/* tda18271-fe.c - driver for the Philips / NXP TDA18271 silicon tuner Copyright (C) 2007, 2008 Michael Krufky This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "tda18271-priv.h" int tda18271_debug; module_param_named(debug, tda18271_debug, int, 0644); MODULE_PARM_DESC(debug, "set debug level " "(info=1, map=2, reg=4, adv=8 (or-able))"); /*---------------------------------------------------------------------*/ static int tda18271_init(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; tda18271_read_regs(fe); /* test IR_CAL_OK to see if we need init */ if ((regs[R_EP1] & 0x08) == 0) tda18271_init_regs(fe); return 0; } /* ------------------------------------------------------------------ */ static int tda18271_channel_configuration(struct dvb_frontend *fe, u32 ifc, u32 freq, u32 bw, u8 std) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u32 N; /* update TV broadcast parameters */ /* set standard */ regs[R_EP3] &= ~0x1f; /* clear std bits */ regs[R_EP3] |= std; /* set cal mode to normal */ regs[R_EP4] &= ~0x03; /* update IF output level & IF notch frequency */ regs[R_EP4] &= ~0x1c; /* clear if level bits */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x80; /* IF notch = 0 */ break; case TDA18271_DIGITAL: regs[R_EP4] |= 0x04; /* IF level = 1 */ regs[R_MPD] |= 0x80; /* IF notch = 1 */ break; } regs[R_EP4] &= ~0x80; /* FM_RFn: turn this bit on only for fm radio */ /* update RF_TOP / IF_TOP */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_EB22] = 0x2c; break; case TDA18271_DIGITAL: regs[R_EB22] = 0x37; break; } tda18271_write_regs(fe, R_EB22, 1); /* --------------------------------------------------------------- */ /* disable Power Level Indicator */ regs[R_EP1] |= 0x40; /* frequency dependent parameters */ tda18271_calc_ir_measure(fe, &freq); tda18271_calc_bp_filter(fe, &freq); tda18271_calc_rf_band(fe, &freq); tda18271_calc_gain_taper(fe, &freq); /* --------------------------------------------------------------- */ /* dual tuner and agc1 extra configuration */ /* main vco when Master, cal vco when slave */ regs[R_EB1] |= 0x04; /* FIXME: assumes master */ /* agc1 always active */ regs[R_EB1] &= ~0x02; /* agc1 has priority on agc2 */ regs[R_EB1] &= ~0x01; tda18271_write_regs(fe, R_EB1, 1); /* --------------------------------------------------------------- */ N = freq + ifc; /* FIXME: assumes master */ tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_MPD, 4); tda18271_write_regs(fe, R_TM, 7); /* main pll charge pump source */ regs[R_EB4] |= 0x20; tda18271_write_regs(fe, R_EB4, 1); msleep(1); /* normal operation for the main pll */ regs[R_EB4] &= ~0x20; tda18271_write_regs(fe, R_EB4, 1); msleep(5); return 0; } static int tda18271_read_thermometer(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; int tm; /* switch thermometer on */ regs[R_TM] |= 0x10; tda18271_write_regs(fe, R_TM, 1); /* read thermometer info */ tda18271_read_regs(fe); if ((((regs[R_TM] & 0x0f) == 0x00) && ((regs[R_TM] & 0x20) == 0x20)) || (((regs[R_TM] & 0x0f) == 0x08) && ((regs[R_TM] & 0x20) == 0x00))) { if ((regs[R_TM] & 0x20) == 0x20) regs[R_TM] &= ~0x20; else regs[R_TM] |= 0x20; tda18271_write_regs(fe, R_TM, 1); msleep(10); /* temperature sensing */ /* read