/* * linux/drivers/mmc/pxa.c - PXA MMCI driver * * Copyright (C) 2003 Russell King, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This hardware is really sick: * - No way to clear interrupts. * - Have to turn off the clock whenever we touch the device. * - Doesn't tell you how many data blocks were transferred. * Yuck! * * 1 and 3 byte data transfers not supported * max block length up to 1023 */ #include <linux/config.h> #include <linux/module.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/mmc/host.h> #include <linux/mmc/protocol.h> #include <asm/dma.h> #include <asm/io.h> #include <asm/scatterlist.h> #include <asm/sizes.h> #include <asm/arch/pxa-regs.h> #include <asm/arch/mmc.h> #include "pxamci.h" #ifdef CONFIG_MMC_DEBUG #define DBG(x...) printk(KERN_DEBUG x) #else #define DBG(x...) do { } while (0) #endif #define DRIVER_NAME "pxa2xx-mci" #define NR_SG 1 struct pxamci_host { struct mmc_host *mmc; spinlock_t lock; struct resource *res; void __iomem *base; int irq; int dma; unsigned int clkrt; unsigned int cmdat; unsigned int imask; unsigned int power_mode; struct pxamci_platform_data *pdata; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; dma_addr_t sg_dma; struct pxa_dma_desc *sg_cpu; unsigned int dma_len; unsigned int dma_dir; }; static inline unsigned int ns_to_clocks(unsigned int ns) { return (ns * (CLOCKRATE / 1000000) + 999) / 1000; } static void pxamci_stop_clock(struct pxamci_host *host) { if (readl(host->base + MMC_STAT) & STAT_CLK_EN) { unsigned long timeout = 10000; unsigned int v; writel(STOP_CLOCK, host->base + MMC_STRPCL); do { v = readl(host->base + MMC_STAT); if (!(v & STAT_CLK_EN)) break; udelay(1); } while (timeout--); if (v & STAT_CLK_EN) dev_err(mmc_dev(host->mmc), "unable to stop clock\n"); } } static void pxamci_enable_irq(struct pxamci_host *host, unsigned int mask) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); host->imask &= ~mask; writel(host->imask, host->base + MMC_I_MASK); spin_unlock_irqrestore(&host->lock, flags); } static void pxamci_disable_irq(struct pxamci_host *host, unsigned int mask) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); host->imask |= mask; writel(host->imask, host->base + MMC_I_MASK); spin_unlock_irqrestore(&host->lock, flags); } static void pxamci_setup_data(struct pxamci_host *host, struct mmc_data *data) { unsigned int nob = data->blocks; unsigned int timeout; u32 dcmd; int i; host->data = data; if (data->flags & MMC_DATA_STREAM) nob = 0xffff; writel(nob, host->base + MMC_NOB); writel(1 << data->blksz_bits, host->base + MMC_BLKLEN); timeout = ns_to_clocks(data->timeout_ns) + data->timeout_clks; writel((timeout + 255) / 256, host->base + MMC_RDTO); if (data->flags & MMC_DATA_READ) { host->dma_dir = DMA_FROM_DEVICE; dcmd = DCMD_INCTRGADDR | DCMD_FLOWTRG; DRCMRTXMMC = 0; DRCMRRXMMC = host->dma | DRCMR_MAPVLD; } else { host->dma_dir = DMA_TO_DEVICE; dcmd = DCMD_INCSRCADDR | DCMD_FLOWSRC; DRCMRRXMMC = 0; DRCMRTXMMC = host->dma | DRCMR_MAPVLD; } dcmd |= DCMD_BURST32 | DCMD_WIDTH1; host->dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma_dir); for (i = 0; i < host->dma_len; i++) { if (data->flags & MMC_DATA_READ) { host->sg_cpu[i].dsadr = host->res->start + MMC_RXFIFO; host->sg_cpu[i].dtadr = sg_dma_address(&data->sg[i]); } else { host->sg_cpu[i].dsadr = sg_dma_address(&data->sg[i]); host->sg_cpu[i].dtadr = host->res->start + MMC_TXFIFO; } host->sg_cpu[i].dcmd = dcmd | sg_dma_len(&data->sg[i]); host->sg_cpu[i].ddadr = host->sg_dma + (i + 1) * sizeof(struct pxa_dma_desc); } host->sg_cpu[host->dma_len - 1].ddadr = DDADR_STOP; wmb(); DDADR(host->dma) = host->sg_dma; DCSR(host->dma) = DCSR_RUN; } static void pxamci_start_cmd(struct pxamci_host *host, struct mmc_command *cmd, unsigned int cmdat) { WARN_ON(host->cmd != NULL); host->cmd = cmd; if (cmd->flags & MMC_RSP_BUSY) cmdat |= CMDAT_BUSY; #define RSP_TYPE(x) ((x) & ~(MMC_RSP_BUSY|MMC_RSP_OPCODE)) switch (RSP_TYPE(mmc_resp_type(cmd))) { case RSP_TYPE(MMC_RSP_R1): /* r1, r1b, r6 */ cmdat |= CMDAT_RESP_SHORT; break; case RSP_TYPE(MMC_RSP_R3): cmdat |= CMDAT_RESP_R3; break; case RSP_TYPE(MMC_RSP_R2): cmdat |= CMDAT_RESP_R2; break; default: break; } writel(cmd->opcode, host->base + MMC_CMD); writel(cmd->arg >> 16, host->base + MMC_ARGH); writel(cmd->arg & 0xffff, host->base + MMC_ARGL); writel(cmdat, host->base + MMC_CMDAT); writel(host->clkrt, host->base + MMC_CLKRT); writel(START_CLOCK, host->base + MMC_STRPCL); pxamci_enable_irq(host, END_CMD_RES); } static void pxamci_finish_request(struct pxamci_host *host, struct mmc_request *mrq) { DBG("PXAMCI: request done\n"); host->mrq = NULL; host->cmd = NULL; host->data = NULL; mmc_request_done(host->mmc, mrq); } static int pxamci_cmd_done(struct pxamci_host *host, unsigned int stat) { struct mmc_command *cmd = host->cmd; int i; u32 v; if (!cmd) return 0; host->cmd = NULL; /* * Did I mention this is Sick. We always need to * discard the upper 8 bits of the first 16-bit word. */ v = readl(host->base + MMC_RES) & 0xffff; for (i = 0; i < 4; i++) { u32 w1 = readl(host->base + MMC_RES) & 0xffff; u32 w2 = readl(host->base + MMC_RES) & 0xffff; cmd->resp[i] = v << 24 | w1 << 8 | w2 >> 8; v = w2; } if (stat & STAT_TIME_OUT_RESPONSE) { cmd->error = MMC_ERR_TIMEOUT; } else if (stat & STAT_RES_CRC_ERR && cmd->flags & MMC_RSP_CRC) { #ifdef CONFIG_PXA27x /* * workaround for erratum #42: * Intel PXA27x Family Processor Specification Update Rev 001 */ if (cmd->opcode == MMC_ALL_SEND_CID || cmd->opcode == MMC_SEND_CSD || cmd->opcode == MMC_SEND_CID) { /* a bogus CRC error can appear if the msb of the 15 byte response is a one */ if ((cmd->resp[0] & 0x80000000) == 0) cmd->error = MMC_ERR_BADCRC; } else { DBG("ignoring CRC from command %d - *risky*\n",cmd->opcode); } #else cmd->error = MMC_ERR_BADCRC; #endif } pxamci_disable_irq(host, END_CMD_RES); if (host->data && cmd->error == MMC_ERR_NONE) { pxamci_enable_irq(host, DATA_TRAN_DONE); } else { pxamci_finish_request(host, host->mrq); } return 1; } static int pxamci_data_done(struct pxamci_host *host, unsigned int stat) { struct mmc_data *data = host->data; if (!data) return 0; DCSR(host->dma) = 0; dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->dma_len, host->dma_dir); if (stat & STAT_READ_TIME_OUT) data->error = MMC_ERR_TIMEOUT; else if (stat & (STAT_CRC_READ_ERROR|STAT_CRC_WRITE_ERROR)) data->error = MMC_ERR_BADCRC; /* * There appears to be a hardware design bug here. There seems to * be no way to find out how much data was transferred to the card. * This means that if there was an error on any block, we mark all * data blocks as being