/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. */ /* * Cross Partition Communication (XPC) sn2-based functions. * * Architecture specific implementation of common functions. * */ #include #include #include #include #include "xpc.h" /* * Define the number of u64s required to represent all the C-brick nasids * as a bitmap. The cross-partition kernel modules deal only with * C-brick nasids, thus the need for bitmaps which don't account for * odd-numbered (non C-brick) nasids. */ #define XPC_MAX_PHYSNODES_SN2 (MAX_NUMALINK_NODES / 2) #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8) #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64) /* * Memory for XPC's amo variables is allocated by the MSPEC driver. These * pages are located in the lowest granule. The lowest granule uses 4k pages * for cached references and an alternate TLB handler to never provide a * cacheable mapping for the entire region. This will prevent speculative * reading of cached copies of our lines from being issued which will cause * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote * partitions (i.e., XPCs) consider themselves currently engaged with the * local XPC and 1 amo variable to request partition deactivation. */ #define XPC_NOTIFY_IRQ_AMOS_SN2 0 #define XPC_ACTIVATE_IRQ_AMOS_SN2 (XPC_NOTIFY_IRQ_AMOS_SN2 + \ XP_MAX_NPARTITIONS_SN2) #define XPC_ENGAGED_PARTITIONS_AMO_SN2 (XPC_ACTIVATE_IRQ_AMOS_SN2 + \ XP_NASID_MASK_WORDS_SN2) #define XPC_DEACTIVATE_REQUEST_AMO_SN2 (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1) /* * Buffer used to store a local copy of portions of a remote partition's * reserved page (either its header and part_nasids mask, or its vars). */ static char *xpc_remote_copy_buffer_sn2; static void *xpc_remote_copy_buffer_base_sn2; static struct xpc_vars_sn2 *xpc_vars_sn2; static struct xpc_vars_part_sn2 *xpc_vars_part_sn2; /* SH_IPI_ACCESS shub register value on startup */ static u64 xpc_sh1_IPI_access_sn2; static u64 xpc_sh2_IPI_access0_sn2; static u64 xpc_sh2_IPI_access1_sn2; static u64 xpc_sh2_IPI_access2_sn2; static u64 xpc_sh2_IPI_access3_sn2; /* * Change protections to allow IPI operations. */ static void xpc_allow_IPI_ops_sn2(void) { int node; int nasid; /* !!! The following should get moved into SAL. */ if (is_shub2()) { xpc_sh2_IPI_access0_sn2 = (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); xpc_sh2_IPI_access1_sn2 = (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); xpc_sh2_IPI_access2_sn2 = (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); xpc_sh2_IPI_access3_sn2 = (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); for_each_online_node(node) { nasid = cnodeid_to_nasid(node); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), -1UL); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), -1UL); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), -1UL); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), -1UL); } } else { xpc_sh1_IPI_access_sn2 = (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); for_each_online_node(node) { nasid = cnodeid_to_nasid(node); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), -1UL); } } } /* * Restrict protections to disallow IPI operations. */ static void xpc_disallow_IPI_ops_sn2(void) { int node; int nasid; /* !!! The following should get moved into SAL. */ if (is_shub2()) { for_each_online_node(node) { nasid = cnodeid_to_nasid(node); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), xpc_sh2_IPI_access0_sn2); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), xpc_sh2_IPI_access1_sn2); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), xpc_sh2_IPI_access2_sn2); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), xpc_sh2_IPI_access3_sn2); } } else { for_each_online_node(node) { nasid = cnodeid_to_nasid(node); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), xpc_sh1_IPI_access_sn2); } } } /* * The following set of functions are used for the sending and receiving of * IRQs (also known as IPIs). There are two flavors of IRQs, one that is * associated with partition activity (SGI_XPC_ACTIVATE) and the other that * is associated with channel activity (SGI_XPC_NOTIFY). */ static u64 xpc_receive_IRQ_amo_sn2(struct amo *amo) { return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR); } static enum xp_retval xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid, int vector) { int ret = 0; unsigned long irq_flags; local_irq_save(irq_flags); FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag); sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IRQs and amos to it until the heartbeat times out. */ ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); return (ret == 0) ? xpSuccess : xpPioReadError; } static struct amo * xpc_init_IRQ_amo_sn2(int index) { struct amo *amo = xpc_vars_sn2->amos_page + index; (void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */ return amo; } /* * Functions associated with SGI_XPC_ACTIVATE IRQ. */ /* * Notify the heartbeat check thread that an activate IRQ has been received. */ static irqreturn_t xpc_handle_activate_IRQ_sn2(int irq, void *dev_id) { atomic_inc(&xpc_activate_IRQ_rcvd); wake_up_interruptible(&xpc_activate_IRQ_wq); return IRQ_HANDLED; } /* * Flag the appropriate amo variable and send an IRQ to the specified node. */ static void xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid, int to_nasid, int to_phys_cpuid) { struct amo *amos = (struct amo *)__va(amos_page_pa + (XPC_ACTIVATE_IRQ_AMOS_SN2 * sizeof(struct amo))); (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)], BIT_MASK(from_nasid / 2), to_nasid, to_phys_cpuid, SGI_XPC_ACTIVATE); } static void xpc_send_local_activate_IRQ_sn2(int from_nasid) { struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa + (XPC_ACTIVATE_IRQ_AMOS_SN2 * sizeof(struct amo))); /* fake the sending and receipt of an activate IRQ from remote nasid */ FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable), FETCHOP_OR, BIT_MASK(from_nasid / 2)); atomic_inc(&xpc_activate_IRQ_rcvd); wake_up_interruptible(&xpc_activate_IRQ_wq); } /* * Functions associated with SGI_XPC_NOTIFY IRQ. */ /* * Check to see if any chctl flags were sent from the specified partition. */ static void xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part) { union xpc_channel_ctl_flags chctl; unsigned long irq_flags; chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2. local_chctl_amo_va); if (chctl.all_flags == 0) return; spin_lock_irqsave(&part->chctl_lock, irq_flags); part->chctl.all_flags |= chctl.all_flags; spin_unlock_irqrestore(&part->chctl_lock, irq_flags); dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags=" "0x%lx\n", XPC_PARTID(part), chctl.all_flags); xpc_wakeup_channel_mgr(part); } /* * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more * than one partition, we use an amo structure per partition to indicate * whether a partition has sent an IRQ or not. If it has, then wake up the * associated kthread to handle it. * * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC * running on other partitions. * * Noteworthy Arguments: * * irq - Interrupt ReQuest number. NOT USED. * * dev_id - partid of IRQ's potential sender. */ static irqreturn_t xpc_handle_notify_IRQ_sn2(int irq, void *dev_id) { short partid = (short)(u64)dev_id; struct xpc_partition *part = &xpc_partitions[partid]; DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2); if (xpc_part_ref(part)) { xpc_check_for_sent_chctl_flags_sn2(part); xpc_part_deref(part); } return IRQ_HANDLED; } /* * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor * because the write to their associated amo variable completed after the IRQ * was received. */ static void xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; if (xpc_part_ref(part)) { xpc_check_for_sent_chctl_flags_sn2(part); part_sn2->dropped_notify_IRQ_timer.expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL; add_timer(&part_sn2->dropped_notify_IRQ_timer); xpc_part_deref(part); } } /* * Send