thermometer info */ tda18271_read_regs(fe); } tm = tda18271_lookup_thermometer(fe); /* switch thermometer off */ regs[R_TM] &= ~0x10; tda18271_write_regs(fe, R_TM, 1); /* set CAL mode to normal */ regs[R_EP4] &= ~0x03; tda18271_write_regs(fe, R_EP4, 1); return tm; } static int tda18271_rf_tracking_filters_correction(struct dvb_frontend *fe, u32 freq, int tm_rfcal) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_rf_tracking_filter_cal *map = priv->rf_cal_state; unsigned char *regs = priv->tda18271_regs; int tm_current, rfcal_comp, approx, i; u8 dc_over_dt, rf_tab; /* power up */ regs[R_EP3] &= ~0xe0; /* sm = 0, sm_lt = 0, sm_xt = 0 */ tda18271_write_regs(fe, R_EP3, 1); /* read die current temperature */ tm_current = tda18271_read_thermometer(fe); /* frequency dependent parameters */ tda18271_calc_rf_cal(fe, &freq); rf_tab = regs[R_EB14]; i = tda18271_lookup_rf_band(fe, &freq, NULL); if (i < 0) return -EINVAL; if ((0 == map[i].rf3) || (freq / 1000 < map[i].rf2)) { approx = map[i].rf_a1 * (freq / 1000 - map[i].rf1) + map[i].rf_b1 + rf_tab; } else { approx = map[i].rf_a2 * (freq / 1000 - map[i].rf2) + map[i].rf_b2 + rf_tab; } if (approx < 0) approx = 0; if (approx > 255) approx = 255; tda18271_lookup_map(fe, RF_CAL_DC_OVER_DT, &freq, &dc_over_dt); /* calculate temperature compensation */ rfcal_comp = dc_over_dt * (tm_current - tm_rfcal); regs[R_EB14] = approx + rfcal_comp; tda18271_write_regs(fe, R_EB14, 1); return 0; } static int tda18271_por(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; /* power up detector 1 */ regs[R_EB12] &= ~0x20; tda18271_write_regs(fe, R_EB12, 1); regs[R_EB18] &= ~0x80; /* turn agc1 loop on */ regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */ tda18271_write_regs(fe, R_EB18, 1); regs[R_EB21] |= 0x03; /* set agc2_gain to -6 dB */ /* POR mode */ regs[R_EP3] &= ~0xe0; /* clear sm, sm_lt, sm_xt */ regs[R_EP3] |= 0x80; /* sm = 1, sm_lt = 0, sm_xt = 0 */ tda18271_write_regs(fe, R_EP3, 1); /* disable 1.5 MHz low pass filter */ regs[R_EB23] &= ~0x04; /* forcelp_fc2_en = 0 */ regs[R_EB23] &= ~0x02; /* XXX: lp_fc[2] = 0 */ tda18271_write_regs(fe, R_EB21, 3); return 0; } static int tda18271_calibrate_rf(struct dvb_frontend *fe, u32 freq) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u32 N; /* set CAL mode to normal */ regs[R_EP4] &= ~0x03; tda18271_write_regs(fe, R_EP4, 1); /* switch off agc1 */ regs[R_EP3] |= 0x40; /* sm_lt = 1 */ regs[R_EB18] |= 0x03; /* set agc1_gain to 15 dB */ tda18271_write_regs(fe, R_EB18, 1); /* frequency dependent parameters */ tda18271_calc_bp_filter(fe, &freq); tda18271_calc_gain_taper(fe, &freq); tda18271_calc_rf_band(fe, &freq); tda18271_calc_km(fe, &freq); tda18271_write_regs(fe, R_EP1, 3); tda18271_write_regs(fe, R_EB13, 1); /* main pll charge pump source */ regs[R_EB4] |= 0x20; tda18271_write_regs(fe, R_EB4, 1); /* cal pll charge pump source */ regs[R_EB7] |= 0x20; tda18271_write_regs(fe, R_EB7, 1); /* force dcdc converter to 0 V */ regs[R_EB14] = 0x00; tda18271_write_regs(fe, R_EB14, 1); /* disable plls lock */ regs[R_EB20] &= ~0x20; tda18271_write_regs(fe, R_EB20, 1); /* set CAL mode to RF tracking filter calibration */ regs[R_EP4] |= 0x03; tda18271_write_regs(fe, R_EP4, 