/* * dvb_frontend.c: DVB frontend tuning interface/thread * * * Copyright (C) 1999-2001 Ralph Metzler * Marcus Metzler * Holger Waechtler * for convergence integrated media GmbH * * Copyright (C) 2004 Andrew de Quincey (tuning thread cleanup) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "dvbdev.h" static int dvb_frontend_debug; static int dvb_shutdown_timeout = 5; static int dvb_force_auto_inversion; static int dvb_override_tune_delay; static int dvb_powerdown_on_sleep = 1; module_param_named(frontend_debug, dvb_frontend_debug, int, 0644); MODULE_PARM_DESC(dvb_frontend_debug, "Turn on/off frontend core debugging (default:off)."); module_param(dvb_shutdown_timeout, int, 0444); MODULE_PARM_DESC(dvb_shutdown_timeout, "wait seconds after close() before suspending hardware"); module_param(dvb_force_auto_inversion, int, 0444); MODULE_PARM_DESC(dvb_force_auto_inversion, "0: normal (default), 1: INVERSION_AUTO forced always"); module_param(dvb_override_tune_delay, int, 0444); MODULE_PARM_DESC(dvb_override_tune_delay, "0: normal (default), >0 => delay in milliseconds to wait for lock after a tune attempt"); module_param(dvb_powerdown_on_sleep, int, 0444); MODULE_PARM_DESC(dvb_powerdown_on_sleep, "0: do not power down, 1: turn LNB volatage off on sleep (default)"); #define dprintk if (dvb_frontend_debug) printk #define FESTATE_IDLE 1 #define FESTATE_RETUNE 2 #define FESTATE_TUNING_FAST 4 #define FESTATE_TUNING_SLOW 8 #define FESTATE_TUNED 16 #define FESTATE_ZIGZAG_FAST 32 #define FESTATE_ZIGZAG_SLOW 64 #define FESTATE_DISEQC 128 #define FESTATE_WAITFORLOCK (FESTATE_TUNING_FAST | FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW | FESTATE_DISEQC) #define FESTATE_SEARCHING_FAST (FESTATE_TUNING_FAST | FESTATE_ZIGZAG_FAST) #define FESTATE_SEARCHING_SLOW (FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_SLOW) #define FESTATE_LOSTLOCK (FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW) /* * FESTATE_IDLE. No tuning parameters have been supplied and the loop is idling. * FESTATE_RETUNE. Parameters have been supplied, but we have not yet performed the first tune. * FESTATE_TUNING_FAST. Tuning parameters have been supplied and fast zigzag scan is in progress. * FESTATE_TUNING_SLOW. Tuning parameters have been supplied. Fast zigzag failed, so we're trying again, but slower. * FESTATE_TUNED. The frontend has successfully locked on. * FESTATE_ZIGZAG_FAST. The lock has been lost, and a fast zigzag has been initiated to try and regain it. * FESTATE_ZIGZAG_SLOW. The lock has been lost. Fast zigzag has been failed, so we're trying again, but slower. * FESTATE_DISEQC. A DISEQC command has just been issued. * FESTATE_WAITFORLOCK. When we're waiting for a lock. * FESTATE_SEARCHING_FAST. When we're searching for a signal using a fast zigzag scan. * FESTATE_SEARCHING_SLOW. When we're searching for a signal using a slow zigzag scan. * FESTATE_LOSTLOCK. When the lock has been lost, and we're searching it again. */ static DECLARE_MUTEX(frontend_mutex); struct dvb_frontend_private { struct dvb_device *dvbdev; struct dvb_frontend_parameters parameters; struct dvb_fe_events events; struct semaphore sem; struct list_head list_head; wait_queue_head_t wait_queue; pid_t thread_pid; unsigned long release_jiffies; int state; int bending; int lnb_drift; int inversion; int auto_step; int auto_sub_step; int started_auto_step; int min_delay; int max_drift; int step_size; int exit; int wakeup; fe_status_t status; }; static void dvb_frontend_add_event(struct dvb_frontend *fe, fe_status_t status) { struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; struct dvb_fe_events *events = &fepriv->events; struct dvb_frontend_event *e; int