a notify IRQ to the remote partition that is associated with the * specified channel. */ static void xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag, char *chctl_flag_string, unsigned long *irq_flags) { struct xpc_partition *part = &xpc_partitions[ch->partid]; struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; union xpc_channel_ctl_flags chctl = { 0 }; enum xp_retval ret; if (likely(part->act_state != XPC_P_DEACTIVATING)) { chctl.flags[ch->number] = chctl_flag; ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va, chctl.all_flags, part_sn2->notify_IRQ_nasid, part_sn2->notify_IRQ_phys_cpuid, SGI_XPC_NOTIFY); dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", chctl_flag_string, ch->partid, ch->number, ret); if (unlikely(ret != xpSuccess)) { if (irq_flags != NULL) spin_unlock_irqrestore(&ch->lock, *irq_flags); XPC_DEACTIVATE_PARTITION(part, ret); if (irq_flags != NULL) spin_lock_irqsave(&ch->lock, *irq_flags); } } } #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \ xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f) /* * Make it look like the remote partition, which is associated with the * specified channel, sent us a notify IRQ. This faked IRQ will be handled * by xpc_check_for_dropped_notify_IRQ_sn2(). */ static void xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag, char *chctl_flag_string) { struct xpc_partition *part = &xpc_partitions[ch->partid]; union xpc_channel_ctl_flags chctl = { 0 }; chctl.flags[ch->number] = chctl_flag; FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va-> variable), FETCHOP_OR, chctl.all_flags); dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", chctl_flag_string, ch->partid, ch->number); } #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \ xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f) static void xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags) { struct xpc_openclose_args *args = ch->local_openclose_args; args->reason = ch->reason; XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags); } static void xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags) { XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags); } static void xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags) { struct xpc_openclose_args *args = ch->local_openclose_args; args->msg_size = ch->msg_size; args->local_nentries = ch->local_nentries; XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags); } static void xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags) { struct xpc_openclose_args *args = ch->local_openclose_args; args->remote_nentries = ch->remote_nentries; args->local_nentries = ch->local_nentries; args->local_msgqueue_pa = xp_pa(ch->local_msgqueue); XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags); } static void xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch) { XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL); } static void xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch) { XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST); } /* * This next set of functions are used to keep track of when a partition is * potentially engaged in accessing memory belonging to another partition. */ static void xpc_indicate_partition_engaged_sn2(struct xpc_partition *part) { unsigned long irq_flags; struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa + (XPC_ENGAGED_PARTITIONS_AMO_SN2 * sizeof(struct amo))); local_irq_save(irq_flags); /* set bit corresponding to our partid in remote partition's amo */ FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, BIT(sn_partition_id)); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IRQs and amos to it until the heartbeat times out. */ (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); } static void xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; unsigned long irq_flags; struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa + (XPC_ENGAGED_PARTITIONS_AMO_SN2 * sizeof(struct amo))); local_irq_save(irq_flags); /* clear bit corresponding to our partid in remote partition's amo */ FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, ~BIT(sn_partition_id)); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IRQs and amos to it until the heartbeat times out. */ (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); /* * Send activate IRQ to get other side to see that we've cleared our * bit in their engaged partitions amo. */ xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa, cnodeid_to_nasid(0), part_sn2->activate_IRQ_nasid, part_sn2->activate_IRQ_phys_cpuid); } static int xpc_partition_engaged_sn2(short partid) { struct amo *amo = xpc_vars_sn2->amos_page + XPC_ENGAGED_PARTITIONS_AMO_SN2; /* our partition's amo variable ANDed with partid mask */ return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & BIT(partid)) != 0; } static int xpc_any_partition_engaged_sn2(void) { struct amo *amo = xpc_vars_sn2->amos_page + XPC_ENGAGED_PARTITIONS_AMO_SN2; /* our partition's amo variable */ return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0; } static void xpc_assume_partition_disengaged_sn2(short partid) { struct amo *amo = xpc_vars_sn2->amos_page + XPC_ENGAGED_PARTITIONS_AMO_SN2; /* clear bit(s) based on partid mask in our partition's amo */ FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, ~BIT(partid)); } /* original protection values for each node */ static u64 xpc_prot_vec_sn2[MAX_NUMNODES]; /* * Change protections to allow amo operations on non-Shub 1.1 systems. */ static enum xp_retval xpc_allow_amo_ops_sn2(struct amo *amos_page) { u64 nasid_array = 0; int ret; /* * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST * collides with memory operations. On those systems we call * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead. */ if (!enable_shub_wars_1_1()) { ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE, SN_MEMPROT_ACCESS_CLASS_1, &nasid_array); if (ret != 0) return xpSalError; } return xpSuccess; } /* * Change protections to allow amo operations on Shub 1.1 systems. */ static void xpc_allow_amo_ops_shub_wars_1_1_sn2(void) { int node; int nasid; if (!enable_shub_wars_1_1()) return; for_each_online_node(node) { nasid = cnodeid_to_nasid(node); /* save current protection values */ xpc_prot_vec_sn2[node] = (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_MD_DQLP_MMR_DIR_PRIVEC0)); /* open up everything */ HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_MD_DQLP_MMR_DIR_PRIVEC0), -1UL); HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_MD_DQRP_MMR_DIR_PRIVEC0), -1UL); } } static enum xp_retval xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa, size_t *len) { s64 status; enum xp_retval ret; status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len); if (status == SALRET_OK) ret = xpSuccess; else if (status == SALRET_MORE_PASSES) ret = xpNeedMoreInfo; else ret = xpSalError; return ret; } static enum xp_retval xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp) { struct amo *amos_page; int i; int ret; xpc_vars_sn2 = XPC_RP_VARS(rp); rp->sn.vars_pa = xp_pa(xpc_vars_sn2); /* vars_part array follows immediately after vars */ xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) + XPC_RP_VARS_SIZE); /* * Before clearing xpc_vars_sn2, see if a page of amos had been * previously allocated. If not we'll need to allocate one and set * permissions so that cross-partition amos are allowed. * * The allocated amo page needs MCA reporting to remain disabled after * XPC has unloaded. To make this work, we keep a copy of the pointer * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure, * which is pointed to by the reserved page, and re-use that saved copy * on subsequent loads of XPC. This amo page is never freed, and its * memory protections are never restricted. */ amos_page = xpc_vars_sn2->amos_page; if (amos_page == NULL) { amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1)); if (amos_page == NULL) { dev_err(xpc_part, "can't allocate page of amos\n"); return xpNoMemory; } /* * Open up amo-R/W to cpu. This is done on Shub 1.1 systems * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called. */ ret = xpc_allow_amo_ops_sn2(amos_page); if (ret != xpSuccess) { dev_err(xpc_part, "can't allow amo operations\n"); uncached_free_page(__IA64_UNCACHED_OFFSET | TO_PHYS((u64)amos_page), 1); return ret; } } /* clear xpc_vars_sn2 */ memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2)); xpc_vars_sn2->version = XPC_V_VERSION; xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0); xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0); xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2); xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page); xpc_vars_sn2->amos_page = amos_page; /* save for next load of XPC */ /* clear xpc_vars_part_sn2 */ memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) * XP_MAX_NPARTITIONS_SN2); /* initialize the activate IRQ related amo variables */ for (i = 0; i < xpc_nasid_mask_nlongs; i++) (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i); /* initialize the engaged remote partitions related amo variables */ (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2); (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2); return xpSuccess; } static void xpc_increment_heartbeat_sn2(void) { xpc_vars_sn2->heartbeat++; } static void xpc_offline_heartbeat_sn2(void) { xpc_increment_heartbeat_sn2(); xpc_vars_sn2->heartbeat_offline = 1; } static void xpc_online_heartbeat_sn2(void) { xpc_increment_heartbeat_sn2(); xpc_vars_sn2->heartbeat_offline = 0; } static void xpc_heartbeat_init_sn2(void) { DBUG_ON(xpc_vars_sn2 == NULL); bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2); xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0]; xpc_online_heartbeat_sn2(); } static void xpc_heartbeat_exit_sn2(void) { xpc_offline_heartbeat_sn2(); } static enum xp_retval xpc_get_remote_heartbeat_sn2(struct xpc_partition *part) { struct xpc_vars_sn2 *remote_vars; enum xp_retval ret; remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2; /* pull the remote vars structure that contains the heartbeat */ ret = xp_remote_memcpy(xp_pa(remote_vars), part->sn.sn2.remote_vars_pa, XPC_RP_VARS_SIZE); if (ret != xpSuccess) return ret; dev_dbg(xpc_part, "partid=%d, heartbeat=%ld, last_heartbeat=%ld, " "heartbeat_offline=%ld, HB_mask[0]=0x%lx\n", XPC_PARTID(part), remote_vars->heartbeat, part->last_heartbeat, remote_vars->heartbeat_offline, remote_vars->heartbeating_to_mask[0]); if ((remote_vars->heartbeat == part->last_heartbeat && remote_vars->heartbeat_offline == 0) || !xpc_hb_allowed(sn_partition_id, &remote_vars->heartbeating_to_mask)) { ret = xpNoHeartbeat; } else { part->last_heartbeat = remote_vars->heartbeat; } return ret; } /* * Get a copy of the remote partition's XPC variables from the reserved page. * * remote_vars points to a buffer that is cacheline aligned for BTE copies and * assumed to be of size XPC_RP_VARS_SIZE. */ static enum xp_retval xpc_get_remote_vars_sn2(unsigned long remote_vars_pa, struct xpc_vars_sn2 *remote_vars) { enum xp_retval ret; if (remote_vars_pa == 0) return xpVarsNotSet; /* pull over the cross partition variables */ ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa, XPC_RP_VARS_SIZE); if (ret != xpSuccess) return ret; if (XPC_VERSION_MAJOR(remote_vars->version) != XPC_VERSION_MAJOR(XPC_V_VERSION)) { return xpBadVersion; } return xpSuccess; } static void xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp, unsigned long remote_rp_pa, int nasid) { xpc_send_local_activate_IRQ_sn2(nasid); } static void xpc_request_partition_reactivation_sn2(struct xpc_partition *part) { xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid); } static void xpc_request_partition_deactivation_sn2(struct xpc_partition *part) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; unsigned long irq_flags; struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa + (XPC_DEACTIVATE_REQUEST_AMO_SN2 * sizeof(struct amo))); local_irq_save(irq_flags); /* set bit corresponding to our partid in remote partition's amo */ FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, BIT(sn_partition_id)); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IRQs and amos to it until the heartbeat times out. */ (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); /* * Send activate IRQ to get other side to see that we've set our * bit in their deactivate request amo. */ xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa, cnodeid_to_nasid(0), part_sn2->activate_IRQ_nasid, part_sn2->activate_IRQ_phys_cpuid); } static void xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part) { unsigned long irq_flags; struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa + (XPC_DEACTIVATE_REQUEST_AMO_SN2 * sizeof(struct amo))); local_irq_save(irq_flags); /* clear bit corresponding to our partid in remote partition's amo */ FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, ~BIT(sn_partition_id)); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IRQs and amos to it until the heartbeat times out. */ (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); } static int xpc_partition_deactivation_requested_sn2(short partid) { struct amo *amo = xpc_vars_sn2->amos_page + XPC_DEACTIVATE_REQUEST_AMO_SN2; /* our partition's amo variable ANDed with partid mask */ return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & BIT(partid)) != 0; } /* * Update the remote partition's info. */ static void xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version, unsigned long *remote_rp_ts_jiffies, unsigned long remote_rp_pa, unsigned long remote_vars_pa, struct xpc_vars_sn2 *remote_vars) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; part->remote_rp_version = remote_rp_version; dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n", part->remote_rp_version); part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies; dev_dbg(xpc_part, " remote_rp_ts_jiffies = 0x%016lx\n", part->remote_rp_ts_jiffies); part->remote_rp_pa = remote_rp_pa; dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa); part_sn2->remote_vars_pa = remote_vars_pa; dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", part_sn2->remote_vars_pa); part->last_heartbeat = remote_vars->heartbeat; dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", part->last_heartbeat); part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa; dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", part_sn2->remote_vars_part_pa); part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid; dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n", part_sn2->activate_IRQ_nasid); part_sn2->activate_IRQ_phys_cpuid = remote_vars->activate_IRQ_phys_cpuid; dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n", part_sn2->activate_IRQ_phys_cpuid); part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa; dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", part_sn2->remote_amos_page_pa); part_sn2->remote_vars_version = remote_vars->version; dev_dbg(xpc_part, " remote_vars_version = 0x%x\n", part_sn2->remote_vars_version); } /* * Prior code has determined the nasid which generated a activate IRQ. * Inspect that nasid to determine if its partition needs to be activated * or deactivated. * * A partition is considered "awaiting activation" if our partition * flags indicate it is not active and it has a heartbeat. A * partition is considered "awaiting deactivation" if our partition * flags indicate it is active but it has no heartbeat or it is not * sending its heartbeat to us. * * To determine the heartbeat, the remote nasid must have a properly * initialized reserved page. */ static void xpc_identify_activate_IRQ_req_sn2(int nasid) { struct xpc_rsvd_page *remote_rp; struct xpc_vars_sn2 *remote_vars; unsigned long remote_rp_pa; unsigned long