2); /* --------------------------------------------------------------- */ /* set the internal calibration signal */ N = freq; tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_MPD, 4); /* downconvert internal calibration */ N += 1000000; tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_MPD, 4); msleep(5); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); /* --------------------------------------------------------------- */ /* normal operation for the main pll */ regs[R_EB4] &= ~0x20; tda18271_write_regs(fe, R_EB4, 1); /* normal operation for the cal pll */ regs[R_EB7] &= ~0x20; tda18271_write_regs(fe, R_EB7, 1); msleep(5); /* plls locking */ /* launch the rf tracking filters calibration */ regs[R_EB20] |= 0x20; tda18271_write_regs(fe, R_EB20, 1); msleep(60); /* calibration */ /* --------------------------------------------------------------- */ /* set CAL mode to normal */ regs[R_EP4] &= ~0x03; /* switch on agc1 */ regs[R_EP3] &= ~0x40; /* sm_lt = 0 */ regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */ tda18271_write_regs(fe, R_EB18, 1); tda18271_write_regs(fe, R_EP3, 2); /* synchronization */ tda18271_write_regs(fe, R_EP1, 1); /* get calibration result */ tda18271_read_extended(fe); return regs[R_EB14]; } static int tda18271_powerscan(struct dvb_frontend *fe, u32 *freq_in, u32 *freq_out) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; int sgn, bcal, count, wait; u8 cid_target; u16 count_limit; u32 freq; freq = *freq_in; tda18271_calc_rf_band(fe, &freq); tda18271_calc_rf_cal(fe, &freq); tda18271_calc_gain_taper(fe, &freq); tda18271_lookup_cid_target(fe, &freq, &cid_target, &count_limit); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EB14, 1); /* downconvert frequency */ freq += 1000000; tda18271_calc_main_pll(fe, freq); tda18271_write_regs(fe, R_MPD, 4); msleep(5); /* pll locking */ /* detection mode */ regs[R_EP4] &= ~0x03; regs[R_EP4] |= 0x01; tda18271_write_regs(fe, R_EP4, 1); /* launch power detection measurement */ tda18271_write_regs(fe, R_EP2, 1); /* read power detection info, stored in EB10 */ tda18271_read_extended(fe); /* algorithm initialization */ sgn = 1; *freq_out = *freq_in; bcal = 0; count = 0; wait = false; while ((regs[R_EB10] & 0x3f) < cid_target) { /* downconvert updated freq to 1 MHz */ freq = *freq_in + (sgn * count) + 1000000; tda18271_calc_main_pll(fe, freq); tda18271_write_regs(fe, R_MPD, 4); if (wait) { msleep(5); /* pll locking */ wait = false; } else udelay(100); /* pll locking */ /* launch power detection measurement */ tda18271_write_regs(fe, R_EP2, 1); /* read power detection info, stored in EB10 */ tda18271_read_extended(fe); count += 200; if (count < count_limit) continue; if (sgn <= 0) break; sgn = -1 * sgn; count = 200; wait = true; } if ((regs[R_EB10] & 0x3f) >= cid_target) { bcal = 1; *freq_out = freq - 1000000; } else bcal = 0; tda_dbg("bcal = %d, freq_in = %d, freq_out = %d (freq = %d)\n", bcal, *freq_in, *freq_out, freq); return bcal; } static int tda18271_powerscan_init(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; /* set standard to digital */ regs[R_EP3] &= ~0x1f; /* clear std bits */ regs[R_EP3] |= 0x12; /* set cal mode to normal */ regs[R_EP4] &= ~0x03; /* update IF output level & IF notch