner Cornelius <werner@isdn4linux.de> * by Karsten Keil <keil@isdn4linux.de> * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * For changes and modifications please read * Documentation/isdn/HiSax.cert * */ #include <linux/init.h> #include <linux/config.h> #include "hisax.h" #include "hfc_pci.h" #include "isdnl1.h" #include <linux/pci.h> #include <linux/interrupt.h> extern const char *CardType[]; static const char *hfcpci_revision = "$Revision: 1.48.2.4 $"; /* table entry in the PCI devices list */ typedef struct { int vendor_id; int device_id; char *vendor_name; char *card_name; } PCI_ENTRY; #define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */ #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */ #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */ static const PCI_ENTRY id_list[] = { {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"}, {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"}, {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"}, {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"}, {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"}, {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"}, {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"}, {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"}, {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"}, {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"}, {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"}, {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"}, {0, 0, NULL, NULL}, }; #ifdef CONFIG_PCI /******************************************/ /* free hardware resources used by driver */ /******************************************/ static void release_io_hfcpci(struct IsdnCardState *cs) { printk(KERN_INFO "HiSax: release hfcpci at %p\n", cs->hw.hfcpci.pci_io); cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */ Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2); Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */ mdelay(10); Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */ mdelay(10); Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2); pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, 0); /* disable memory mapped ports + busmaster */ del_timer(&cs->hw.hfcpci.timer); kfree(cs->hw.hfcpci.share_start); cs->hw.hfcpci.share_start = NULL; iounmap((void *)cs->hw.hfcpci.pci_io); } /********************************************************************************/ /* function called to reset the HFC PCI chip. A complete software reset of chip */ /* and fifos is done. */ /********************************************************************************/ static void reset_hfcpci(struct IsdnCardState *cs) { pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */ cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */ Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2); printk(KERN_INFO "HFC_PCI: resetting card\n"); pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER); /* enable memory ports + busmaster */ Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */ mdelay(10); Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */ mdelay(10); if (Read_hfc(cs, HFCPCI_STATUS) & 2) printk(KERN_WARNING "HFC-PCI init bit busy\n"); cs->hw.hfcpci.fifo_en = 0x30; /* only D fifos enabled */ Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en); cs->hw.hfcpci.trm = 0 + HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */ Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm); Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */ cs->hw.hfcpci.sctrl_e = HFCPCI_AUTO_AWAKE; Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e); /* S/T Auto awake */ cs->hw.hfcpci.bswapped = 0; /* no exchange */ cs->hw.hfcpci.nt_mode = 0; /* we are in TE mode */ cs->hw.hfcpci.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER; Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt); cs->hw.hfcpci.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC | HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER; Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1); /* Clear already pending ints */ if (Read_hfc(cs, HFCPCI_INT_S1)); Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 2); /* HFC ST 2 */ udelay(10); Write_hfc(cs, HFCPCI_STATES, 2); /* HFC ST 2 */ cs->hw.hfcpci.mst_m = HFCPCI_MASTER; /* HFC Master Mode */ Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m); cs->hw.hfcpci.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */ Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); cs->hw.hfcpci.sctrl_r = 0; Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r); /* Init GCI/IOM2 in master mode */ /* Slots 0 and 1 are set for B-chan 1 and 2 */ /* D- and monitor/CI channel are not enabled */ /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */ /* STIO2 is used as data input, B1+B2 from IOM->ST */ /* ST B-channel send disabled -> continous 1s */ /* The IOM slots are always enabled */ cs->hw.hfcpci.conn = 0x36; /* set data flow directions */ Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn); Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */ Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */ Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */ Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */ /* Finally enable IRQ output */ cs->hw.hfcpci.int_m2 = HFCPCI_IRQ_ENABLE; Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2); if (Read_hfc(cs, HFCPCI_INT_S1)); } /***************************************************/ /* Timer function called when kernel timer expires */ /***************************************************/ static void hfcpci_Timer(struct IsdnCardState *cs) { cs->hw.hfcpci.timer.expires = jiffies + 75; /* WD RESET */ /* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcpci.ctmt | 0x80); add_timer(&cs->hw.hfcpci.timer); */ } /*********************************/ /* schedule a new D-channel task */ /*********************************/ static void sched_event_D_pci(struct IsdnCardState *cs, int event) { test_and_set_bit(event, &cs->event); schedule_work(&cs->tqueue); } /*********************************/ /* schedule a new b_channel task */ /*********************************/ static void hfcpci_sched_event(struct BCState *bcs, int event) { test_and_set_bit(event, &bcs->event); schedule_work(&bcs->tqueue); } /************************************************/ /* select a b-channel entry matching and active */ /************************************************/ static struct BCState * Sel_BCS(struct IsdnCardState *cs, int channel) { if (cs->bcs[0].mode && (cs->bcs[0].channel == channel)) return (&cs->bcs[0]); else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel)) return (&cs->bcs[1]); else return (NULL); } /***************************************/ /* clear the desired B-channel rx fifo */ /***************************************/ static void hfcpci_clear_fifo_rx(struct IsdnCardState *cs, int fifo) { u_char fifo_state; bzfifo_type *bzr; if (fifo) { bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2; fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2RX; } else { bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1; fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1RX; } if (fifo_state) cs->hw.hfcpci.fifo_en ^= fifo_state; Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en); cs->hw.hfcpci.last_bfifo_cnt[fifo] = 0; bzr->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1; bzr->za[MAX_B_FRAMES].z2 = bzr->za[MAX_B_FRAMES].z1; bzr->f1 = MAX_B_FRAMES; bzr->f2 = bzr->f1; /* init F pointers to remain constant */ if (fifo_state) cs->hw.hfcpci.fifo_en |= fifo_state; Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en); } /***************************************/ /* clear the desired B-channel tx fifo */ /***************************************/ static void hfcpci_clear_fifo_tx(struct IsdnCardState *cs, int fifo) { u_char fifo_state; bzfifo_type *bzt; if (fifo) { bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2; fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2TX; } else { bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1; fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1TX; } if (fifo_state) cs->hw.hfcpci.fifo_en ^= fifo_state; Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en); bzt->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1; bzt->za[MAX_B_FRAMES].z2 = bzt->za[MAX_B_FRAMES].z1; bzt->f1 = MAX_B_FRAMES; bzt->f2 = bzt->f1; /* init F pointers to remain constant */ if (fifo_state) cs->hw.hfcpci.fifo_en |= fifo_state; Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en); } /*********************************************/ /* read a complete B-frame out of the buffer */ /*********************************************/ static struct sk_buff * hfcpci_empty_fifo(struct BCState *bcs, bzfifo_type * bz, u_char * bdata, int count) { u_char *ptr, *ptr1, new_f2; struct sk_buff *skb; struct IsdnCardState *cs = bcs->cs; int total, maxlen, new_z2; z_type *zp; if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO)) debugl1(cs, "hfcpci_empty_fifo"); zp = &bz->za[bz->f2]; /* point to Z-Regs */ new_z2 = zp->z2 + count; /* new position in fifo */ if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z2 -= B_FIFO_SIZE; /* buffer wrap */ new_f2 = (bz->f2 + 1) & MAX_B_FRAMES; if ((count > HSCX_BUFMAX + 3) || (count < 4) || (*(bdata + (zp->z1 - B_SUB_VAL)))) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfcpci_empty_fifo: incoming packet invalid length %d or crc", count); #ifdef ERROR_STATISTIC bcs->err_inv++; #endif bz->za[new_f2].z2 = new_z2; bz->f2 = new_f2; /* next buffer */ skb = NULL; } else if (!(skb = dev_alloc_skb(count - 3))) printk(KERN_WARNING "HFCPCI: receive out of memory\n"); else { total = count; count -= 3; ptr = skb_put(skb, count); if (zp->z2 + count <= B_FIFO_SIZE + B_SUB_VAL) maxlen = count; /* complete transfer */ else maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */ ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */ memcpy(ptr, ptr1, maxlen); /* copy data */ count -= maxlen; if (count) { /* rest remaining */ ptr += maxlen; ptr1 = bdata; /* start of buffer */ memcpy(ptr, ptr1, count); /* rest */ } bz->za[new_f2].z2 = new_z2; bz->f2 = new_f2; /* next buffer */ } return (skb); } /*******************************/ /* D-channel receive procedure */ /*******************************/ static int receive_dmsg(struct IsdnCardState *cs) { struct sk_buff *skb; int maxlen; int rcnt, total; int count = 5; u_char *ptr, *ptr1; dfifo_type *df; z_type *zp; df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_rx; if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { debugl1(cs, "rec_dmsg blocked"); return (1); } while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) { zp = &df->za[df->f2 & D_FREG_MASK]; rcnt = zp->z1 - zp->z2; if (rcnt < 0) rcnt += D_FIFO_SIZE; rcnt++; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)", df->f1, df->f2, zp->z1, zp->z2, rcnt); if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) || (df->data[zp->z1])) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "empty_fifo hfcpci paket inv. len %d or crc %d", rcnt, df->data[zp->z1]); #ifdef ERROR_STATISTIC cs->err_rx++; #endif df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */ df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + rcnt) & (D_FIFO_SIZE - 1); } else if ((skb = dev_alloc_skb(rcnt - 3))) { total = rcnt; rcnt -= 3; ptr = skb_put(skb, rcnt); if (zp->z2 + rcnt <= D_FIFO_SIZE) maxlen = rcnt; /* complete transfer */ else maxlen = D_FIFO_SIZE - zp->z2; /* maximum */ ptr1 = df->data + zp->z2; /* start of data */ memcpy(ptr, ptr1, maxlen); /* copy data */ rcnt -= maxlen; if (rcnt) { /* rest remaining */ ptr += maxlen; ptr1 = df->data; /* start of buffer */ memcpy(ptr, ptr1, rcnt); /* rest */ } df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */ df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + total) & (D_FIFO_SIZE - 1); skb_queue_tail(&cs->rq, skb); sched_event_D_pci(cs, D_RCVBUFREADY); } else printk(KERN_WARNING "HFC-PCI: D receive out of memory\n"); } test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); return (1); } /*******************************************************************************/ /* check for transparent receive data and read max one threshold size if avail */ /*******************************************************************************/ static int hfcpci_empty_fifo_trans(struct BCState *bcs, bzfifo_type * bz, u_char * bdata) { unsigned short *z1r, *z2r; int new_z2, fcnt, maxlen; struct sk_buff *skb; u_char *ptr, *ptr1; z1r = &bz->za[MAX_B_FRAMES].z1; /* pointer to z reg */ z2r = z1r + 1; if (!