remote_vars_pa; int remote_rp_version; int reactivate = 0; unsigned long remote_rp_ts_jiffies = 0; short partid; struct xpc_partition *part; struct xpc_partition_sn2 *part_sn2; enum xp_retval ret; /* pull over the reserved page structure */ remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2; ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa); if (ret != xpSuccess) { dev_warn(xpc_part, "unable to get reserved page from nasid %d, " "which sent interrupt, reason=%d\n", nasid, ret); return; } remote_vars_pa = remote_rp->sn.vars_pa; remote_rp_version = remote_rp->version; remote_rp_ts_jiffies = remote_rp->ts_jiffies; partid = remote_rp->SAL_partid; part = &xpc_partitions[partid]; part_sn2 = &part->sn.sn2; /* pull over the cross partition variables */ remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2; ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars); if (ret != xpSuccess) { dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " "which sent interrupt, reason=%d\n", nasid, ret); XPC_DEACTIVATE_PARTITION(part, ret); return; } part->activate_IRQ_rcvd++; dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd, remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]); if (xpc_partition_disengaged(part) && part->act_state == XPC_P_INACTIVE) { xpc_update_partition_info_sn2(part, remote_rp_version, &remote_rp_ts_jiffies, remote_rp_pa, remote_vars_pa, remote_vars); if (xpc_partition_deactivation_requested_sn2(partid)) { /* * Other side is waiting on us to deactivate even though * we already have. */ return; } xpc_activate_partition(part); return; } DBUG_ON(part->remote_rp_version == 0); DBUG_ON(part_sn2->remote_vars_version == 0); if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) { /* the other side rebooted */ DBUG_ON(xpc_partition_engaged_sn2(partid)); DBUG_ON(xpc_partition_deactivation_requested_sn2(partid)); xpc_update_partition_info_sn2(part, remote_rp_version, &remote_rp_ts_jiffies, remote_rp_pa, remote_vars_pa, remote_vars); reactivate = 1; } if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) { /* still waiting on other side to disengage from us */ return; } if (reactivate) XPC_DEACTIVATE_PARTITION(part, xpReactivating); else if (xpc_partition_deactivation_requested_sn2(partid)) XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown); } /* * Loop through the activation amo variables and process any bits * which are set. Each bit indicates a nasid sending a partition * activation or deactivation request. * * Return #of IRQs detected. */ int xpc_identify_activate_IRQ_sender_sn2(void) { int l; int b; unsigned long nasid_mask_long; u64 nasid; /* remote nasid */ int n_IRQs_detected = 0; struct amo *act_amos; act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2; /* scan through activate amo variables looking for non-zero entries */ for (l = 0; l < xpc_nasid_mask_nlongs; l++) { if (xpc_exiting) break; nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]); b = find_first_bit(&nasid_mask_long, BITS_PER_LONG); if (b >= BITS_PER_LONG) { /* no IRQs from nasids in this amo variable */ continue; } dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l, nasid_mask_long); /* * If this nasid has been added to the machine since * our partition was reset, this will retain the * remote nasid in our reserved pages machine mask. * This is used in the event of module reload. */ xpc_mach_nasids[l] |= nasid_mask_long; /* locate the nasid(s) which sent interrupts */ do { n_IRQs_detected++; nasid = (l * BITS_PER_LONG + b) * 2; dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid); xpc_identify_activate_IRQ_req_sn2(nasid); b = find_next_bit(&nasid_mask_long, BITS_PER_LONG, b + 1); } while (b < BITS_PER_LONG); } return n_IRQs_detected; } static void xpc_process_activate_IRQ_rcvd_sn2(int n_IRQs_expected) { int n_IRQs_detected; n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2(); if (n_IRQs_detected < n_IRQs_expected) { /* retry once to help avoid missing amo */ (void)xpc_identify_activate_IRQ_sender_sn2(); } } /* * Guarantee that the kzalloc'd memory is cacheline aligned. */ static void * xpc_kzalloc_cacheline_aligned_sn2(size_t size, gfp_t flags, void **base) { /* see if kzalloc will give us cachline aligned memory by default */ *base = kzalloc(size, flags); if (*base == NULL) return NULL; if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) return *base; kfree(*base); /* nope, we'll have to do it ourselves */ *base = kzalloc(size + L1_CACHE_BYTES, flags); if (*base == NULL) return NULL; return (void *)L1_CACHE_ALIGN((u64)*base); } /* * Setup the infrastructure necessary to support XPartition Communication * between the specified remote partition and the local one. */ static enum xp_retval xpc_setup_infrastructure_sn2(struct xpc_partition *part) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; enum xp_retval retval; int ret; int cpuid; int ch_number; struct xpc_channel *ch; struct timer_list *timer; short partid = XPC_PARTID(part); /* * Allocate all of the channel structures as a contiguous chunk of * memory. */ DBUG_ON(part->channels != NULL); part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS, GFP_KERNEL); if (part->channels == NULL) { dev_err(xpc_chan, "can't get memory for channels\n"); return xpNoMemory; } /* allocate all the required GET/PUT values */ part_sn2->local_GPs = xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL, &part_sn2->local_GPs_base); if (part_sn2->local_GPs == NULL) { dev_err(xpc_chan, "can't get memory for local get/put " "values\n"); retval = xpNoMemory; goto out_1; } part_sn2->remote_GPs = xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL, &part_sn2->remote_GPs_base); if (part_sn2->remote_GPs == NULL) { dev_err(xpc_chan, "can't get memory for remote get/put " "values\n"); retval = xpNoMemory; goto out_2; } part_sn2->remote_GPs_pa = 0; /* allocate all the required open and close args */ part->local_openclose_args = xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, &part->local_openclose_args_base); if (part->local_openclose_args == NULL) { dev_err(xpc_chan, "can't get memory for local connect args\n"); retval = xpNoMemory; goto out_3; } part->remote_openclose_args = xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, &part->remote_openclose_args_base); if (part->remote_openclose_args == NULL) { dev_err(xpc_chan, "can't get memory for remote connect args\n"); retval = xpNoMemory; goto out_4; } part_sn2->remote_openclose_args_pa = 0; part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid); part->chctl.all_flags = 0; spin_lock_init(&part->chctl_lock); part_sn2->notify_IRQ_nasid = 0; part_sn2->notify_IRQ_phys_cpuid = 0; part_sn2->remote_chctl_amo_va = NULL; atomic_set(&part->channel_mgr_requests, 1); init_waitqueue_head(&part->channel_mgr_wq); sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid); ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2, IRQF_SHARED, part_sn2->notify_IRQ_owner, (void *)(u64)partid); if (ret != 0) { dev_err(xpc_chan, "can't register NOTIFY IRQ handler, " "errno=%d\n", -ret); retval = xpLackOfResources; goto out_5; } /* Setup a timer to check for dropped notify IRQs */ timer = &part_sn2->dropped_notify_IRQ_timer; init_timer(timer); timer->function = (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2; timer->data = (unsigned long)part; timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL; add_timer(timer); part->nchannels = XPC_MAX_NCHANNELS; atomic_set(&part->nchannels_active, 0); atomic_set(&part->nchannels_engaged, 0); for (ch_number = 0; ch_number < part->nchannels; ch_number++) { ch = &part->channels[ch_number]; ch->partid = partid; ch->number = ch_number; ch->flags = XPC_C_DISCONNECTED; ch->sn.sn2.local_GP = &part_sn2->local_GPs[ch_number]; ch->local_openclose_args = &part->local_openclose_args[ch_number]; atomic_set(&ch->kthreads_assigned, 0); atomic_set(&ch->kthreads_idle, 0); atomic_set(&ch->kthreads_active, 0); atomic_set(&ch->references, 