frequency */ regs[R_EP4] &= ~0x1c; /* clear if level bits */ tda18271_write_regs(fe, R_EP3, 2); regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */ tda18271_write_regs(fe, R_EB18, 1); regs[R_EB21] &= ~0x03; /* set agc2_gain to -15 dB */ /* 1.5 MHz low pass filter */ regs[R_EB23] |= 0x04; /* forcelp_fc2_en = 1 */ regs[R_EB23] |= 0x02; /* lp_fc[2] = 1 */ tda18271_write_regs(fe, R_EB21, 3); return 0; } static int tda18271_rf_tracking_filters_init(struct dvb_frontend *fe, u32 freq) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_rf_tracking_filter_cal *map = priv->rf_cal_state; unsigned char *regs = priv->tda18271_regs; int bcal, rf, i; #define RF1 0 #define RF2 1 #define RF3 2 u32 rf_default[3]; u32 rf_freq[3]; u8 prog_cal[3]; u8 prog_tab[3]; i = tda18271_lookup_rf_band(fe, &freq, NULL); if (i < 0) return i; rf_default[RF1] = 1000 * map[i].rf1_def; rf_default[RF2] = 1000 * map[i].rf2_def; rf_default[RF3] = 1000 * map[i].rf3_def; for (rf = RF1; rf <= RF3; rf++) { if (0 == rf_default[rf]) return 0; tda_dbg("freq = %d, rf = %d\n", freq, rf); /* look for optimized calibration frequency */ bcal = tda18271_powerscan(fe, &rf_default[rf], &rf_freq[rf]); tda18271_calc_rf_cal(fe, &rf_freq[rf]); prog_tab[rf] = regs[R_EB14]; if (1 == bcal) prog_cal[rf] = tda18271_calibrate_rf(fe, rf_freq[rf]); else prog_cal[rf] = prog_tab[rf]; switch (rf) { case RF1: map[i].rf_a1 = 0; map[i].rf_b1 = prog_cal[RF1] - prog_tab[RF1]; map[i].rf1 = rf_freq[RF1] / 1000; break; case RF2: map[i].rf_a1 = (prog_cal[RF2] - prog_tab[RF2] - prog_cal[RF1] + prog_tab[RF1]) / ((rf_freq[RF2] - rf_freq[RF1]) / 1000); map[i].rf2 = rf_freq[RF2] / 1000; break; case RF3: map[i].rf_a2 = (prog_cal[RF3] - prog_tab[RF3] - prog_cal[RF2] + prog_tab[RF2]) / ((rf_freq[RF3] - rf_freq[RF2]) / 1000); map[i].rf_b2 = prog_cal[RF2] - prog_tab[RF2]; map[i].rf3 = rf_freq[RF3] / 1000; break; default: BUG(); } } return 0; } static int tda18271_calc_rf_filter_curve(struct dvb_frontend *fe, int *tm_rfcal) { struct tda18271_priv *priv = fe->tuner_priv; unsigned int i; tda_info("tda18271: performing RF tracking filter calibration\n"); /* wait for die temperature stabilization */ msleep(200); tda18271_powerscan_init(fe); /* rf band calibration */ for (i = 0; priv->rf_cal_state[i].rfmax != 0; i++) tda18271_rf_tracking_filters_init(fe, 1000 * priv->rf_cal_state[i].rfmax); *tm_rfcal = tda18271_read_thermometer(fe); return 0; } /* ------------------------------------------------------------------ */ static int tda18271_init_cal(struct dvb_frontend *fe, int *tm) { struct tda18271_priv *priv = fe->tuner_priv; if (priv->cal_initialized) return 0; /* initialization */ tda18271_init(fe); tda18271_calc_rf_filter_curve(fe, tm); tda18271_por(fe); priv->cal_initialized = true; return 0; } static int tda18271c2_tune(struct dvb_frontend *fe, u32 ifc, u32 freq, u32 bw, u8 std) { int tm = 0; tda_dbg("freq = %d, ifc = %d\n", freq, ifc); tda18271_init_cal(fe, &tm); tda18271_rf_tracking_filters_correction(fe, freq, tm); tda18271_channel_configuration(fe, ifc, freq, bw, std); return 0; } /* ------------------------------------------------------------------ */ static int tda18271c1_tune(struct dvb_frontend *fe, u32 ifc, u32 freq, u32 bw, u8 std) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u32 N = 0; tda18271_init(fe); tda_dbg("freq = %d, ifc = %d\n", freq, ifc); /* RF tracking filter calibration */ /* calculate bp filter */ tda18271_calc_bp_filter(fe, &freq); tda18271_write_regs(fe, R_EP1, 1); regs[R_EB4] &= 0x07; regs[R_EB4] |= 0x60; tda18271_write_regs(fe, R_EB4, 1); regs[R_EB7] = 0x60; tda18271_write_regs(fe, R_EB7, 1); regs[R_EB14] = 0x00; tda18271_write_regs(fe, R_EB14, 1); regs[R_EB20] = 0xcc; tda18271_write_regs(fe, R_EB20, 1); /* set cal mode to RF tracking filter calibration */ regs[R_EP4] |= 0x03; /* calculate cal pll */ switch (priv->mode) { case TDA18271_ANALOG: N = freq - 1250000; break; case TDA18271_DIGITAL: N = freq + bw / 2; break; } tda18271_calc_cal_pll(fe, N); /* calculate main pll */ switch (priv->mode) { case TDA18271_ANALOG: N = freq - 250000; break; case TDA18271_DIGITAL: N = freq + bw / 2 + 1000000; break; } tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* RF tracking filter calibration initialization */ /* search for K,M,CO for RF calibration */ tda18271_calc_km(fe, &freq); tda18271_write_regs(fe, R_EB13, 1); /* search for rf band */ tda18271_calc_rf_band(fe, &freq); /* search for gain taper */ tda18271_calc_gain_taper(fe, &freq); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); regs[R_EB4] &= 0x07; regs[R_EB4] |= 0x40; tda18271_write_regs(fe, R_EB4, 1); regs[R_EB7] = 0x40; tda18271_write_regs(fe, R_EB7, 1); msleep(10); regs[R_EB20] = 0xec; tda18271_write_regs(fe, R_EB20, 1); msleep(60); /* RF tracking filter calibration completion */ regs[R_EP4] &= ~0x03; /* set cal mode to normal */ tda18271_write_regs(fe, R_EP4, 1); tda18271_write_regs(fe, R_EP1, 1); /* RF tracking filter correction for VHF_Low band */ if (0 == tda18271_calc_rf_cal(fe, &freq)) tda18271_write_regs(fe, R_EB14, 1); /* Channel Configuration */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_EB22] = 0x2c; break; case TDA18271_DIGITAL: regs[R_EB22] = 0x37; break; } tda18271_write_regs(fe, R_EB22, 1); regs[R_EP1] |= 0x40; /* set dis power level on */ /* set standard */ regs[R_EP3] &= ~0x1f; /* clear std bits */ /* see table 22 */ regs[R_EP3] |= std; regs[R_EP4] &= ~0x03; /* set cal mode to normal */ regs[R_EP4] &= ~0x1c; /* clear if level bits */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x80; /* IF notch = 0 */ break; case TDA18271_DIGITAL: regs[R_EP4] |= 0x04; regs[R_MPD] |= 0x80; break; } regs[R_EP4] &= ~0x80; /* turn this bit on only for fm */ /* image rejection validity */ tda18271_calc_ir_measure(fe, &freq); /* calculate MAIN PLL */ N = freq + ifc; tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_TM, 15); msleep(5); return 0; } /* ------------------------------------------------------------------ */ static int tda18271_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_std_map *std_map = &priv->std; u8 std; u16 sgIF; u32 bw, freq = params->frequency; BUG_ON(!priv->tune); priv->mode = TDA18271_DIGITAL; /* see table 22 */ if (fe->ops.info.type == FE_ATSC) { switch (params->u.vsb.modulation) { case VSB_8: case VSB_16: std = std_map->atsc_6.std_bits; sgIF = std_map->atsc_6.if_freq; break; case QAM_64: case QAM_256: std = std_map->qam_6.std_bits; sgIF = std_map->qam_6.if_freq; break; default: tda_warn("modulation not set!