(fcnt = *z1r - *z2r)) return (0); /* no data avail */ if (fcnt <= 0) fcnt += B_FIFO_SIZE; /* bytes actually buffered */ if (fcnt > HFCPCI_BTRANS_THRESHOLD) fcnt = HFCPCI_BTRANS_THRESHOLD; /* limit size */ new_z2 = *z2r + fcnt; /* new position in fifo */ if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z2 -= B_FIFO_SIZE; /* buffer wrap */ if (!(skb = dev_alloc_skb(fcnt))) printk(KERN_WARNING "HFCPCI: receive out of memory\n"); else { ptr = skb_put(skb, fcnt); if (*z2r + fcnt <= B_FIFO_SIZE + B_SUB_VAL) maxlen = fcnt; /* complete transfer */ else maxlen = B_FIFO_SIZE + B_SUB_VAL - *z2r; /* maximum */ ptr1 = bdata + (*z2r - B_SUB_VAL); /* start of data */ memcpy(ptr, ptr1, maxlen); /* copy data */ fcnt -= maxlen; if (fcnt) { /* rest remaining */ ptr += maxlen; ptr1 = bdata; /* start of buffer */ memcpy(ptr, ptr1, fcnt); /* rest */ } skb_queue_tail(&bcs->rqueue, skb); hfcpci_sched_event(bcs, B_RCVBUFREADY); } *z2r = new_z2; /* new position */ return (1); } /* hfcpci_empty_fifo_trans */ /**********************************/ /* B-channel main receive routine */ /**********************************/ static void main_rec_hfcpci(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; int rcnt, real_fifo; int receive, count = 5; struct sk_buff *skb; bzfifo_type *bz; u_char *bdata; z_type *zp; if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) { bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2; bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2; real_fifo = 1; } else { bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1; bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b1; real_fifo = 0; } Begin: count--; if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { debugl1(cs, "rec_data %d blocked", bcs->channel); return; } if (bz->f1 != bz->f2) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfcpci rec %d f1(%d) f2(%d)", bcs->channel, bz->f1, bz->f2); zp = &bz->za[bz->f2]; rcnt = zp->z1 - zp->z2; if (rcnt < 0) rcnt += B_FIFO_SIZE; rcnt++; if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfcpci rec %d z1(%x) z2(%x) cnt(%d)", bcs->channel, zp->z1, zp->z2, rcnt); if ((skb = hfcpci_empty_fifo(bcs, bz, bdata, rcnt))) { skb_queue_tail(&bcs->rqueue, skb); hfcpci_sched_event(bcs, B_RCVBUFREADY); } rcnt = bz->f1 - bz->f2; if (rcnt < 0) rcnt += MAX_B_FRAMES + 1; if (cs->hw.hfcpci.last_bfifo_cnt[real_fifo] > rcnt + 1) { rcnt = 0; hfcpci_clear_fifo_rx(cs, real_fifo); } cs->hw.hfcpci.last_bfifo_cnt[real_fifo] = rcnt; if (rcnt > 1) receive = 1; else receive = 0; } else if (bcs->mode == L1_MODE_TRANS) receive = hfcpci_empty_fifo_trans(bcs, bz, bdata); else receive = 0; test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); if (count && receive) goto Begin; return; } /**************************/ /* D-channel send routine */ /**************************/ static void hfcpci_fill_dfifo(struct IsdnCardState *cs) { int fcnt; int count, new_z1, maxlen; dfifo_type *df; u_char *src, *dst, new_f1; if (!cs->tx_skb) return; if (cs->tx_skb->len <= 0) return; df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_tx; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "hfcpci_fill_Dfifo f1(%d) f2(%d) z1(f1)(%x)", df->f1, df->f2, df->za[df->f1 & D_FREG_MASK].z1); fcnt = df->f1 - df->f2; /* frame count actually buffered */ if (fcnt < 0) fcnt += (MAX_D_FRAMES + 1); /* if wrap around */ if (fcnt > (MAX_D_FRAMES - 1)) { if (cs->debug & L1_DEB_ISAC) debugl1(cs, "hfcpci_fill_Dfifo more as 14 frames"); #ifdef ERROR_STATISTIC cs->err_tx++; #endif return; } /* now determine free bytes in FIFO buffer */ count = df->za[df->f2 & D_FREG_MASK].z2 - df->za[df->f1 & D_FREG_MASK].z1 - 1; if (count <= 0) count += D_FIFO_SIZE; /* count now contains available bytes */ if (cs->debug & L1_DEB_ISAC) debugl1(cs, "hfcpci_fill_Dfifo count(%ld/%d)", cs->tx_skb->len, count); if (count < cs->tx_skb->len) { if (cs->debug & L1_DEB_ISAC) debugl1(cs, "hfcpci_fill_Dfifo no fifo mem"); return; } count = cs->tx_skb->len; /* get frame len */ new_z1 = (df->za[df->f1 & D_FREG_MASK].z1 + count) & (D_FIFO_SIZE - 1); new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1); src = cs->tx_skb->data; /* source pointer */ dst = df->data + df->za[df->f1 & D_FREG_MASK].z1; maxlen = D_FIFO_SIZE - df->za[df->f1 & D_FREG_MASK].z1; /* end fifo */ if (maxlen > count) maxlen = count; /* limit size */ memcpy(dst, src, maxlen); /* first copy */ count -= maxlen; /* remaining bytes */ if (count) { dst = df->data; /* start of buffer */ src += maxlen; /* new position */ memcpy(dst, src, count); } df->za[new_f1 & D_FREG_MASK].z1 = new_z1; /* for next buffer */ df->za[df->f1 & D_FREG_MASK].z1 = new_z1; /* new pos actual buffer */ df->f1 = new_f1; /* next frame */ dev_kfree_skb_any(cs->tx_skb); cs->tx_skb = NULL; return; } /**************************/ /* B-channel send routine */ /**************************/ static void hfcpci_fill_fifo(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; int maxlen, fcnt; int count, new_z1; bzfifo_type *bz; u_char *bdata; u_char new_f1, *src, *dst; unsigned short *z1t, *z2t; if (!bcs->tx_skb) return; if (bcs->tx_skb->len <= 0) return; if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) { bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2; bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b2; } else { bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1; bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b1; } if (bcs->mode == L1_MODE_TRANS) { z1t = &bz->za[MAX_B_FRAMES].z1; z2t = z1t + 1; if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfcpci_fill_fifo_trans %d z1(%x) z2(%x)", bcs->channel, *z1t, *z2t); fcnt = *z2t - *z1t; if (fcnt <= 0) fcnt += B_FIFO_SIZE; /* fcnt contains available bytes in fifo */ fcnt = B_FIFO_SIZE - fcnt; /* remaining bytes to send */ while ((fcnt < 2 * HFCPCI_BTRANS_THRESHOLD) && (bcs->tx_skb)) { if (bcs->tx_skb->len < B_FIFO_SIZE - fcnt) { /* data is suitable for fifo */ count = bcs->tx_skb->len; new_z1 = *z1t + count; /* new buffer Position */ if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z1 -= B_FIFO_SIZE; /* buffer wrap */ src = bcs->tx_skb->data; /* source pointer */ dst = bdata + (*z1t - B_SUB_VAL); maxlen = (B_FIFO_SIZE + B_SUB_VAL) - *z1t; /* end of fifo */ if (maxlen > count) maxlen = count; /* limit size */ memcpy(dst, src, maxlen); /* first copy */ count -= maxlen; /* remaining bytes */ if (count) { dst = bdata; /* start of buffer */ src += maxlen; /* new position */ memcpy(dst, src, count); } bcs->tx_cnt -= bcs->tx_skb->len; fcnt += bcs->tx_skb->len; *z1t = new_z1; /* now send data */ } else if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfcpci_fill_fifo_trans %d frame length %d discarded", bcs->channel, bcs->tx_skb->len); if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) && (PACKET_NOACK != bcs->tx_skb->pkt_type)) { u_long flags; spin_lock_irqsave(&bcs->aclock, flags); bcs->ackcnt += bcs->tx_skb->len; spin_unlock_irqrestore(&bcs->aclock, flags); schedule_event(bcs, B_ACKPENDING); } dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = skb_dequeue(&bcs->squeue); /* fetch next data */ } test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); return; } if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfcpci_fill_fifo_hdlc %d f1(%d) f2(%d) z1(f1)(%x)", bcs->channel, bz->f1, bz->f2, bz->za[bz->f1].z1); fcnt = bz->f1 - bz->f2; /* frame count actually buffered */ if (fcnt < 0) fcnt += (MAX_B_FRAMES + 1); /* if wrap around */ if (fcnt > (MAX_B_FRAMES - 1)) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfcpci_fill_Bfifo more as 14 frames"); return; } /* now determine free bytes in FIFO buffer */ count = bz->za[bz->f2].z2 - bz->za[bz->f1].z1 - 1; if (count <= 0) count += B_FIFO_SIZE; /* count now contains available bytes */ if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfcpci_fill_fifo %d count(%ld/%d),%lx", bcs->channel, bcs->tx_skb->len, count, current->state); if (count < bcs->tx_skb->len) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfcpci_fill_fifo no fifo mem"); return; } count = bcs->tx_skb->len; /* get frame len */ new_z1 = bz->za[bz->f1].z1 + count; /* new buffer Position */ if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z1 -= B_FIFO_SIZE; /* buffer wrap */ new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES); src = bcs->tx_skb->data; /* source pointer */ dst = bdata + (bz->za[bz->f1].z1 - B_SUB_VAL); maxlen = (B_FIFO_SIZE + B_SUB_VAL) - bz->za[bz->f1].z1; /* end fifo */ if (maxlen > count) maxlen = count; /* limit size */ memcpy(dst, src, maxlen); /* first copy */ count -= maxlen; /* remaining bytes */ if (count) { dst = bdata; /* start of buffer */ src += maxlen; /* new position */ memcpy(dst, src, count); } bcs->tx_cnt -= bcs->tx_skb->len; if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) && (PACKET_NOACK != bcs->tx_skb->pkt_type)) { u_long flags; spin_lock_irqsave(&bcs->aclock, flags); bcs->ackcnt += bcs->tx_skb->len; spin_unlock_irqrestore(&bcs->aclock, flags); schedule_event(bcs, B_ACKPENDING); } bz->za[new_f1].z1 = new_z1; /* for next buffer */ bz->f1 = new_f1; /* next frame */ dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); return; } /**********************************************/ /* D-channel l1 state call for leased NT-mode */ /**********************************************/ static void dch_nt_l2l1(struct PStack *st, int pr, void *arg) { struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware; switch (pr) { case (PH_DATA | REQUEST): case (PH_PULL | REQUEST): case (PH_PULL | INDICATION): st->l1.l1hw(st, pr, arg); break; case (PH_ACTIVATE | REQUEST): st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL); break; case (PH_TESTLOOP | REQUEST): if (1 & (long) arg) debugl1(cs, "PH_TEST_LOOP B1"); if (2 & (long) arg) debugl1(cs, "PH_TEST_LOOP B2"); if (!(3 & (long) arg)) debugl1(cs, "PH_TEST_LOOP DISABLED"); st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg); break; default: if (cs->debug) debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr); break; } } /***********************/ /* set/reset echo mode */ /***********************/ static int hfcpci_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic) { u_long flags; int i = *(unsigned int *) ic->parm.num; if ((ic->arg == 98) && (!(cs->hw.hfcpci.int_m1 & (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC + HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC)))) { spin_lock_irqsave(&cs->lock, flags); Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */ Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 0); /* HFC ST G0 */ udelay(10); cs->hw.hfcpci.sctrl |= SCTRL_MODE_NT; Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); /* set NT-mode */ udelay(10); Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 1); /* HFC ST G1 */ udelay(10); Write_hfc(cs, HFCPCI_STATES, 1 | HFCPCI_ACTIVATE | HFCPCI_DO_ACTION); cs->dc.hfcpci.ph_state = 1; cs->hw.hfcpci.nt_mode = 1; cs->hw.hfcpci.nt_timer = 0; cs->stlist->l2.l2l1 = dch_nt_l2l1; spin_unlock_irqrestore(&cs->lock, flags); debugl1(cs, "NT mode activated"); return (0); } if ((cs->chanlimit > 1) || (cs->hw.hfcpci.bswapped) || (cs->hw.hfcpci.nt_mode) || (ic->arg != 12)) return (-EINVAL); spin_lock_irqsave(&cs->lock, flags); if (i) { cs->logecho = 1; cs->hw.hfcpci.trm |= 0x20; /* enable echo chan */ cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_B2REC; cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2RX; } else { cs->logecho = 0; cs->hw.hfcpci.trm &= ~0x20; /* disable echo chan */ cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_B2REC; cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2RX; } cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA; cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA; cs->hw.hfcpci.conn |= 0x10; /* B2-IOM -> B2-ST */ cs->hw.hfcpci.ctmt &= ~2; Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt); Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r); Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn); Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm); Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en); Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1); spin_unlock_irqrestore(&cs->lock, flags); return (0); } /* hfcpci_auxcmd */ /*****************************/ /* E-channel receive routine */ /*****************************/ static void receive_emsg(struct IsdnCardState *cs) { int rcnt; int receive, count = 5; bzfifo_type *bz; u_char *bdata; z_type *zp; u_char *ptr, *ptr1, new_f2; int total, maxlen, new_z2; u_char e_buffer[256]; bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2; bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2; Begin: count--; if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { debugl1(cs, "echo_rec_data blocked"); return; } if (bz->f1 != bz->f2) { if (cs->debug & L1_DEB_ISAC) debugl1(cs, "hfcpci e_rec f1(%d) f2(%d)", bz->f1, bz->f2); zp = &bz->za[bz->f2]; rcnt = zp->z1 - zp->z2; if (rcnt < 0) rcnt += B_FIFO_SIZE; rcnt++; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "hfcpci e_rec z1(%x) z2(%x) cnt(%d)", zp->z1, zp->z2, rcnt); new_z2 = zp->z2 + rcnt; /* new position in fifo */ if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z2 -= B_FIFO_SIZE; /* buffer wrap */ new_f2 = (bz->f2 + 1) & MAX_B_FRAMES; if ((rcnt > 256 + 3) || (count < 4) || (*(bdata + (zp->z1 - B_SUB_VAL)))) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfcpci_empty_echan: incoming packet invalid length %d or crc", rcnt); bz->za[new_f2].z2 = new_z2; bz->f2 = new_f2; /* next buffer */ } else { total = rcnt; rcnt -= 3; ptr = e_buffer; if (zp->z2 <= B_FIFO_SIZE + B_SUB_VAL) maxlen = rcnt; /* complete transfer */ else maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */ ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */ memcpy(ptr, ptr1, maxlen); /* copy data */ rcnt -= maxlen; if (rcnt) { /* rest remaining */ ptr += maxlen; ptr1 = bdata; /* start of buffer */ memcpy(ptr, ptr1, rcnt); /* rest */ } bz->za[new_f2].z2 = new_z2; bz->f2 = new_f2; /* next buffer */ if (cs->debug & DEB_DLOG_HEX) { ptr = cs->dlog; if ((total - 3) < MAX_DLOG_SPACE / 3 - 10) { *ptr++ = 'E'; *ptr++ = 'C'; *ptr++ = 'H'; *ptr++ = 'O'; *ptr++ = ':'; ptr += QuickHex(ptr, e_buffer, total - 3); ptr--; *ptr++ = '\n'; *ptr = 0; HiSax_putstatus(cs, NULL, cs->dlog); } else HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", total - 3); } } rcnt = bz->f1 - bz->f2; if (rcnt < 0) rcnt += MAX_B_FRAMES + 1; if (rcnt > 1) receive = 1; else receive = 0; } else receive = 0; test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); if (count && receive) goto Begin; return; } /* receive_emsg */ /*********************/ /* Interrupt handler */ /*********************/ static irqreturn_t hfcpci_interrupt(int intno, void *dev_id, struct pt_regs *regs) { u_long flags; struct IsdnCardState *cs = dev_id; u_char exval; struct BCState *bcs; int count = 15; u_char val, stat; if (!(cs->hw.hfcpci.int_m2 & 0x08)) { debugl1(cs, "HFC-PCI: int_m2 %x not initialised", cs->hw.hfcpci.int_m2); return IRQ_NONE; /* not initialised */ } spin_lock_irqsave(&cs->lock, flags); if (HFCPCI_ANYINT & (stat = Read_hfc(cs, HFCPCI_STATUS))) { val = Read_hfc(cs, HFCPCI_INT_S1); if (cs->debug & L1_DEB_ISAC) debugl1(cs, "HFC-PCI: stat(%02x) s1(%02x)", stat, val); } else { spin_unlock_irqrestore(&cs->lock, flags); return IRQ_NONE; } if (cs->debug & L1_DEB_ISAC) debugl1(cs, "HFC-PCI irq %x %s", val, test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ? "locked" : "unlocked"); val &= cs->hw.hfcpci.int_m1; if (val & 0x40) { /* state machine irq */ exval = Read_hfc(cs, HFCPCI_STATES) & 0xf; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcpci.ph_state, exval); cs->dc.hfcpci.ph_state = exval; sched_event_D_pci(cs, D_L1STATECHANGE); val &= ~0x40; } if (val & 0x80) { /* timer irq */ if (cs->hw.hfcpci.nt_mode) { if ((--cs->hw.hfcpci.nt_timer) < 0) sched_event_D_pci(cs, D_L1STATECHANGE); } val &= ~0x80; Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER); } while (val) { if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { cs->hw.hfcpci.int_s1 |= val; spin_unlock_irqrestore(&cs->lock, flags); return IRQ_HANDLED; } if (cs->hw.hfcpci.int_s1 & 0x18) { exval = val; val = cs->hw.hfcpci.int_s1; cs->hw.hfcpci.int_s1 = exval; } if (val & 0x08) { if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) { if (cs->debug) debugl1(cs, "hfcpci spurious 0x08 IRQ"); } else main_rec_hfcpci(bcs); } if (val & 0x10) { if (cs->logecho) receive_emsg(cs); else if (!(bcs = Sel_BCS(cs, 1))) { if (cs->debug) debugl1(cs, "hfcpci spurious 0x10 IRQ"); } else main_rec_hfcpci(bcs); } if (val & 0x01) { if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) { if (cs->debug) debugl1(cs, "hfcpci spurious 0x01 IRQ"); } else { if (bcs->tx_skb) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "fill_data %d blocked", bcs->channel); } else { if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "fill_data %d blocked", bcs->channel); } else { hfcpci_sched_event(bcs, B_XMTBUFREADY); } } } } if (val & 0x02) { if (!(bcs = Sel_BCS(cs, 1))) { if (cs->debug) debugl1(cs, "hfcpci spurious 0x02 IRQ"); } else { if (bcs->tx_skb) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "fill_data %d blocked", bcs->channel); } else { if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "fill_data %d blocked", bcs->channel); } else { hfcpci_sched_event(bcs, B_XMTBUFREADY); } } } } if (val & 0x20) { /* receive dframe */ receive_dmsg(cs); } if (val & 0x04) { /* dframe transmitted */ if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) del_timer(&cs->dbusytimer); if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags)) sched_event_D_pci(cs, D_CLEARBUSY); if (cs->tx_skb) { if (cs->tx_skb->len) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_dfifo(cs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else { debugl1(cs, "hfcpci_fill_dfifo irq blocked"); } goto afterXPR; } else { dev_kfree_skb_irq(cs->tx_skb); cs->tx_cnt = 0; cs->tx_skb = NULL; } } if ((cs->tx_skb = skb_dequeue(&cs->sq))) { cs->tx_cnt = 0; if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_dfifo(cs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else { debugl1(cs, "hfcpci_fill_dfifo irq blocked"); } } else sched_event_D_pci(cs, D_XMTBUFREADY); } afterXPR: if (cs->hw.hfcpci.int_s1 && count--) { val = cs->hw.hfcpci.int_s1; cs->hw.hfcpci.int_s1 = 0; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "HFC-PCI irq %x loop %d", val, 15 - count); } else