0); atomic_set(&ch->n_to_notify, 0); spin_lock_init(&ch->lock); mutex_init(&ch->sn.sn2.msg_to_pull_mutex); init_completion(&ch->wdisconnect_wait); atomic_set(&ch->n_on_msg_allocate_wq, 0); init_waitqueue_head(&ch->msg_allocate_wq); init_waitqueue_head(&ch->idle_wq); } /* * With the setting of the partition setup_state to XPC_P_SETUP, we're * declaring that this partition is ready to go. */ part->setup_state = XPC_P_SETUP; /* * Setup the per partition specific variables required by the * remote partition to establish channel connections with us. * * The setting of the magic # indicates that these per partition * specific variables are ready to be used. */ xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs); xpc_vars_part_sn2[partid].openclose_args_pa = xp_pa(part->local_openclose_args); xpc_vars_part_sn2[partid].chctl_amo_pa = xp_pa(part_sn2->local_chctl_amo_va); cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */ xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid); xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid = cpu_physical_id(cpuid); xpc_vars_part_sn2[partid].nchannels = part->nchannels; xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1; return xpSuccess; /* setup of infrastructure failed */ out_5: kfree(part->remote_openclose_args_base); part->remote_openclose_args = NULL; out_4: kfree(part->local_openclose_args_base); part->local_openclose_args = NULL; out_3: kfree(part_sn2->remote_GPs_base); part_sn2->remote_GPs = NULL; out_2: kfree(part_sn2->local_GPs_base); part_sn2->local_GPs = NULL; out_1: kfree(part->channels); part->channels = NULL; return retval; } /* * Teardown the infrastructure necessary to support XPartition Communication * between the specified remote partition and the local one. */ static void xpc_teardown_infrastructure_sn2(struct xpc_partition *part) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; short partid = XPC_PARTID(part); /* * We start off by making this partition inaccessible to local * processes by marking it as no longer setup. Then we make it * inaccessible to remote processes by clearing the XPC per partition * specific variable's magic # (which indicates that these variables * are no longer valid) and by ignoring all XPC notify IRQs sent to * this partition. */ DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); DBUG_ON(atomic_read(&part->nchannels_active) != 0); DBUG_ON(part->setup_state != XPC_P_SETUP); part->setup_state = XPC_P_WTEARDOWN; xpc_vars_part_sn2[partid].magic = 0; free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid); /* * Before proceeding with the teardown we have to wait until all * existing references cease. */ wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); /* now we can begin tearing down the infrastructure */ part->setup_state = XPC_P_TORNDOWN; /* in case we've still got outstanding timers registered... */ del_timer_sync(&part_sn2->dropped_notify_IRQ_timer); kfree(part->remote_openclose_args_base); part->remote_openclose_args = NULL; kfree(part->local_openclose_args_base); part->local_openclose_args = NULL; kfree(part_sn2->remote_GPs_base); part_sn2->remote_GPs = NULL; kfree(part_sn2->local_GPs_base); part_sn2->local_GPs = NULL; kfree(part->channels); part->channels = NULL; part_sn2->local_chctl_amo_va = NULL; } /* * Create a wrapper that hides the underlying mechanism for pulling a cacheline * (or multiple cachelines) from a remote partition. * * src_pa must be a cacheline aligned physical address on the remote partition. * dst must be a cacheline aligned virtual address on this partition. * cnt must be cacheline sized */ /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */ static enum xp_retval xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst, const unsigned long src_pa, size_t cnt) { enum xp_retval ret; DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa)); DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst)); DBUG_ON(cnt != L1_CACHE_ALIGN(cnt)); if (part->act_state == XPC_P_DEACTIVATING) return part->reason; ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt); if (ret != xpSuccess) { dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed," " ret=%d\n", XPC_PARTID(part), ret); } return ret; } /* * Pull the remote per partition specific variables from the specified * partition. */ static enum xp_retval xpc_pull_remote_vars_part_sn2(struct xpc_partition *part) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; u8 buffer[L1_CACHE_BYTES * 2]; struct xpc_vars_part_sn2 *pulled_entry_cacheline = (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer); struct xpc_vars_part_sn2 *pulled_entry; unsigned long remote_entry_cacheline_pa; unsigned long remote_entry_pa; short partid = XPC_PARTID(part); enum xp_retval ret; /* pull the cacheline that contains the variables we're interested in */ DBUG_ON(part_sn2->remote_vars_part_pa != L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa)); DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2); remote_entry_pa = part_sn2->remote_vars_part_pa + sn_partition_id * sizeof(struct xpc_vars_part_sn2); remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1)); pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline + (remote_entry_pa & (L1_CACHE_BYTES - 1))); ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline, remote_entry_cacheline_pa, L1_CACHE_BYTES); if (ret != xpSuccess) { dev_dbg(xpc_chan, "failed to pull XPC vars_part from " "partition %d, ret=%d\n", partid, ret); return ret; } /* see if they've been set up yet */ if (pulled_entry->magic != XPC_VP_MAGIC1 && pulled_entry->magic != XPC_VP_MAGIC2) { if (pulled_entry->magic != 0) { dev_dbg(xpc_chan, "partition %d's XPC vars_part for " "partition %d has bad magic value (=0x%lx)\n", partid, sn_partition_id, pulled_entry->magic); return xpBadMagic; } /* they've not been initialized yet */ return xpRetry; } if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1) { /* validate the variables */ if (pulled_entry->GPs_pa == 0 || pulled_entry->openclose_args_pa == 0 || pulled_entry->chctl_amo_pa == 0) { dev_err(xpc_chan, "partition %d's XPC vars_part for " "partition %d are not valid\n", partid, sn_partition_id); return xpInvalidAddress; } /* the variables we imported look to be valid */ part_sn2->remote_GPs_pa = pulled_entry->GPs_pa; part_sn2->remote_openclose_args_pa = pulled_entry->openclose_args_pa; part_sn2->remote_chctl_amo_va = (struct amo *)__va(pulled_entry->chctl_amo_pa); part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid; part_sn2->notify_IRQ_phys_cpuid = pulled_entry->notify_IRQ_phys_cpuid; if (part->nchannels > pulled_entry->nchannels) part->nchannels = pulled_entry->nchannels; /* let the other side know that we've pulled their variables */ xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2; } if (pulled_entry->magic == XPC_VP_MAGIC1) return xpRetry; return xpSuccess; } /* * Establish first contact with the remote partititon. This involves pulling * the XPC per partition variables from the remote partition and waiting for * the remote partition to pull ours. */ static enum xp_retval xpc_make_first_contact_sn2(struct xpc_partition *part) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; enum xp_retval ret; /* * Register the remote partition's amos with SAL so it can handle * and cleanup errors within that address range should the remote * partition go down. We don't unregister this range because it is * difficult to tell when outstanding writes to the remote partition * are finished and thus when it is safe to unregister. This should * not result in wasted space in the SAL xp_addr_region table because * we should get the same page for remote_amos_page_pa after module * reloads and system reboots. */ if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa, PAGE_SIZE, 1) < 0) { dev_warn(xpc_part, "xpc_activating(%d) failed to register " "xp_addr region\n", XPC_PARTID(part)); ret = xpPhysAddrRegFailed; XPC_DEACTIVATE_PARTITION(part, ret); return