\n"); return -EINVAL; } #if 0 /* userspace request is already center adjusted */ freq += 1750000; /* Adjust to center (+1.75MHZ) */ #endif bw = 6000000; } else if (fe->ops.info.type == FE_OFDM) { switch (params->u.ofdm.bandwidth) { case BANDWIDTH_6_MHZ: bw = 6000000; std = std_map->dvbt_6.std_bits; sgIF = std_map->dvbt_6.if_freq; break; case BANDWIDTH_7_MHZ: bw = 7000000; std = std_map->dvbt_7.std_bits; sgIF = std_map->dvbt_7.if_freq; break; case BANDWIDTH_8_MHZ: bw = 8000000; std = std_map->dvbt_8.std_bits; sgIF = std_map->dvbt_8.if_freq; break; default: tda_warn("bandwidth not set!\n"); return -EINVAL; } } else { tda_warn("modulation type not supported!\n"); return -EINVAL; } return priv->tune(fe, sgIF * 1000, freq, bw, std); } static int tda18271_set_analog_params(struct dvb_frontend *fe, struct analog_parameters *params) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_std_map *std_map = &priv->std; char *mode; u8 std; u16 sgIF; u32 freq = params->frequency * 62500; BUG_ON(!priv->tune); priv->mode = TDA18271_ANALOG; if (params->std & V4L2_STD_MN) { std = std_map->atv_mn.std_bits; sgIF = std_map->atv_mn.if_freq; mode = "MN"; } else if (params->std & V4L2_STD_B) { std = std_map->atv_b.std_bits; sgIF = std_map->atv_b.if_freq; mode = "B"; } else if (params->std & V4L2_STD_GH) { std = std_map->atv_gh.std_bits; sgIF = std_map->atv_gh.if_freq; mode = "GH"; } else if (params->std & V4L2_STD_PAL_I) { std = std_map->atv_i.std_bits; sgIF = std_map->atv_i.if_freq; mode = "I"; } else if (params->std & V4L2_STD_DK) { std = std_map->atv_dk.std_bits; sgIF = std_map->atv_dk.if_freq; mode = "DK"; } else if (params->std & V4L2_STD_SECAM_L) { std = std_map->atv_l.std_bits; sgIF = std_map->atv_l.if_freq; mode = "L"; } else if (params->std & V4L2_STD_SECAM_LC) { std = std_map->atv_lc.std_bits; sgIF = std_map->atv_lc.if_freq; mode = "L'"; } else { std = std_map->atv_i.std_bits; sgIF = std_map->atv_i.if_freq; mode = "xx"; } tda_dbg("setting tda18271 to system %s\n", mode); return priv->tune(fe, sgIF * 1000, freq, 0, std); } static int tda18271_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct tda18271_priv *priv = fe->tuner_priv; *frequency = priv->frequency; return 0; } static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { struct tda18271_priv *priv = fe->tuner_priv; *bandwidth = priv->bandwidth; return 0; } /* ------------------------------------------------------------------ */ #define tda18271_update_std(std_cfg, name) do { \ if (map->std_cfg.if_freq + map->std_cfg.std_bits > 0) { \ tda_dbg("Using custom std config for %s\n", name); \ memcpy(&std->std_cfg, &map->std_cfg, \ sizeof(struct tda18271_std_map_item)); \ } } while (0) #define tda18271_dump_std_item(std_cfg, name) do { \ tda_dbg("(%s) if freq = %d, std bits = 0x%02x\n", \ name, std->std_cfg.if_freq, std->std_cfg.std_bits); \ } while (0) static int tda18271_dump_std_map(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_std_map *std = &priv->std; tda_dbg("========== STANDARD MAP SETTINGS ==========\n"); tda18271_dump_std_item(atv_b, "pal b"); tda18271_dump_std_item(atv_dk, "pal dk"); tda18271_dump_std_item(atv_gh, "pal gh"); tda18271_dump_std_item(atv_i, "pal