in error. */ if (data->error == MMC_ERR_NONE) data->bytes_xfered = data->blocks << data->blksz_bits; else data->bytes_xfered = 0; pxamci_disable_irq(host, DATA_TRAN_DONE); host->data = NULL; if (host->mrq->stop && data->error == MMC_ERR_NONE) { pxamci_stop_clock(host); pxamci_start_cmd(host, host->mrq->stop, 0); } else { pxamci_finish_request(host, host->mrq); } return 1; } static irqreturn_t pxamci_irq(int irq, void *devid, struct pt_regs *regs) { struct pxamci_host *host = devid; unsigned int ireg; int handled = 0; ireg = readl(host->base + MMC_I_REG); DBG("PXAMCI: irq %08x\n", ireg); if (ireg) { unsigned stat = readl(host->base + MMC_STAT); DBG("PXAMCI: stat %08x\n", stat); if (ireg & END_CMD_RES) handled |= pxamci_cmd_done(host, stat); if (ireg & DATA_TRAN_DONE) handled |= pxamci_data_done(host, stat); } return IRQ_RETVAL(handled); } static void pxamci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct pxamci_host *host = mmc_priv(mmc); unsigned int cmdat; WARN_ON(host->mrq != NULL); host->mrq = mrq; pxamci_stop_clock(host); cmdat = host->cmdat; host->cmdat &= ~CMDAT_INIT; if (mrq->data) { pxamci_setup_data(host, mrq->data); cmdat &= ~CMDAT_BUSY; cmdat |= CMDAT_DATAEN | CMDAT_DMAEN; if (mrq->data->flags & MMC_DATA_WRITE) cmdat |= CMDAT_WRITE; if (mrq->data->flags & MMC_DATA_STREAM) cmdat |= CMDAT_STREAM; } pxamci_start_cmd(host, mrq->cmd, cmdat); } static int pxamci_get_ro(struct mmc_host *mmc) { struct pxamci_host *host = mmc_priv(mmc); if (host->pdata && host->pdata->get_ro) return host->pdata->get_ro(mmc->dev); /* Host doesn't support read only detection so assume writeable */ return 0; } static void pxamci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct pxamci_host *host = mmc_priv(mmc); DBG("pxamci_set_ios: clock %u power %u vdd %u.%02u\n", ios->clock, ios->power_mode, ios->vdd / 100, ios->vdd % 100); if (ios->clock) { unsigned int clk = CLOCKRATE / ios->clock; if (CLOCKRATE / clk > ios->clock) clk <<= 1; host->clkrt = fls(clk) - 1; pxa_set_cken(CKEN12_MMC, 1); /* * we write clkrt on the next command */ } else { pxamci_stop_clock(host); pxa_set_cken(CKEN12_MMC, 0); } if (host->power_mode != ios->power_mode) { host->power_mode = ios->power_mode; if (host->pdata && host->pdata->setpower) host->pdata->setpower(mmc->dev, ios->vdd); if (ios->power_mode == MMC_POWER_ON) host->cmdat |= CMDAT_INIT; } DBG("pxamci_set_ios: clkrt = %x cmdat = %x\n", host->clkrt, host->cmdat); } static struct mmc_host_ops pxamci_ops = { .request = pxamci_request, .get_ro = pxamci_get_ro, .set_ios = pxamci_set_ios, }; static void pxamci_dma_irq(int dma, void *devid, struct pt_regs *regs) { printk(KERN_ERR "DMA%d: IRQ???\n", dma); DCSR(dma) = DCSR_STARTINTR|DCSR_ENDINTR|DCSR_BUSERR; } static irqreturn_t pxamci_detect_irq(int irq, void *devid, struct pt_regs *regs) { struct pxamci_host *host = mmc_priv(devid); mmc_detect_change(devid, host->pdata->detect_delay); return IRQ_HANDLED; } static int pxamci_probe(struct platform_device *pdev) { struct mmc_host *mmc; struct pxamci_host *host = NULL; struct resource *r; int ret, irq; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!r || irq == NO_IRQ) return -ENXIO; r = request_mem_region(r->start, SZ_4K, DRIVER_NAME); if (!r) return -EBUSY; mmc = mmc_alloc_host(sizeof(struct pxamci_host), &pdev->dev); if (!mmc) { ret = -ENOMEM; goto out; } mmc->ops = &pxamci_ops; mmc->f_min = CLOCKRATE_MIN; mmc->f_max = CLOCKRATE_MAX; /* * We can do SG-DMA, but we don't because we never know how much * data we successfully wrote to the card. */ mmc->max_phys_segs = NR_SG; /* * Our hardware DMA can handle a maximum of one page per SG entry. */ mmc->max_seg_size = PAGE_SIZE; host = mmc_priv(mmc); host->mmc = mmc; host->dma = -1; host->pdata = pdev->dev.platform_data; mmc->ocr_avail = host->pdata ? host->pdata->ocr_mask : MMC_VDD_32_33|MMC_VDD_33_34; host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &host->sg_dma, GFP_KERNEL); if (!host->sg_cpu) { ret = -ENOMEM; goto out; } spin_lock_init(&host->lock); host->res = r; host->irq = irq; host->imask = MMC_I_MASK_ALL; host->base = ioremap(r->start, SZ_4K); if (!host->base) { ret = -ENOMEM; goto out; } /* * Ensure that the host controller is shut down, and setup * with our defaults. */ pxamci_stop_clock(host); writel(0, host->base + MMC_SPI); writel(64, host->base + MMC_RESTO); writel(host->imask, host->base + MMC_I_MASK); host->dma = pxa_request_dma(DRIVER_NAME, DMA_PRIO_LOW, pxamci_dma_irq, host); if (host->dma < 0) { ret = -EBUSY; goto out; } ret = request_irq(host->irq, pxamci_irq, 0, DRIVER_NAME, host); if (ret) goto out; platform_set_drvdata(pdev, mmc); if (host->pdata && host->pdata->init) host->pdata->init(&pdev->dev, pxamci_detect_irq, mmc); mmc_add_host(mmc); return 0; out: if (host) { if (host->dma >= 0) pxa_free_dma(host->dma); if (host->base) iounmap(host->base); if (host->sg_cpu) dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); } if (mmc) mmc_free_host(mmc); release_resource(r); return ret; } static int pxamci_remove(struct platform_device *pdev) { struct mmc_host *mmc = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); if (mmc) { struct pxamci_host *host = mmc_priv(mmc); if (host->pdata && host->pdata->exit) host->pdata->exit(&pdev->dev, mmc); mmc_remove_host(mmc); pxamci_stop_clock(host); writel(TXFIFO_WR_REQ|RXFIFO_RD_REQ|CLK_IS_OFF|STOP_CMD| END_CMD_RES|PRG_DONE|DATA_TRAN_DONE, host->base + MMC_I_MASK); DRCMRRXMMC = 0; DRCMRTXMMC = 0; free_irq(host->irq, host); pxa_free_dma(host->dma); iounmap(host->base); dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); release_resource(host->res); mmc_free_host(mmc); } return 0; } #ifdef CONFIG_PM static int pxamci_suspend(struct platform_device *dev, pm_message_t state) { struct mmc_host *mmc = platform_get_drvdata(dev); int ret = 0; if (mmc) ret = mmc_suspend_host(mmc, state); return ret; } static int pxamci_resume(struct platform_device *dev) { struct mmc_host *mmc = platform_get_drvdata(dev); int ret = 0; if (mmc) ret = mmc_resume_host(mmc); return ret; } #else #define pxamci_suspend NULL #define pxamci_resume NULL #endif static struct platform_driver pxamci_driver = { .probe = pxamci_probe, .remove = pxamci_remove, .suspend = pxamci_suspend, .resume = pxamci_resume, .driver = { .name = DRIVER_NAME, }, }; static int __init pxamci_init(void) { return platform_driver_register(&pxamci_driver); } static void __exit pxamci_exit(void) { platform_driver_unregister(&pxamci_driver); } module_init(pxamci_init); module_exit(pxamci_exit); MODULE_DESCRIPTION("PXA Multimedia Card Interface Driver"); MODULE_LICENSE("GPL");