ret; } /* * Send activate IRQ to get other side to activate if they've not * already begun to do so. */ xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa, cnodeid_to_nasid(0), part_sn2->activate_IRQ_nasid, part_sn2->activate_IRQ_phys_cpuid); while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) { if (ret != xpRetry) { XPC_DEACTIVATE_PARTITION(part, ret); return ret; } dev_dbg(xpc_part, "waiting to make first contact with " "partition %d\n", XPC_PARTID(part)); /* wait a 1/4 of a second or so */ (void)msleep_interruptible(250); if (part->act_state == XPC_P_DEACTIVATING) return part->reason; } return xpSuccess; } /* * Get the chctl flags and pull the openclose args and/or remote GPs as needed. */ static u64 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part) { struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; unsigned long irq_flags; union xpc_channel_ctl_flags chctl; enum xp_retval ret; /* * See if there are any chctl flags to be handled. */ spin_lock_irqsave(&part->chctl_lock, irq_flags); chctl = part->chctl; if (chctl.all_flags != 0) part->chctl.all_flags = 0; spin_unlock_irqrestore(&part->chctl_lock, irq_flags); if (xpc_any_openclose_chctl_flags_set(&chctl)) { ret = xpc_pull_remote_cachelines_sn2(part, part-> remote_openclose_args, part_sn2-> remote_openclose_args_pa, XPC_OPENCLOSE_ARGS_SIZE); if (ret != xpSuccess) { XPC_DEACTIVATE_PARTITION(part, ret); dev_dbg(xpc_chan, "failed to pull openclose args from " "partition %d, ret=%d\n", XPC_PARTID(part), ret); /* don't bother processing chctl flags anymore */ chctl.all_flags = 0; } } if (xpc_any_msg_chctl_flags_set(&chctl)) { ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs, part_sn2->remote_GPs_pa, XPC_GP_SIZE); if (ret != xpSuccess) { XPC_DEACTIVATE_PARTITION(part, ret); dev_dbg(xpc_chan, "failed to pull GPs from partition " "%d, ret=%d\n", XPC_PARTID(part), ret); /* don't bother processing chctl flags anymore */ chctl.all_flags = 0; } } return chctl.all_flags; } /* * Allocate the local message queue and the notify queue. */ static enum xp_retval xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch) { unsigned long irq_flags; int nentries; size_t nbytes; for (nentries = ch->local_nentries; nentries > 0; nentries--) { nbytes = nentries * ch->msg_size; ch->local_msgqueue = xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL, &ch->local_msgqueue_base); if (ch->local_msgqueue == NULL) continue; nbytes = nentries * sizeof(struct xpc_notify); ch->notify_queue = kzalloc(nbytes, GFP_KERNEL); if (ch->notify_queue == NULL) { kfree(ch->local_msgqueue_base); ch->local_msgqueue = NULL; continue; } spin_lock_irqsave(&ch->lock, irq_flags); if (nentries < ch->local_nentries) { dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, " "partid=%d, channel=%d\n", nentries, ch->local_nentries, ch->partid, ch->number); ch->local_nentries = nentries; } spin_unlock_irqrestore(&ch->lock, irq_flags); return xpSuccess; } dev_dbg(xpc_chan, "can't get memory for local message queue and notify " "queue, partid=%d, channel=%d\n", ch->partid, ch->number); return xpNoMemory; } /* * Allocate the cached remote message queue. */ static enum xp_retval xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch) { unsigned long irq_flags; int nentries; size_t nbytes; DBUG_ON(ch->remote_nentries <= 0); for (nentries = ch->remote_nentries; nentries > 0; nentries--) { nbytes = nentries * ch->msg_size; ch->remote_msgqueue = xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL, &ch->remote_msgqueue_base); if (ch->remote_msgqueue == NULL) continue; spin_lock_irqsave(&ch->lock, irq_flags); if (nentries < ch->remote_nentries) { dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, " "partid=%d, channel=%d\n", nentries, ch->remote_nentries, ch->partid, ch->number); ch->remote_nentries = nentries; } spin_unlock_irqrestore(&ch->lock, irq_flags); return xpSuccess; } dev_dbg(xpc_chan, "can't get memory for cached remote message queue, " "partid=%d, channel=%d\n", ch->partid, ch->number); return xpNoMemory; } /* * Allocate message queues and other stuff associated with a channel. * * Note: Assumes all of the channel sizes are filled in. */ static enum xp_retval xpc_allocate_msgqueues_sn2(struct xpc_channel *ch) { enum xp_retval ret; DBUG_ON(ch->flags & XPC_C_SETUP); ret = xpc_allocate_local_msgqueue_sn2(ch); if (ret == xpSuccess) { ret = xpc_allocate_remote_msgqueue_sn2(ch); if (ret != xpSuccess) { kfree(ch->local_msgqueue_base); ch->local_msgqueue = NULL; kfree(ch->notify_queue); ch->notify_queue = NULL; } } return ret; } /* * Free up message queues and other stuff that were allocated for the specified * channel. * * Note: ch->reason and ch->reason_line are left set for debugging purposes, * they're cleared when XPC_C_DISCONNECTED is cleared. */ static void xpc_free_msgqueues_sn2(struct xpc_channel *ch) { struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; DBUG_ON(!spin_is_locked(&ch->lock)); DBUG_ON(atomic_read(&ch->n_to_notify) != 0); ch->remote_msgqueue_pa = 0; ch->func = NULL; ch->key = NULL; ch->msg_size = 0; ch->local_nentries = 0; ch->remote_nentries = 0; ch->kthreads_assigned_limit = 0; ch->kthreads_idle_limit = 0; ch_sn2->local_GP->get = 0; ch_sn2->local_GP->put = 0; ch_sn2->remote_GP.get = 0; ch_sn2->remote_GP.put = 0; ch_sn2->w_local_GP.get = 0; ch_sn2->w_local_GP.put = 0; ch_sn2->w_remote_GP.get = 0; ch_sn2->w_remote_GP.put = 0; ch_sn2->next_msg_to_pull = 0; if (ch->flags & XPC_C_SETUP) { dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n", ch->flags, ch->partid, ch->number); kfree(ch->local_msgqueue_base); ch->local_msgqueue = NULL; kfree(ch->remote_msgqueue_base); ch->remote_msgqueue = NULL; kfree(ch->notify_queue); ch->notify_queue = NULL; } } /* * Notify those who wanted to be notified upon delivery of their message. */ static void xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put) { struct xpc_notify *notify; u8 notify_type; s64 get = ch->sn.sn2.w_remote_GP.get - 1; while (++get < put && atomic_read(&ch->n_to_notify) > 0) { notify = &ch->notify_queue[get % ch->local_nentries]; /* * See if the notify entry indicates it was associated with * a message who's sender wants to be notified. It is possible * that it is, but someone else is doing or has done the * notification. */ notify_type = notify->type; if (notify_type == 0 || cmpxchg(¬ify->type, notify_type, 0) != notify_type) { continue; } DBUG_ON(notify_type != XPC_N_CALL); atomic_dec(&ch->n_to_notify); if (notify->func != NULL) { dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, " "msg_number=%ld, partid=%d, channel=%d\n", (void *)notify, get, ch->partid, ch->number); notify->func(reason, ch->partid, ch->number, notify->key); dev_dbg(xpc_chan, "notify->func() returned, " "notify=0x%p, msg_number=%ld, partid=%d, " "channel=%d\n", (void *)notify, get, ch->partid, ch->number); } } } static void xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch) { xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put); } /* * Clear some of the msg flags in the local message queue. */ static inline void xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch) { struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; struct xpc_msg *msg; s64 get; get = ch_sn2->w_remote_GP.get; do { msg = (struct xpc_msg *)((u64)ch->local_msgqueue + (get % ch->local_nentries) * ch->msg_size); msg->flags = 0; } while (++get < ch_sn2->remote_GP.get); } /* * Clear some of the msg flags in the remote message queue. */ static inline void xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch) { struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; struct xpc_msg *msg; s64 put; put = ch_sn2->w_remote_GP.put; do { msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + (put % ch->remote_nentries) * ch->msg_size); msg->flags = 0; } while (++put < ch_sn2->remote_GP.put); } static void xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number) { struct xpc_channel *ch = &part->channels[ch_number]; struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; int nmsgs_sent; ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number]; /* See what, if anything, has changed for each connected channel */ xpc_msgqueue_ref(ch); if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get && ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) { /* nothing changed since GPs were last pulled */ xpc_msgqueue_deref(ch); return; } if (!