val = 0; } spin_unlock_irqrestore(&cs->lock, flags); return IRQ_HANDLED; } /********************************************************************/ /* timer callback for D-chan busy resolution. Currently no function */ /********************************************************************/ static void hfcpci_dbusy_timer(struct IsdnCardState *cs) { } /*************************************/ /* Layer 1 D-channel hardware access */ /*************************************/ static void HFCPCI_l1hw(struct PStack *st, int pr, void *arg) { u_long flags; struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware; struct sk_buff *skb = arg; switch (pr) { case (PH_DATA | REQUEST): if (cs->debug & DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len); if (cs->debug & DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0); spin_lock_irqsave(&cs->lock, flags); if (cs->tx_skb) { skb_queue_tail(&cs->sq, skb); #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA Queued", 0); #endif } else { cs->tx_skb = skb; cs->tx_cnt = 0; #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA", 0); #endif if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_dfifo(cs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "hfcpci_fill_dfifo blocked"); } spin_unlock_irqrestore(&cs->lock, flags); break; case (PH_PULL | INDICATION): spin_lock_irqsave(&cs->lock, flags); if (cs->tx_skb) { if (cs->debug & L1_DEB_WARN) debugl1(cs, " l2l1 tx_skb exist this shouldn't happen"); skb_queue_tail(&cs->sq, skb); spin_unlock_irqrestore(&cs->lock, flags); break; } if (cs->debug & DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len); if (cs->debug & DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0); cs->tx_skb = skb; cs->tx_cnt = 0; #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA_PULLED", 0); #endif if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_dfifo(cs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "hfcpci_fill_dfifo blocked"); spin_unlock_irqrestore(&cs->lock, flags); break; case (PH_PULL | REQUEST): #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) debugl1(cs, "-> PH_REQUEST_PULL"); #endif if (!cs->tx_skb) { test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL | CONFIRM, NULL); } else test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; case (HW_RESET | REQUEST): spin_lock_irqsave(&cs->lock, flags); Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); /* HFC ST 3 */ udelay(6); Write_hfc(cs, HFCPCI_STATES, 3); /* HFC ST 2 */ cs->hw.hfcpci.mst_m |= HFCPCI_MASTER; Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m); Write_hfc(cs, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION); spin_unlock_irqrestore(&cs->lock, flags); l1_msg(cs, HW_POWERUP | CONFIRM, NULL); break; case (HW_ENABLE | REQUEST): spin_lock_irqsave(&cs->lock, flags); Write_hfc(cs, HFCPCI_STATES, HFCPCI_DO_ACTION); spin_unlock_irqrestore(&cs->lock, flags); break; case (HW_DEACTIVATE | REQUEST): spin_lock_irqsave(&cs->lock, flags); cs->hw.hfcpci.mst_m &= ~HFCPCI_MASTER; Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m); spin_unlock_irqrestore(&cs->lock, flags); break; case (HW_INFO3 | REQUEST): spin_lock_irqsave(&cs->lock, flags); cs->hw.hfcpci.mst_m |= HFCPCI_MASTER; Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m); spin_unlock_irqrestore(&cs->lock, flags); break; case (HW_TESTLOOP | REQUEST): spin_lock_irqsave(&cs->lock, flags); switch ((int) arg) { case (1): Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* tx slot */ Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* rx slot */ cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~7) | 1; Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn); break; case (2): Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* tx slot */ Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* rx slot */ cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~0x38) | 0x08; Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn); break; default: spin_unlock_irqrestore(&cs->lock, flags); if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfcpci_l1hw loop invalid %4x", (int) arg); return; } cs->hw.hfcpci.trm |= 0x80; /* enable IOM-loop */ Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm); spin_unlock_irqrestore(&cs->lock, flags); break; default: if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfcpci_l1hw unknown pr %4x", pr); break; } } /***********************************************/ /* called during init setting l1 stack pointer */ /***********************************************/ static void setstack_hfcpci(struct PStack *st, struct IsdnCardState *cs) { st->l1.l1hw = HFCPCI_l1hw; } /**************************************/ /* send B-channel data if not blocked */ /**************************************/ static void hfcpci_send_data(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcpci_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "send_data %d blocked", bcs->channel); } /***************************************************************/ /* activate/deactivate hardware for selected channels and mode */ /***************************************************************/ static void mode_hfcpci(struct BCState *bcs, int mode, int bc) { struct IsdnCardState *cs = bcs->cs; int fifo2; if (cs->debug & L1_DEB_HSCX) debugl1(cs, "HFCPCI bchannel mode %d bchan %d/%d", mode, bc, bcs->channel); bcs->mode = mode; bcs->channel = bc; fifo2 = bc; if (cs->chanlimit > 1) { cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */ cs->hw.hfcpci.sctrl_e &= ~0x80; } else { if (bc) { if (mode != L1_MODE_NULL) { cs->hw.hfcpci.bswapped = 1; /* B1 and B2 exchanged */ cs->hw.hfcpci.sctrl_e |= 0x80; } else { cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */ cs->hw.hfcpci.sctrl_e &= ~0x80; } fifo2 = 0; } else { cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */ cs->hw.hfcpci.sctrl_e &= ~0x80; } } switch (mode) { case (L1_MODE_NULL): if (bc) { cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA; cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA; } else { cs->hw.hfcpci.sctrl &= ~SCTRL_B1_ENA; cs->hw.hfcpci.sctrl_r &= ~SCTRL_B1_ENA; } if (fifo2) { cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2; cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC); } else { cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1; cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC); } break; case (L1_MODE_TRANS): hfcpci_clear_fifo_rx(cs, fifo2); hfcpci_clear_fifo_tx(cs, fifo2); if (bc) { cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA; cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA; } else { cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA; cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA; } if (fifo2) { cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2; cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC); cs->hw.hfcpci.ctmt |= 2; cs->hw.hfcpci.conn &= ~0x18; } else { cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1; cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC); cs->hw.hfcpci.ctmt |= 1; cs->hw.hfcpci.conn &= ~0x03; } break; case (L1_MODE_HDLC): hfcpci_clear_fifo_rx(cs, fifo2); hfcpci_clear_fifo_tx(cs, fifo2); if (bc) { cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA; cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA; } else { cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA; cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA; } if (fifo2) { cs->hw.hfcpci.last_bfifo_cnt[1] = 0; cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2; cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC); cs->hw.hfcpci.ctmt &= ~2; cs->hw.hfcpci.conn &= ~0x18; } else { cs->hw.hfcpci.last_bfifo_cnt[0] = 0; cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1; cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC); cs->hw.hfcpci.ctmt &= ~1; cs->hw.hfcpci.conn &= ~0x03; } break; case (L1_MODE_EXTRN): if (bc) { cs->hw.hfcpci.conn |= 0x10; cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA; cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA; cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2; cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC); } else { cs->hw.hfcpci.conn |= 0x02; cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA; cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA; cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1; cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC); } break; } Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e); Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1); Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en); Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r); Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt); Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn); } /******************************/ /* Layer2 -> Layer 1 Transfer */ /******************************/ static void hfcpci_l2l1(struct PStack *st, int pr, void *arg) { struct BCState *bcs = st->l1.bcs; u_long flags; struct sk_buff *skb = arg; switch (pr) { case (PH_DATA | REQUEST): spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { skb_queue_tail(&bcs->squeue, skb); } else { bcs->tx_skb = skb; // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->cs->BC_Send_Data(bcs); } spin_unlock_irqrestore(&bcs->cs->lock, flags); break; case (PH_PULL | INDICATION): spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { spin_unlock_irqrestore(&bcs->cs->lock, flags); printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n"); break; } // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->tx_skb = skb; bcs->cs->BC_Send_Data(bcs); spin_unlock_irqrestore(&bcs->cs->lock, flags); break; case (PH_PULL | REQUEST): if (!bcs->tx_skb) { test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL | CONFIRM, NULL); } else test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; case (PH_ACTIVATE | REQUEST): spin_lock_irqsave(&bcs->cs->lock, flags); test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag); mode_hfcpci(bcs, st->l1.mode, st->l1.bc); spin_unlock_irqrestore(&bcs->cs->lock, flags); l1_msg_b(st, pr, arg); break; case (PH_DEACTIVATE | REQUEST): l1_msg_b(st, pr, arg); break; case (PH_DEACTIVATE | CONFIRM): spin_lock_irqsave(&bcs->cs->lock, flags); test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag); test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); mode_hfcpci(bcs, 0, st->l1.bc); spin_unlock_irqrestore(&bcs->cs->lock, flags); st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL); break; } } /******************************************/ /* deactivate B-channel access and queues */ /******************************************/ static void close_hfcpci(struct BCState *bcs) { mode_hfcpci(bcs, 0, bcs->channel); if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) { skb_queue_purge(&bcs->rqueue); skb_queue_purge(&bcs->squeue); if (bcs->tx_skb) { dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); } } } /*************************************/ /* init B-channel queues and control */ /*************************************/ static int open_hfcpcistate(struct IsdnCardState *cs, struct BCState *bcs) { if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) { skb_queue_head_init(&bcs->rqueue); skb_queue_head_init(&bcs->squeue); } bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); bcs->event = 0; bcs->tx_cnt = 0; return (0); } /*********************************/ /* inits the stack for B-channel */ /*********************************/ static int setstack_2b(struct PStack *st, struct BCState *bcs) { bcs->channel = st->l1.bc; if (open_hfcpcistate(st->l1.hardware, bcs)) return (-1); st->l1.bcs = bcs; st->l2.l2l1 = hfcpci_l2l1; setstack_manager(st); bcs->st = st; setstack_l1_B(st); return (0); } /***************************/ /* handle L1 state changes */ /***************************/ static void hfcpci_bh(struct IsdnCardState *cs) { u_long flags; // struct PStack *stptr; if (!cs) return; if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) { if (!cs->hw.hfcpci.nt_mode) switch (cs->dc.hfcpci.ph_state) { case (0): l1_msg(cs, HW_RESET | INDICATION, NULL); break; case (3): l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL); break; case (8): l1_msg(cs, HW_RSYNC | INDICATION, NULL); break; case (6): l1_msg(cs, HW_INFO2 | INDICATION, NULL); break; case (7): l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL); break; default: break; } else { spin_lock_irqsave(&cs->lock, flags); switch (cs->dc.hfcpci.ph_state) { case (2): if (cs->hw.hfcpci.nt_timer < 0) { cs->hw.hfcpci.nt_timer = 0; cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER; Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1); /* Clear already pending ints */ if (Read_hfc(cs, HFCPCI_INT_S1)); Write_hfc(cs, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE); udelay(10); Write_hfc(cs, HFCPCI_STATES, 4); cs->dc.hfcpci.ph_state = 4; } else { cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_TIMER; Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1); cs->hw.hfcpci.ctmt &= ~HFCPCI_AUTO_TIMER; cs->hw.hfcpci.ctmt |= HFCPCI_TIM3_125; Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER); Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER); cs->hw.hfcpci.nt_timer = NT_T1_COUNT; Write_hfc(cs, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); /* allow G2 -> G3 transition */ } break; case (1): case (3): case (4): cs->hw.hfcpci.nt_timer = 0; cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER; Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1); break; default: break; } spin_unlock_irqrestore(&cs->lock, flags); } } if (test_and_clear_bit(D_RCVBUFREADY, &cs->event)) DChannel_proc_rcv(cs); if (test_and_clear_bit(D_XMTBUFREADY, &cs->event)) DChannel_proc_xmt(cs); } /********************************/ /* called for card init message */ /********************************/ static void __init inithfcpci(struct IsdnCardState *cs) { cs->bcs[0].BC_SetStack = setstack_2b; cs->bcs[1].BC_SetStack = setstack_2b; cs->bcs[0].BC_Close = close_hfcpci; cs->bcs[1].BC_Close = close_hfcpci; cs->dbusytimer.function = (void *) hfcpci_dbusy_timer; cs->dbusytimer.data = (long) cs; init_timer(&cs->dbusytimer); mode_hfcpci(cs->bcs, 0, 0); mode_hfcpci(cs->bcs + 1, 0, 1); } /*******************************************/ /* handle card messages from control layer */ /*******************************************/ static int hfcpci_card_msg(struct IsdnCardState *cs, int mt, void *arg) { u_long flags; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "HFCPCI: card_msg %x", mt); switch (mt) { case CARD_RESET: spin_lock_irqsave(&cs->lock, flags); reset_hfcpci(cs); spin_unlock_irqrestore(&cs->lock, flags); return (0); case CARD_RELEASE: release_io_hfcpci(cs); return (0); case CARD_INIT: spin_lock_irqsave(&cs->lock, flags); inithfcpci(cs); reset_hfcpci(cs); spin_unlock_irqrestore(&cs->lock, flags); msleep(80); /* Timeout 80ms */ /* now switch timer interrupt off */ spin_lock_irqsave(&cs->lock, flags); cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER; Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1); /* reinit mode reg */ Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m); spin_unlock_irqrestore(&cs->lock, flags); return (0); case CARD_TEST: return (0); } return (0); } /* this variable is used as card index when more than one cards are present */ static struct pci_dev *dev_hfcpci __initdata = NULL; #endif /* CONFIG_PCI */ int __init setup_hfcpci(struct IsdnCard *card) { u_long flags; struct IsdnCardState *cs = card->cs; char tmp[64]; int i; struct pci_dev *tmp_hfcpci = NULL; #ifdef __BIG_ENDIAN #error "not running on big endian machines now" #endif strcpy(tmp, hfcpci_revision); printk(KERN_INFO "HiSax: HFC-PCI driver Rev. %s\n", HiSax_getrev(tmp)); #ifdef CONFIG_PCI cs->hw.hfcpci.int_s1 = 0; cs->dc.hfcpci.ph_state = 0; cs->hw.hfcpci.fifo = 255; if (cs->typ == ISDN_CTYPE_HFC_PCI) { i = 0; while (id_list[i].vendor_id) { tmp_hfcpci = pci_find_device(id_list[i].vendor_id, id_list[i].device_id, dev_hfcpci); i++; if (tmp_hfcpci) { if (pci_enable_device(tmp_hfcpci)) continue; pci_set_master(tmp_hfcpci); if ((card->para[0]) && (card->para[0] != (tmp_hfcpci->resource[ 0].start & PCI_BASE_ADDRESS_IO_MASK))) continue; else break; } } if (tmp_hfcpci) { i--; dev_hfcpci = tmp_hfcpci; /* old device */ cs->hw.hfcpci.dev = dev_hfcpci; cs->irq = dev_hfcpci->irq; if (!cs->irq) { printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n"); return (0); } cs->hw.hfcpci.pci_io = (char *) dev_hfcpci->resource[ 1].start; printk(KERN_INFO "HiSax: HFC-PCI card manufacturer: %s card name: %s\n", id_list[i].vendor_name, id_list[i].card_name); } else { printk(KERN_WARNING "HFC-PCI: No PCI card found\n"); return (0); } if (!cs->hw.hfcpci.pci_io) { printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n"); return (0); } /* Allocate memory for FIFOS */ /* Because the HFC-PCI needs a 32K physical alignment, we */ /* need to allocate the double mem and align the address */ if (!(cs->hw.hfcpci.share_start = kmalloc(65536, GFP_KERNEL))) { printk(KERN_WARNING "HFC-PCI: Error allocating memory for FIFO!\n"); return 0; } cs->hw.hfcpci.fifos = (void *) (((ulong) cs->hw.hfcpci.share_start) & ~0x7FFF) + 0x8000; pci_write_config_dword(cs->hw.hfcpci.dev, 0x80, (u_int) virt_to_bus(cs->hw.hfcpci.fifos)); cs->hw.hfcpci.pci_io = ioremap((ulong) cs->hw.hfcpci.pci_io, 256); printk(KERN_INFO "HFC-PCI: defined at mem %#x fifo %#x(%#x) IRQ %d HZ %d\n", (u_int) cs->hw.hfcpci.pci_io, (u_int) cs->hw.hfcpci.fifos, (u_int) virt_to_bus(cs->hw.hfcpci.fifos), cs->irq, HZ); spin_lock_irqsave(&cs->lock, flags); pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */ cs->hw.hfcpci.int_m2 = 0; /* disable alle interrupts */ cs->hw.hfcpci.int_m1 = 0; Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1); Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2); /* At this point the needed PCI config is done */ /* fifos are still not enabled */ INIT_WORK(&cs->tqueue, (void *)(void *) hfcpci_bh, cs); cs->setstack_d = setstack_hfcpci; cs->BC_Send_Data = &hfcpci_send_data; cs->readisac = NULL; cs->writeisac = NULL; cs->readisacfifo = NULL; cs->writeisacfifo = NULL; cs->BC_Read_Reg = NULL; cs->BC_Write_Reg = NULL; cs->irq_func = &hfcpci_interrupt; cs->irq_flags |= SA_SHIRQ; cs->hw.hfcpci.timer.function = (void *) hfcpci_Timer; cs->hw.hfcpci.timer.data = (long) cs; init_timer(&cs->hw.hfcpci.timer); cs->cardmsg = &hfcpci_card_msg; cs->auxcmd = &hfcpci_auxcmd; spin_unlock_irqrestore(&cs->lock, flags); return (1); } else return (0); /* no valid card type */ #else printk(KERN_WARNING "HFC-PCI: NO_PCI_BIOS\n"); return (0); #endif /* CONFIG_PCI */ }