wp; dprintk ("%s\n", __FUNCTION__); if (down_interruptible (&events->sem)) return; wp = (events->eventw + 1) % MAX_EVENT; if (wp == events->eventr) { events->overflow = 1; events->eventr = (events->eventr + 1) % MAX_EVENT; } e = &events->events[events->eventw]; memcpy (&e->parameters, &fepriv->parameters, sizeof (struct dvb_frontend_parameters)); if (status & FE_HAS_LOCK) if (fe->ops->get_frontend) fe->ops->get_frontend(fe, &e->parameters); events->eventw = wp; up (&events->sem); e->status = status; wake_up_interruptible (&events->wait_queue); } static int dvb_frontend_get_event(struct dvb_frontend *fe, struct dvb_frontend_event *event, int flags) { struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; struct dvb_fe_events *events = &fepriv->events; dprintk ("%s\n", __FUNCTION__); if (events->overflow) { events->overflow = 0; return -EOVERFLOW; } if (events->eventw == events->eventr) { int ret; if (flags & O_NONBLOCK) return -EWOULDBLOCK; up(&fepriv->sem); ret = wait_event_interruptible (events->wait_queue, events->eventw != events->eventr); if (down_interruptible (&fepriv->sem)) return -ERESTARTSYS; if (ret < 0) return ret; } if (down_interruptible (&events->sem)) return -ERESTARTSYS; memcpy (event, &events->events[events->eventr], sizeof(struct dvb_frontend_event)); events->eventr = (events->eventr + 1) % MAX_EVENT; up (&events->sem); return 0; } static void dvb_frontend_init(struct dvb_frontend *fe) { dprintk ("DVB: initialising frontend %i (%s)...\n", fe->dvb->num, fe->ops->info.name); if (fe->ops->init) fe->ops->init(fe); } static void update_delay(int *quality, int *delay, int min_delay, int locked) { int q2; dprintk ("%s\n", __FUNCTION__); if (locked) (*quality) = (*quality * 220 + 36*256) / 256; else (*quality) = (*quality * 220 + 0) / 256; q2 = *quality - 128; q2 *= q2; *delay = min_delay + q2 * HZ / (128*128); } /** * Performs automatic twiddling of frontend parameters. * * @param fe The frontend concerned. * @param check_wrapped Checks if an iteration has completed. DO NOT SET ON THE FIRST ATTEMPT * @returns Number of complete iterations that have been performed. */ static int dvb_frontend_autotune(struct dvb_frontend *fe, int check_wrapped) { int autoinversion; int ready = 0; struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; int original_inversion = fepriv->parameters.inversion; u32 original_frequency = fepriv->parameters.frequency; /* are we using autoinversion? */ autoinversion = ((!(fe->ops->info.caps & FE_CAN_INVERSION_AUTO)) && (fepriv->parameters.inversion == INVERSION_AUTO)); /* setup parameters correctly */ while(!ready) { /* calculate the lnb_drift */ fepriv->lnb_drift = fepriv->auto_step * fepriv->step_size; /* wrap the auto_step if we've exceeded the maximum drift */ if (fepriv->lnb_drift > fepriv->max_drift) { fepriv->auto_step = 0; fepriv->auto_sub_step = 0; fepriv->lnb_drift = 0; } /* perform inversion and +/- zigzag */ switch(fepriv->auto_sub_step) { case 0: /* try with the current inversion and current drift setting */ ready = 1; break; case 1: if (!autoinversion) break; fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF; ready = 1; break; case 2: if (fepriv->lnb_drift == 0) break; fepriv->lnb_drift = -fepriv->lnb_drift; ready = 1; break; case 3: if (fepriv->lnb_drift == 0) break; if (!autoinversion) break; fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF; fepriv->lnb_drift = -fepriv->lnb_drift; ready = 1; break; default: fepriv->auto_step++; fepriv->auto_sub_step = -1; /* it'll be incremented to 0 in a moment */ break; } if (!ready) fepriv->auto_sub_step++; } /* if this attempt would hit where we started, indicate a complete * iteration has occurred */ if ((fepriv->auto_step == fepriv->started_auto_step) && (fepriv->auto_sub_step == 0) && check_wrapped) { return 1; } dprintk("%s: drift:%i inversion:%i auto_step:%i " "auto_sub_step:%i started_auto_step:%i\n", __FUNCTION__, fepriv->lnb_drift, fepriv->inversion, fepriv->auto_step, fepriv->auto_sub_step, fepriv->started_auto_step); /* set the frontend itself */ fepriv->parameters.frequency += fepriv->lnb_drift; if (autoinversion) fepriv->parameters.inversion = fepriv->inversion; if (fe->ops->set_frontend) fe->ops->set_frontend(fe, &fepriv->parameters); fepriv->parameters.frequency = original_frequency; fepriv->parameters.inversion = original_inversion; fepriv->auto_sub_step++; return 0; } static int dvb_frontend_is_exiting(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; if (fepriv->exit) return 1; if (fepriv->dvbdev->writers == 1) if (jiffies - fepriv->release_jiffies > dvb_shutdown_timeout * HZ) return 1; return 0; } static int dvb_frontend_should_wakeup(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; if (fepriv->wakeup) { fepriv->wakeup = 0; return 1; } return dvb_frontend_is_exiting(fe); } static void dvb_frontend_wakeup(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; fepriv->wakeup = 1; wake_up_interruptible(&fepriv->wait_queue); } /* * FIXME: use linux/kthread.h */ static int dvb_frontend_thread(void *data) { struct dvb_frontend *fe = (struct dvb_frontend *) data; struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; unsigned long timeout; char name [15]; int quality = 0, delay = 3*HZ; fe_status_t s; int check_wrapped = 0; dprintk("%s\n", __FUNCTION__); snprintf (name, sizeof(name), "kdvb-fe-%i", fe->dvb->num); lock_kernel(); daemonize(name); sigfillset(¤t->blocked); unlock_kernel(); fepriv->status = 0; dvb_frontend_init(fe); fepriv->wakeup = 0; while (1) { up(&fepriv->sem); /* is locked when we enter the thread... */ timeout = wait_event_interruptible_timeout(fepriv->wait_queue, dvb_frontend_should_wakeup(fe), delay); if (0 != dvb_frontend_is_exiting(fe)) { /* got signal or quitting */ break; } if (current->flags & PF_FREEZE) refrigerator(PF_FREEZE); if (down_interruptible(&fepriv->sem)) break; /* if we've got no parameters, just keep idling */ if (fepriv->state & FESTATE_IDLE) { delay = 3*HZ; quality = 0; continue; } /* get the frontend status */ if (fepriv->state & FESTATE_RETUNE) { s = 0; } else { if (fe->ops->read_status) fe->ops->read_status(fe, &s); if (s != fepriv->status) { dvb_frontend_add_event(fe, s); fepriv->status = s; } } /* if we're not tuned, and we have a lock, move to the TUNED state */ if ((fepriv->state & FESTATE_WAITFORLOCK) && (s & FE_HAS_LOCK)) { update_delay(&quality, &delay, fepriv->min_delay, s & FE_HAS_LOCK); fepriv->state = FESTATE_TUNED; /* if we're tuned, then we have determined the correct inversion */ if ((!(fe->ops->info.caps & FE_CAN_INVERSION_AUTO)) && (fepriv->parameters.inversion == INVERSION_AUTO)) { fepriv->parameters.inversion = fepriv->inversion; } continue; } /* if we are tuned already, check we're still locked */ if (fepriv->state & FESTATE_TUNED) { update_delay(&quality, &delay, fepriv->min_delay, s & FE_HAS_LOCK); /* we're tuned, and the lock is still good... */ if (s & FE_HAS_LOCK) continue; else { /* if we _WERE_ tuned, but now don't have a lock, * need to zigzag */ fepriv->state = FESTATE_ZIGZAG_FAST; fepriv->started_auto_step = fepriv->auto_step; check_wrapped = 0; } } /* don't actually do anything if we're in the LOSTLOCK state, * the frontend is set to FE_CAN_RECOVER, and the max_drift is 0 */ if ((fepriv->state & FESTATE_LOSTLOCK) && (fe->ops->info.caps & FE_CAN_RECOVER) && (fepriv->max_drift == 0)) { update_delay(&quality, &delay, fepriv->min_delay, s & FE_HAS_LOCK); continue; } /* don't do anything if we're in the DISEQC state, since this * might be someone with a motorized dish controlled by DISEQC. * If its actually a re-tune, there will be a SET_FRONTEND soon enough. */ if (fepriv->state & FESTATE_DISEQC) { update_delay(&quality, &delay, fepriv->min_delay, s & FE_HAS_LOCK); continue; } /* if we're in the RETUNE state, set everything up for a brand * new scan, keeping the current inversion setting, as the next * tune is _very_ likely to require the same */ if (fepriv->state & FESTATE_RETUNE) { fepriv->lnb_drift = 0; fepriv->auto_step = 0; fepriv->auto_sub_step = 0; fepriv->started_auto_step = 0; check_wrapped = 0; } /* fast zigzag. */ if ((fepriv->state & FESTATE_SEARCHING_FAST) || (fepriv->state & FESTATE_RETUNE)) { delay = fepriv->min_delay; /* peform a tune */ if (dvb_frontend_autotune(fe, check_wrapped)) { /* OK, if we've run out of trials at the fast speed. * Drop back to slow for the _next_ attempt */ fepriv->state = FESTATE_SEARCHING_SLOW; fepriv->started_auto_step = fepriv->auto_step; continue; } check_wrapped = 1; /* if we've just retuned, enter the ZIGZAG_FAST state. * This ensures we cannot return from an * FE_SET_FRONTEND ioctl before the first frontend tune * occurs */ if (fepriv->state & FESTATE_RETUNE) { fepriv->state = FESTATE_TUNING_FAST; } } /* slow zigzag */ if (fepriv->state & FESTATE_SEARCHING_SLOW) { update_delay(&quality, &delay, fepriv->min_delay, s & FE_HAS_LOCK); /* Note: don't bother checking for wrapping; we stay in this * state until we get a lock */ dvb_frontend_autotune(fe, 0); } } if (dvb_shutdown_timeout) { if (dvb_powerdown_on_sleep) if (fe->ops->set_voltage) fe->ops->set_voltage(fe, SEC_VOLTAGE_OFF); if (fe->ops->sleep) fe->ops->sleep(fe); } fepriv->thread_pid = 0; mb(); dvb_frontend_wakeup(fe); return 0; } static void dvb_frontend_stop(struct dvb_frontend *fe) { unsigned long ret; struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; dprintk ("%s\n", __FUNCTION__); fepriv->exit = 1; mb(); if (!fepriv->thread_pid) return; /* check if the thread is really alive */ if (kill_proc(fepriv->thread_pid, 0, 1) == -ESRCH) { printk("dvb_frontend_stop: thread PID %d already died\n", fepriv->thread_pid); /* make sure the mutex was not held by the thread */ init_MUTEX (&fepriv->sem); return; } /* wake up the frontend thread, so it notices that fe->exit == 1 */ dvb_frontend_wakeup(fe); /* wait until the frontend thread has exited */ ret = wait_event_interruptible(fepriv->wait_queue,0 == fepriv->thread_pid); if (-ERESTARTSYS != ret) { fepriv->state = FESTATE_IDLE; return; } fepriv->state = FESTATE_IDLE; /* paranoia check in case a signal arrived */ if (fepriv->thread_pid) printk("dvb_frontend_stop: warning: thread PID %d won't exit\n", fepriv->thread_pid); } static int dvb_frontend_start(struct dvb_frontend *fe) { int ret; struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; dprintk ("%s\n", __FUNCTION__); if (fepriv->thread_pid) { if (!fepriv->exit) return 0; else dvb_frontend_stop (fe); } if (signal_pending(current)) return -EINTR; if (down_interruptible (&fepriv->sem)) return -EINTR; fepriv->state = FESTATE_IDLE; fepriv->exit = 0; fepriv->thread_pid = 0; mb(); ret = kernel_thread (dvb_frontend_thread, fe, 0); if (ret < 0) { printk("dvb_frontend_start: failed to start kernel_thread (%d)\n", ret); up(&fepriv->sem); return ret; } fepriv->thread_pid = ret; return 0; } static int dvb_frontend_ioctl(struct inode *inode, struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; int err = -EOPNOTSUPP; dprintk ("%s\n", __FUNCTION__); if (!fe || fepriv->exit) return -ENODEV; if ((file->f_flags & O_ACCMODE) == O_RDONLY && (_IOC_DIR(cmd) != _IOC_READ || cmd == FE_GET_EVENT || cmd == FE_DISEQC_RECV_SLAVE_REPLY)) return -EPERM; if (down_interruptible (&fepriv->sem)) return -ERESTARTSYS; switch (cmd) { case FE_GET_INFO: { struct dvb_frontend_info* info = (struct dvb_frontend_info*) parg; memcpy(info, &fe->ops->info, sizeof(struct dvb_frontend_info)); /* Force the CAN_INVERSION_AUTO bit on. If the frontend doesn't * do it, it is done for it. */ info->caps |= FE_CAN_INVERSION_AUTO; err = 0; break; } case FE_READ_STATUS: if (fe->ops->read_status) err = fe->ops->read_status(fe, (fe_status_t*) parg); break; case FE_READ_BER: if (fe->ops->read_ber) err = fe->ops->read_ber(fe, (__u32*) parg); break; case FE_READ_SIGNAL_STRENGTH: if (fe->ops->read_signal_strength) err = fe->ops->read_signal_strength(fe, (__u16*) parg); break; case FE_READ_SNR: if (fe->ops->read_snr) err = fe->ops->read_snr(fe, (__u16*) parg); break; case FE_READ_UNCORRECTED_BLOCKS: if (fe->ops->read_ucblocks) err = fe->ops->read_ucblocks(fe, (__u32*) parg); break; case FE_DISEQC_RESET_OVERLOAD: if (fe->ops->diseqc_reset_overload) { err = fe->ops->diseqc_reset_overload(fe); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_SEND_MASTER_CMD: if (fe->ops->diseqc_send_master_cmd) { err = fe->ops->diseqc_send_master_cmd(fe, (struct dvb_diseqc_master_cmd*) parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_SEND_BURST: if (fe->ops->diseqc_send_burst) { err = fe->ops->diseqc_send_burst(fe, (fe_sec_mini_cmd_t) parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_SET_TONE: if (fe->ops->set_tone) { err = fe->ops->set_tone(fe, (fe_sec_tone_mode_t) parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_SET_VOLTAGE: if (fe->ops->set_voltage) { err = fe->ops->set_voltage(fe, (fe_sec_voltage_t) parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISHNETWORK_SEND_LEGACY_CMD: if (fe->ops->dishnetwork_send_legacy_command) { err = fe->ops->dishnetwork_send_legacy_command(fe, (unsigned int) parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_RECV_SLAVE_REPLY: if (fe->ops->diseqc_recv_slave_reply) err = fe->ops->diseqc_recv_slave_reply(fe, (struct dvb_diseqc_slave_reply*) parg); break; case FE_ENABLE_HIGH_LNB_VOLTAGE: if (fe->ops->enable_high_lnb_voltage) err = fe->ops->enable_high_lnb_voltage(fe, (int) parg); break; case FE_SET_FRONTEND: { struct dvb_frontend_tune_settings fetunesettings; memcpy (&fepriv->parameters, parg, sizeof (struct dvb_frontend_parameters)); memset(&fetunesettings, 0, sizeof(struct dvb_frontend_tune_settings)); memcpy(&fetunesettings.parameters, parg, sizeof (struct dvb_frontend_parameters)); /* force auto frequency inversion if requested */ if (dvb_force_auto_inversion) { fepriv->parameters.inversion = INVERSION_AUTO; fetunesettings.parameters.inversion = INVERSION_AUTO; } if (fe->ops->info.type == FE_OFDM) { /* without hierachical coding code_rate_LP is irrelevant, * so we tolerate the otherwise invalid FEC_NONE setting */ if (fepriv->parameters.u.ofdm.hierarchy_information == HIERARCHY_NONE && fepriv->parameters.u.ofdm.code_rate_LP == FEC_NONE) fepriv->parameters.u.ofdm.code_rate_LP = FEC_AUTO; } /* get frontend-specific tuning settings */ if (fe->ops->get_tune_settings && (fe->ops->get_tune_settings(fe, &fetunesettings) == 0)) { fepriv->min_delay = (fetunesettings.min_delay_ms * HZ) / 1000; fepriv->max_drift = fetunesettings.max_drift; fepriv->step_size = fetunesettings.step_size; } else { /* default values */ switch(fe->ops->info.type) { case FE_QPSK: fepriv->min_delay = HZ/20; fepriv->step_size = fepriv->parameters.u.qpsk.symbol_rate / 16000; fepriv->max_drift = fepriv->parameters.u.qpsk.symbol_rate / 2000; break; case FE_QAM: fepriv->min_delay = HZ/20; fepriv->step_size = 0; /* no zigzag */ fepriv->max_drift = 0; break; case FE_OFDM: fepriv->min_delay = HZ/20; fepriv->step_size = fe->ops->info.frequency_stepsize * 2; fepriv->max_drift = (fe->ops->info.frequency_stepsize * 2) + 1; break; case FE_ATSC: printk("dvb-core: FE_ATSC not handled yet.