(ch->flags & XPC_C_CONNECTED)) { xpc_msgqueue_deref(ch); return; } /* * First check to see if messages recently sent by us have been * received by the other side. (The remote GET value will have * changed since we last looked at it.) */ if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) { /* * We need to notify any senders that want to be notified * that their sent messages have been received by their * intended recipients. We need to do this before updating * w_remote_GP.get so that we don't allocate the same message * queue entries prematurely (see xpc_allocate_msg()). */ if (atomic_read(&ch->n_to_notify) > 0) { /* * Notify senders that messages sent have been * received and delivered by the other side. */ xpc_notify_senders_sn2(ch, xpMsgDelivered, ch_sn2->remote_GP.get); } /* * Clear msg->flags in previously sent messages, so that * they're ready for xpc_allocate_msg(). */ xpc_clear_local_msgqueue_flags_sn2(ch); ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get; dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, " "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid, ch->number); /* * If anyone was waiting for message queue entries to become * available, wake them up. */ if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) wake_up(&ch->msg_allocate_wq); } /* * Now check for newly sent messages by the other side. (The remote * PUT value will have changed since we last looked at it.) */ if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) { /* * Clear msg->flags in previously received messages, so that * they're ready for xpc_get_deliverable_msg(). */ xpc_clear_remote_msgqueue_flags_sn2(ch); ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put; dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, " "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid, ch->number); nmsgs_sent = ch_sn2->w_remote_GP.put - ch_sn2->w_local_GP.get; if (nmsgs_sent > 0) { dev_dbg(xpc_chan, "msgs waiting to be copied and " "delivered=%d, partid=%d, channel=%d\n", nmsgs_sent, ch->partid, ch->number); if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) xpc_activate_kthreads(ch, nmsgs_sent); } } xpc_msgqueue_deref(ch); } static struct xpc_msg * xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get) { struct xpc_partition *part = &xpc_partitions[ch->partid]; struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; unsigned long remote_msg_pa; struct xpc_msg *msg; u32 msg_index; u32 nmsgs; u64 msg_offset; enum xp_retval ret; if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) { /* we were interrupted by a signal */ return NULL; } while (get >= ch_sn2->next_msg_to_pull) { /* pull as many messages as are ready and able to be pulled */ msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries; DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put); nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull; if (msg_index + nmsgs > ch->remote_nentries) { /* ignore the ones that wrap the msg queue for now */ nmsgs = ch->remote_nentries - msg_index; } msg_offset = msg_index * ch->msg_size; msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset); remote_msg_pa = ch->remote_msgqueue_pa + msg_offset; ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa, nmsgs * ch->msg_size); if (ret != xpSuccess) { dev_dbg(xpc_chan, "failed to pull %d msgs starting with" " msg %ld from partition %d, channel=%d, " "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull, ch->partid, ch->number, ret); XPC_DEACTIVATE_PARTITION(part, ret); mutex_unlock(&ch_sn2->msg_to_pull_mutex); return NULL; } ch_sn2->next_msg_to_pull += nmsgs; } mutex_unlock(&ch_sn2->msg_to_pull_mutex); /* return the message we were looking for */ msg_offset = (get % ch->remote_nentries) * ch->msg_size; msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset); return msg; } static int xpc_n_of_deliverable_msgs_sn2(struct xpc_channel *ch) { return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get; } /* * Get a message to be delivered. */ static struct xpc_msg * xpc_get_deliverable_msg_sn2(struct xpc_channel *ch) { struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; struct xpc_msg *msg = NULL; s64 get; do { if (ch->flags & XPC_C_DISCONNECTING) break; get = ch_sn2->w_local_GP.get; rmb(); /* guarantee that .get loads before .put */ if (get == ch_sn2->w_remote_GP.put) break; /* There are messages waiting to be pulled and delivered. * We need to try to secure one for ourselves. We'll do this * by trying to increment w_local_GP.get and hope that no one * else beats us to it. If they do, we'll we'll simply have * to try again for the next one. */ if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) { /* we got the entry referenced by get */ dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, " "partid=%d, channel=%d\n", get + 1, ch->partid, ch->number); /* pull the message from the remote partition */ msg = xpc_pull_remote_msg_sn2(ch, get); DBUG_ON(msg != NULL && msg->number != get); DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE)); DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY)); break; } } while (1); return msg; } /* * Now we actually send the messages that are ready to be sent by advancing * the local message queue's Put value and then send a chctl msgrequest to the * recipient partition. */ static void xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put) { struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; struct xpc_msg *msg; s64 put = initial_put + 1; int send_msgrequest = 0; while (1) { while (1) { if (put == ch_sn2->w_local_GP.put) break; msg = (struct xpc_msg *)((u64)ch->local_msgqueue + (put % ch->local_nentries) * ch->msg_size); if (!(msg->flags & XPC_M_READY)) break; put++; } if (put == initial_put) { /* nothing's changed */ break; } if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) != initial_put) { /* someone else beat us to it */ DBUG_ON(ch_sn2->local_GP->put < initial_put); break; } /* we just set the new value of local_GP->put */ dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, " "channel=%d\n", put, ch->partid, ch->number); send_msgrequest = 1; /* * We need to ensure that the message referenced by * local_GP->put is not XPC_M_READY or that local_GP->put * equals w_local_GP.put, so we'll go have a look. */ initial_put = put; } if (send_msgrequest) xpc_send_chctl_msgrequest_sn2(ch); } /* * Allocate an entry for a message from the message queue associated with the * specified channel. */ static enum xp_retval xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags, struct xpc_msg **address_of_msg) { struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; struct xpc_msg *msg; enum xp_retval ret; s64 put; /* * Get the next available message entry from the local message queue. * If none are available, we'll make sure that we grab the latest * GP values. */ ret = xpTimeout; while (1) { put = ch_sn2->w_local_GP.put; rmb(); /* guarantee that .put loads before .get */ if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) { /* There are available message entries. We need to try * to secure one for ourselves. We'll do this by trying * to increment w_local_GP.put as long as someone else * doesn't beat us to it. If they do, we'll have to * try again. */ if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) == put) { /* we got the entry referenced by put */ break; } continue; /* try again */ } /* * There aren't any available msg entries at this