i"); tda18271_dump_std_item(atv_l, "pal l"); tda18271_dump_std_item(atv_lc, "pal l'"); tda18271_dump_std_item(atv_mn, "atv mn"); tda18271_dump_std_item(atsc_6, "atsc 6"); tda18271_dump_std_item(dvbt_6, "dvbt 6"); tda18271_dump_std_item(dvbt_7, "dvbt 7"); tda18271_dump_std_item(dvbt_8, "dvbt 8"); tda18271_dump_std_item(qam_6, "qam 6"); tda18271_dump_std_item(qam_8, "qam 8"); return 0; } static int tda18271_update_std_map(struct dvb_frontend *fe, struct tda18271_std_map *map) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_std_map *std = &priv->std; if (!map) return -EINVAL; tda18271_update_std(atv_b, "atv b"); tda18271_update_std(atv_dk, "atv dk"); tda18271_update_std(atv_gh, "atv gh"); tda18271_update_std(atv_i, "atv i"); tda18271_update_std(atv_l, "atv l"); tda18271_update_std(atv_lc, "atv l'"); tda18271_update_std(atv_mn, "atv mn"); tda18271_update_std(atsc_6, "atsc 6"); tda18271_update_std(dvbt_6, "dvbt 6"); tda18271_update_std(dvbt_7, "dvbt 7"); tda18271_update_std(dvbt_8, "dvbt 8"); tda18271_update_std(qam_6, "qam 6"); tda18271_update_std(qam_8, "qam 8"); return 0; } static int tda18271_get_id(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; char *name; int ret = 0; tda18271_read_regs(fe); switch (regs[R_ID] & 0x7f) { case 3: name = "TDA18271HD/C1"; priv->id = TDA18271HDC1; priv->tune = tda18271c1_tune; break; case 4: name = "TDA18271HD/C2"; priv->id = TDA18271HDC2; priv->tune = tda18271c2_tune; break; default: name = "Unknown device"; ret = -EINVAL; break; } tda_info("%s detected @ %d-%04x%s\n", name, i2c_adapter_id(priv->i2c_adap), priv->i2c_addr, (0 == ret) ? "" : ", device not supported."); return ret; } static struct dvb_tuner_ops tda18271_tuner_ops = { .info = { .name = "NXP TDA18271HD", .frequency_min = 45000000, .frequency_max = 864000000, .frequency_step = 62500 }, .init = tda18271_init, .set_params = tda18271_set_params, .set_analog_params = tda18271_set_analog_params, .release = tda18271_release, .get_frequency = tda18271_get_frequency, .get_bandwidth = tda18271_get_bandwidth, }; struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr, struct i2c_adapter *i2c, struct tda18271_config *cfg) { struct tda18271_priv *priv = NULL; priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->i2c_addr = addr; priv->i2c_adap = i2c; priv->gate = (cfg) ? cfg->gate : TDA18271_GATE_AUTO; priv->cal_initialized = false; fe->tuner_priv = priv; if (tda18271_get_id(fe) < 0) goto fail; if (tda18271_assign_map_layout(fe) < 0) goto fail; memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops, sizeof(struct dvb_tuner_ops)); /* override default std map with values in config struct */ if ((cfg) && (cfg->std_map)) tda18271_update_std_map(fe, cfg->std_map); if (tda18271_debug & DBG_MAP) tda18271_dump_std_map(fe); tda18271_init_regs(fe); return fe; fail: tda18271_release(fe); return NULL; } EXPORT_SYMBOL_GPL(tda18271_attach); MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver"); MODULE_AUTHOR("Michael Krufky "); MODULE_LICENSE("GPL"); MODULE_VERSION("0.2"); /* * Overrides for Emacs so that we follow Linus's tabbing style. * --------------------------------------------------------------------------- * Local variables: * c-basic-offset: 8 * End: */