\n"); break; } } if (dvb_override_tune_delay > 0) fepriv->min_delay = (dvb_override_tune_delay * HZ) / 1000; fepriv->state = FESTATE_RETUNE; dvb_frontend_wakeup(fe); dvb_frontend_add_event(fe, 0); fepriv->status = 0; err = 0; break; } case FE_GET_EVENT: err = dvb_frontend_get_event (fe, parg, file->f_flags); break; case FE_GET_FRONTEND: if (fe->ops->get_frontend) { memcpy (parg, &fepriv->parameters, sizeof (struct dvb_frontend_parameters)); err = fe->ops->get_frontend(fe, (struct dvb_frontend_parameters*) parg); } break; }; up (&fepriv->sem); return err; } static unsigned int dvb_frontend_poll(struct file *file, struct poll_table_struct *wait) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; dprintk ("%s\n", __FUNCTION__); poll_wait (file, &fepriv->events.wait_queue, wait); if (fepriv->events.eventw != fepriv->events.eventr) return (POLLIN | POLLRDNORM | POLLPRI); return 0; } static int dvb_frontend_open(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; int ret; dprintk ("%s\n", __FUNCTION__); if ((ret = dvb_generic_open (inode, file)) < 0) return ret; if ((file->f_flags & O_ACCMODE) != O_RDONLY) { ret = dvb_frontend_start (fe); if (ret) dvb_generic_release (inode, file); /* empty event queue */ fepriv->events.eventr = fepriv->events.eventw = 0; } return ret; } static int dvb_frontend_release(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; dprintk ("%s\n", __FUNCTION__); if ((file->f_flags & O_ACCMODE) != O_RDONLY) fepriv->release_jiffies = jiffies; return dvb_generic_release (inode, file); } static struct file_operations dvb_frontend_fops = { .owner = THIS_MODULE, .ioctl = dvb_generic_ioctl, .poll = dvb_frontend_poll, .open = dvb_frontend_open, .release = dvb_frontend_release }; int dvb_register_frontend(struct dvb_adapter* dvb, struct dvb_frontend* fe) { struct dvb_frontend_private *fepriv; static const struct dvb_device dvbdev_template = { .users = ~0, .writers = 1, .readers = (~0)-1, .fops = &dvb_frontend_fops, .kernel_ioctl = dvb_frontend_ioctl }; dprintk ("%s\n", __FUNCTION__); if (down_interruptible (&frontend_mutex)) return -ERESTARTSYS; fe->frontend_priv = kmalloc(sizeof(struct dvb_frontend_private), GFP_KERNEL); if (fe->frontend_priv == NULL) { up(&frontend_mutex); return -ENOMEM; } fepriv = (struct dvb_frontend_private*) fe->frontend_priv; memset(fe->frontend_priv, 0, sizeof(struct dvb_frontend_private)); init_MUTEX (&fepriv->sem); init_waitqueue_head (&fepriv->wait_queue); init_waitqueue_head (&fepriv->events.wait_queue); init_MUTEX (&fepriv->events.sem); fe->dvb = dvb; fepriv->inversion = INVERSION_OFF; printk ("DVB: registering frontend %i (%s)...\n", fe->dvb->num, fe->ops->info.name); dvb_register_device (fe->dvb, &fepriv->dvbdev, &dvbdev_template, fe, DVB_DEVICE_FRONTEND); up (&frontend_mutex); return 0; } EXPORT_SYMBOL(dvb_register_frontend); int dvb_unregister_frontend(struct dvb_frontend* fe) { struct dvb_frontend_private *fepriv = (struct dvb_frontend_private*) fe->frontend_priv; dprintk ("%s\n", __FUNCTION__); down (&frontend_mutex); dvb_unregister_device (fepriv->dvbdev); dvb_frontend_stop (fe); if (fe->ops->release) fe->ops->release(fe); else printk("dvb_frontend: Demodulator (%s) does not have a release callback!\n", fe->ops->info.name); /* fe is invalid now */ kfree(fepriv); up (&frontend_mutex); return 0; } EXPORT_SYMBOL(dvb_unregister_frontend);