time. * * In waiting for a message entry to become available, * we set a timeout in case the other side is not sending * completion interrupts. This lets us fake a notify IRQ * that will cause the notify IRQ handler to fetch the latest * GP values as if an interrupt was sent by the other side. */ if (ret == xpTimeout) xpc_send_chctl_local_msgrequest_sn2(ch); if (flags & XPC_NOWAIT) return xpNoWait; ret = xpc_allocate_msg_wait(ch); if (ret != xpInterrupted && ret != xpTimeout) return ret; } /* get the message's address and initialize it */ msg = (struct xpc_msg *)((u64)ch->local_msgqueue + (put % ch->local_nentries) * ch->msg_size); DBUG_ON(msg->flags != 0); msg->number = put; dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, " "msg_number=%ld, partid=%d, channel=%d\n", put + 1, (void *)msg, msg->number, ch->partid, ch->number); *address_of_msg = msg; return xpSuccess; } /* * Common code that does the actual sending of the message by advancing the * local message queue's Put value and sends a chctl msgrequest to the * partition the message is being sent to. */ static enum xp_retval xpc_send_msg_sn2(struct xpc_channel *ch, u32 flags, void *payload, u16 payload_size, u8 notify_type, xpc_notify_func func, void *key) { enum xp_retval ret = xpSuccess; struct xpc_msg *msg = msg; struct xpc_notify *notify = notify; s64 msg_number; s64 put; DBUG_ON(notify_type == XPC_N_CALL && func == NULL); if (XPC_MSG_SIZE(payload_size) > ch->msg_size) return xpPayloadTooBig; xpc_msgqueue_ref(ch); if (ch->flags & XPC_C_DISCONNECTING) { ret = ch->reason; goto out_1; } if (!(ch->flags & XPC_C_CONNECTED)) { ret = xpNotConnected; goto out_1; } ret = xpc_allocate_msg_sn2(ch, flags, &msg); if (ret != xpSuccess) goto out_1; msg_number = msg->number; if (notify_type != 0) { /* * Tell the remote side to send an ACK interrupt when the * message has been delivered. */ msg->flags |= XPC_M_INTERRUPT; atomic_inc(&ch->n_to_notify); notify = &ch->notify_queue[msg_number % ch->local_nentries]; notify->func = func; notify->key = key; notify->type = notify_type; /* ??? Is a mb() needed here? */ if (ch->flags & XPC_C_DISCONNECTING) { /* * An error occurred between our last error check and * this one. We will try to clear the type field from * the notify entry. If we succeed then * xpc_disconnect_channel() didn't already process * the notify entry. */ if (cmpxchg(¬ify->type, notify_type, 0) == notify_type) { atomic_dec(&ch->n_to_notify); ret = ch->reason; } goto out_1; } } memcpy(&msg->payload, payload, payload_size); msg->flags |= XPC_M_READY; /* * The preceding store of msg->flags must occur before the following * load of local_GP->put. */ mb(); /* see if the message is next in line to be sent, if so send it */ put = ch->sn.sn2.local_GP->put; if (put == msg_number) xpc_send_msgs_sn2(ch, put); out_1: xpc_msgqueue_deref(ch); return ret; } /* * Now we actually acknowledge the messages that have been delivered and ack'd * by advancing the cached remote message queue's Get value and if requested * send a chctl msgrequest to the message sender's partition. */ static void xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags) { struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; struct xpc_msg *msg; s64 get = initial_get + 1; int send_msgrequest = 0; while (1) { while (1) { if (get == ch_sn2->w_local_GP.get) break; msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + (get % ch->remote_nentries) * ch->msg_size); if (!(msg->flags & XPC_M_DONE)) break; msg_flags |= msg->flags; get++; } if (get == initial_get) { /* nothing's changed */ break; } if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) != initial_get) { /* someone else beat us to it */ DBUG_ON(ch_sn2->local_GP->get <= initial_get); break; } /* we just set the new value of local_GP->get */ dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, " "channel=%d\n", get, ch->partid, ch->number); send_msgrequest = (msg_flags & XPC_M_INTERRUPT); /* * We need to ensure that the message referenced by * local_GP->get is not XPC_M_DONE or that local_GP->get * equals w_local_GP.get, so we'll go have a look. */ initial_get = get; } if (send_msgrequest) xpc_send_chctl_msgrequest_sn2(ch); } static void xpc_received_msg_sn2(struct xpc_channel *ch, struct xpc_msg *msg) { s64 get; s64 msg_number = msg->number; dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n", (void *)msg, msg_number, ch->partid, ch->number); DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) != msg_number % ch->remote_nentries); DBUG_ON(msg->flags & XPC_M_DONE); msg->flags |= XPC_M_DONE; /* * The preceding store of msg->flags must occur before the following * load of local_GP->get. */ mb(); /* * See if this message is next in line to be acknowledged as having * been delivered. */ get = ch->sn.sn2.local_GP->get; if (get == msg_number) xpc_acknowledge_msgs_sn2(ch, get, msg->flags); } int xpc_init_sn2(void) { int ret; size_t buf_size; xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2; xpc_rsvd_page_init = xpc_rsvd_page_init_sn2; xpc_increment_heartbeat = xpc_increment_heartbeat_sn2; xpc_offline_heartbeat = xpc_offline_heartbeat_sn2; xpc_online_heartbeat = xpc_online_heartbeat_sn2; xpc_heartbeat_init = xpc_heartbeat_init_sn2; xpc_heartbeat_exit = xpc_heartbeat_exit_sn2; xpc_get_remote_heartbeat = xpc_get_remote_heartbeat_sn2; xpc_request_partition_activation = xpc_request_partition_activation_sn2; xpc_request_partition_reactivation = xpc_request_partition_reactivation_sn2; xpc_request_partition_deactivation = xpc_request_partition_deactivation_sn2; xpc_cancel_partition_deactivation_request = xpc_cancel_partition_deactivation_request_sn2; xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2; xpc_setup_infrastructure = xpc_setup_infrastructure_sn2; xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2; xpc_make_first_contact = xpc_make_first_contact_sn2; xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2; xpc_allocate_msgqueues = xpc_allocate_msgqueues_sn2; xpc_free_msgqueues = xpc_free_msgqueues_sn2; xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2; xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2; xpc_n_of_deliverable_msgs = xpc_n_of_deliverable_msgs_sn2; xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2; xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2; xpc_partition_engaged = xpc_partition_engaged_sn2; xpc_any_partition_engaged = xpc_any_partition_engaged_sn2; xpc_indicate_partition_disengaged = xpc_indicate_partition_disengaged_sn2; xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2; xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2; xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2; xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2; xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2; xpc_send_msg = xpc_send_msg_sn2; xpc_received_msg = xpc_received_msg_sn2; buf_size = max(XPC_RP_VARS_SIZE, XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2); xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size, GFP_KERNEL, &xpc_remote_copy_buffer_base_sn2); if (xpc_remote_copy_buffer_sn2 == NULL) { dev_err(xpc_part, "can't get memory for remote copy buffer\n"); return -ENOMEM; } /* open up protections for IPI and [potentially] amo operations */ xpc_allow_IPI_ops_sn2(); xpc_allow_amo_ops_shub_wars_1_1_sn2(); /* * This is safe to do before the xpc_hb_checker thread has started * because the handler releases a wait queue. If an interrupt is * received before the thread is waiting, it will not go to sleep, * but rather immediately process the interrupt. */ ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0, "xpc hb", NULL); if (ret != 0) { dev_err(xpc_part, "can't register ACTIVATE IRQ handler, " "errno=%d\n", -ret); xpc_disallow_IPI_ops_sn2(); kfree(xpc_remote_copy_buffer_base_sn2); } return ret; } void xpc_exit_sn2(void) { free_irq(SGI_XPC_ACTIVATE, NULL); xpc_disallow_IPI_ops_sn2(); kfree(xpc_remote_copy_buffer_base_sn2); }